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Vol. 61, No. 2, 2020, Pages 277–290
Published online: November 11, 2020
https://doi.org/10.33044/revuma.v61n2a06

REFLEXIVITY OF RINGS VIA NILPOTENT ELEMENTS

ABDULLAH HARMANCI, HANDAN KOSE, YOSUM KURTULMAZ, AND BURCU UNGOR

Abstract. An ideal I of a ring R is called left N-reflexive if for any a ∈
nil(R) and b ∈ R, aRb ⊆ I implies bRa ⊆ I, where nil(R) is the set of all
nilpotent elements of R. The ring R is called left N-reflexive if the zero ideal
is left N-reflexive. We study the properties of left N-reflexive rings and related
concepts. Since reflexive rings and reduced rings are left N-reflexive rings,
we investigate the sufficient conditions for left N-reflexive rings to be reflexive
and reduced. We first consider basic extensions of left N-reflexive rings. For
an ideal-symmetric ideal I of a ring R, R/I is left N-reflexive. If an ideal I of
a ring R is reduced as a ring without identity and R/I is left N-reflexive, then
R is left N-reflexive. If R is a quasi-Armendariz ring and the coefficients of
any nilpotent polynomial in R[x] are nilpotent in R, it is proved that R is left
N-reflexive if and only if R[x] is left N-reflexive. We show that the concept of
left N-reflexivity is weaker than that of reflexivity and stronger than that of
right idempotent reflexivity.

1. Introduction

Throughout this paper, all rings are associative with identity. A ring is called
reduced if it has no nonzero nilpotent elements. A weaker condition than reduced
is defined by Lambek in [16]. A ring R is said to be symmetric if for any a, b, c ∈ R,
abc = 0 implies acb = 0. Equivalently, abc = 0 implies bac = 0. It is easily checked
that if R is a reduced ring, then the following condition holds: ab = 0 implies
ba = 0 for any a, b ∈ R. Cohn [7] called a ring R reversible if this condition holds.
Anderson and Camillo [3] studied the rings whose zero products commute, and
used the term ZC2 for what is called reversible. Prior to Cohn’s work, reversible
rings were studied under the names of completely reflexive and zero commutative
by Mason [17] and Habe [8], respectively. Tuganbaev [18] investigated reversible
rings under the name of commutative at zero. It is obvious that commutative rings
and reduced rings are reversible. The reversible property of a ring is generalized
as: A ring R is said to satisfy the commutativity of nilpotent elements at zero ([2,
Definition 2.1]) if ab = 0 for any a, b ∈ nil(R) implies ba = 0; for simplicity, such a
ring is called CNZ.
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In [17], a right ideal I of R is said to be reflexive if aRb ⊆ I implies bRa ⊆ I for
any a, b ∈ R. A ring R is called reflexive if 0 is a reflexive ideal of R. Reversible
rings are reflexive by [14, Proposition 2.2]. In [19], R is said to be a weakly reflexive
ring if aRb = 0 implies bRa ⊆ nil(R) for any a, b ∈ R. In [13], a ring R is said to
be nil-reflexive if aRb ⊆ nil(R) implies that bRa ⊆ nil(R) for any a, b ∈ R. In [1],
R is called a reflexivity with maximal ideal axis ring (an RM ring, for short) if for
a maximal ideal M and for any a, b ∈ R, aMb = 0 implies bMa = 0; similarly, R
has reflexivity with maximal ideal axis on idempotents (simply, RMI ) if eMf = 0
for any idempotents e, f and a maximal ideal of M yields fMe = 0. In [15], R
has reflexive-idempotents-property (simply, RIP) if eRf = 0 for any idempotents
e, f yields fRe = 0. A left ideal I is called idempotent reflexive [11] if aRe ⊆ I
implies eRa ⊆ I for a, e2 = e ∈ R. A ring R is called idempotent reflexive if
0 is an idempotent reflexive ideal. Kim and Baik [12] introduced the left and
right idempotent reflexive rings. A two sided ideal I of a ring R is called right
idempotent reflexive if aRe ⊆ I implies eRa ⊆ I for any a, e2 = e ∈ R. A ring R
is called right idempotent reflexive if 0 is a right idempotent reflexive ideal. Left
idempotent reflexive ideals and rings are defined similarly. If a ring R is left and
right idempotent reflexive, then it is called an idempotent reflexive ring.

Kheradmand et al. [10] generalized the notion of reflexive rings to RNP rings.
A ring R is called RNP (reflexive-nilpotents-property) if aRb = 0 for any a, b ∈
nil(R) implies bRa = 0. In this paper, motivated by these classes of types of
reflexive rings, we introduce left N-reflexive rings and right N-reflexive rings. We
prove that some results of reflexive rings can be extended to the left N-reflexive
rings for this general setting. We investigate characterizations of left N-reflexive
rings and many families of left N-reflexive rings are presented. The concept of
one-sided N-reflexivity for rings is placed between reflexive rings and RNP rings.

In what follows, Z denotes the ring of integers and for a positive integer n,
Zn is the ring of integers modulo n. We write Mn(R) for the ring of all n × n
matrices; U(R), nil(R) will denote respectively the group of units and the set
of all nilpotent elements of R; Un(R) is the ring of upper triangular matrices
over R for a positive integer n ≥ 2; Dn(R) is the ring of all matrices in Un(R)
having main diagonal entries equal; and Vn(R) is the subring of Un(R) described
as: V =

∑n
i=1 ei,i+1, where ei,j is the matrix unit having 1 in the (i, j) entry

and 0 elsewhere, RVk = {rA | r ∈ R, A ∈ Vk} for k ∈ {1, . . . , n − 1}, and
Vn(R) = RIn +RV + · · ·+RV n−1 for a positive integer n.

2. N-reflexivity of rings

In this section, we introduce some classes of rings, so-called left N-reflexive rings
and right N-reflexive rings. These classes of rings generalize reflexive rings. We
investigate which properties of reflexive rings hold for the left N-reflexive rings and
right N-reflexive rings. We supply an example to show that there are left N-reflexive
rings that are neither right N-reflexive nor reflexive nor reversible. It is shown that
the class of left N-reflexive rings is closed under finite direct sums. We have an
example to show that homomorphic images of a left N-reflexive ring need not be
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left N-reflexive. Then we determine under what conditions a homomorphic image
of a ring is left N-reflexive. We now give our main definition.

Definition 2.1. Let R be a ring. An ideal I of R is called left N-reflexive if for
any a ∈ nil(R) and b ∈ R, aRb ⊆ I implies bRa ⊆ I. The ring R is called left
N-reflexive if the zero ideal is left N-reflexive. Similarly, I is called right N-reflexive
if for any a ∈ nil(R) and b ∈ R, bRa ⊆ I implies aRb ⊆ I. The ring R is called right
N-reflexive if the zero ideal is right N-reflexive. The ring R is called N-reflexive if
it is both left and right N-reflexive.

Every reflexive ring and every semiprime ring is N-reflexive. There are left N-
reflexive rings which are neither semiprime nor reduced nor reversible. The concept
of one-sided N-reflexivity for rings is placed between reflexive rings and RNP rings:

{reflexive rings} ⊆ {one-sided N-reflexive rings} ⊆ {RNP rings}.
These inclusions are strict. There are RNP rings that are not left N-reflexive and
there are left N-reflexive rings that are not reflexive as shown in what follows.

Example 2.2. There are RNP rings that are not left N-reflexive.

Proof. Let F be a field. Then nil(U2(F )) =
[
0 F
0 0

]
. For any A,B ∈ nil(U2(F )),

it is obvious that AU2(F )B = 0 implies BU2(F )A = 0. So U2(F ) is an RNP ring.

Let C =
[
0 1
0 0

]
∈ nil(U2(F )), D =

[
1 1
0 0

]
∈ U2(F ). Then CD = 0 and DC 6= 0.

Hence R is not left N-reflexive. �

Let F be a field and R = F [x] the polynomial ring over F with x an indeter-
minate. Let α : R → R be a homomorphism defined by α(f(x)) = f(0), where
f(0) is the constant term of f(x). Let Dα

2 (R) denote the skewtrivial extension

of R by R and α. So Dα
2 (R) =

{[
f(x) g(x)

0 f(x)

]
| f(x), g(x) ∈ R

}
is a ring with

componentwise addition of matrices and multiplication as follows:[
f(x) g(x)

0 f(x)

] [
h(x) t(x)

0 h(x)

]
=
[
f(x)h(x) α(f(x))t(x) + g(x)h(x)

0 f(x)h(x)

]
.

There are left N-reflexive rings which are neither reflexive nor semiprime. The
N-reflexive property of rings is not left-right symmetric.

Example 2.3. Let Dα
2 (R) denote the skewtrivial extension of R by R and α as

mentioned above. Then by [19, Example 3.5], Dα
2 (R) is not reflexive. We show

that Dα
2 (R) is left N-reflexive. Note that nil(Dα

2 (R)) =
{[

0 f(x)
0 0

]
| f(x) ∈ R

}
.

Let A =
[
0 f(x)
0 0

]
∈ nil(Dα

2 (R)) and B =
[
h(x) g(x)

0 h(x)

]
∈ Dα

2 (R). Assume that

ADα
2 (R)B = 0. We may assume f(x) 6= 0. Then ADα

2 (R)B = 0 reveals that
h(x) = 0, and also BDα

2 (R)A = 0. Hence Dα
2 (R) is left N-reflexive. Next we

show that Dα
2 (R) is not right N-reflexive. Let A =

[
0 f(x)
0 0

]
be nilpotent and
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B =
[
xh(x) g(x)

0 xh(x)

]
∈ Dα

2 (R), with both f(x) 6= 0 and h(x) 6= 0. By definitions,

BDα
2 (R)A = 0. Since xh(x)f(x) 6= 0, ADα

2 (R)B =
[
0 f(x)r(x)xh(x)
0 0

]
6= 0

for some 0 6= r(x) ∈ R. So Dα
2 (R) is not right N-reflexive. On the other hand,

nil(Dα
2 (R)) is an ideal of Dα

2 (R) and (nil(Dα
2 (R)))2 = 0 but nil(Dα

2 (R)) 6= 0.
Therefore Dα

2 (R) is not semiprime.

Proposition 2.4. Let R be a left N-reflexive ring. Then for any idempotent e of
R, eRe is also left N-reflexive.

Proof. Let eae ∈ eRe be nilpotent and ebe ∈ eRe an arbitrary element with
eaeRebe = 0. Then we have ebeReae = 0, since R is left N-reflexive. �

For any positive integer n, the full matrix ring Mn(F ) over any field F is N-
reflexive but Mn(F ) has some subrings neither left N-reflexive nor right N-reflexive,
as shown below.

Examples 2.5. (1) Let F be a field and R = Mn(F ). In fact, R is a simple ring,
therefore prime. Let A,B ∈ R with ARB = 0. Since R is prime, A = 0 or B = 0.
Hence BRA = 0. So R is reflexive. Therefore R is N-reflexive.

(2) Let F be a field and consider the subrings Un(F ) and Dn(F ) of Mn(F ). It
is obvious that these subrings are neither left N-reflexive nor right N-reflexive.

There are some subrings of Mn(R) that are N-reflexive.

Proposition 2.6. Let R be a commutative ring. Then Vn(R) is an N-reflexive
ring.

The commutativity of the ring R in Proposition 2.6 is not superfluous.

Example 2.7. Let R be a ring and consider the ring S = V2(U2(R)). Note
that U2(R) is not commutative. Let A = e12 + e14 + e34 ∈ nil(S) and B =
e11 + e12 + e33 + e34 ∈ S, where ei,j is the matrix unit having 1 in the (i, j) entry
and 0 elsewhere. Then ASB = 0 and BA 6= 0. Hence S is not left N-reflexive.

Lemma 2.8. N-reflexivity of rings is preserved under isomorphisms.

Theorem 2.9. Let R be a ring and n a positive integer. If Mn(R) is left N-
reflexive, then R is left N-reflexive.

Proof. Suppose that Mn(R) is a left N-reflexive ring. Let eij denote the matrix
unit whose (i, j) entry is 1 and whose other entries are 0. Then R ∼= Re11 =
e11Mn(R)e11 is N-reflexive by Proposition 2.4 and Lemma 2.8. �

Proposition 2.10. Every reversible ring is N-reflexive.

The converse statement of Proposition 2.10 may not be true in general as shown
below.

Example 2.11. By Examples 2.5 (1), M2(F ) is both left and right N-reflexive.
But it is not reversible.
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Theorem 2.12. Let R be a ring. Then the following are equivalent:
(1) R is left N-reflexive.
(2) IRJ = 0 implies JRI = 0 for any ideal I generated by a nilpotent element

and any nonempty subset J of R.
(3) IJ = 0 implies JI = 0 for any ideal I generated by a nilpotent element and

any ideal J of R.
Proof. (1) ⇒ (2): Assume that R is left N-reflexive. Let I = RaR with a ∈ R
nilpotent and 0 6= J ⊆ R such that IRJ = 0. Then for any b ∈ J , aRb = 0. This
implies that bRa = 0, hence bR(RaR) = bRI = 0 for any b ∈ J . Thus JRI = 0.

(2) ⇒ (3): Let I = RaR with a ∈ R nilpotent and let J be an ideal of R such
that IJ = 0. Then J = RJ , so IRJ = 0. By (2), JRI = 0, thus JI = 0.

(3)⇒ (1): Let a ∈ R be nilpotent and b ∈ R with aRb = 0. Then (RaR)(RbR) =
0. By (3), (RbR)(RaR) = 0. Hence bRa = 0. Therefore R is left N-reflexive. �

For any element a ∈ R, rR(a) = {b ∈ R | ab = 0} is called the right annihilator
of a in R. The left annihilator of a in R is defined similarly and denoted by lR(a).
Proposition 2.13. Let R be a ring. Then the following hold:

(1) R is left N-reflexive if and only if for any nilpotent element a of R, rR(aR) ⊆
lR(Ra).

(2) R is right N-reflexive if and only if for any nilpotent element a of R, lR(Ra) ⊆
rR(aR).

Proof. (1) For the necessity, let x ∈ rR(aR) for any nilpotent element a ∈ R. We
have (aR)x = 0. The ring R being left N-reflexive implies xRa = 0. So x ∈ lR(Ra).

For the sufficiency, let a ∈ nil(R) and b ∈ R with aRb = 0. Then b ∈ rR(aR).
By hypothesis, b ∈ lR(Ra), and so bRa = 0. Thus R is left N-reflexive.

(2) Similar to the proof of (1). �

For a field F , D3(F ) is neither left N-reflexive nor right N-reflexive. But there
are some subrings of D3(F ) that are N-reflexive as shown below.
Proposition 2.14. Let R be a reduced ring. Then the following hold:

(1) Consider the subring S =


a b c

0 a 0
0 0 a

 | a, b, c ∈ R
 of D3(R). Then S is

N-reflexive.

(2) Let S =


a 0 c

0 a b
0 0 a

 | a, b, c ∈ R
 be a subring of D3(R). Then S is N-

reflexive.

Proof. (1) Let A =

0 b c
0 0 0
0 0 0

 ∈ S be any nonzero nilpotent element and B =u v t
0 u 0
0 0 u

 ∈ S. Assume that ASB = 0. This implies AB = 0, and so bu = 0 and
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cu = 0. For any C =

x y z
0 x 0
0 0 x

 ∈ S, BCA =

0 uxb uxc
0 0 0
0 0 0

. The equalities

bu = cu = 0 imply (uxb)2 = (uxc)2 = 0. Since R is reduced, uxb = uxc = 0. Then
BCA = 0. Hence BSA = 0. Thus R is left N-reflexive. A similar proof implies
that S is right N-reflexive.

(2) By [19, Proposition 2.2]. �

The condition of R being reduced in Proposition 2.14 is not superfluous, as the
following example shows.

Example 2.15. Let F be a field and R = F 〈a, b〉 be the free algebra with non-
commuting indeterminates a, b over F . Let I be the ideal of R generated by
aRb and a2. Consider the ring R = R/I. Identify a and b with their images
in R. Then aRb = 0. But bRa 6= 0. Note that R is not reduced. Con-

sider the ring S =


x y z

0 x 0
0 0 x

 | x, y, z ∈ R
. Let B =

b 1 1
0 b 0
0 0 b

 ∈ S and

A =

0 a a
0 0 0
0 0 0

 ∈ nil(S). Then ASB = 0 since aRb = 0. However, BA 6= 0 since

ba 6= 0. Hence S is not left N-reflexive.

The class of left (or right) N-reflexive rings is not closed under homomorphic
images.

Example 2.16. Consider the rings R and R = R/I in Example 2.15, where I is
the ideal of R generated by aRb and a2. Then R is reduced, hence left N-reflexive.
Let a, b ∈ R. Then aRb = 0. But bRa 6= 0. Hence R is not left N-reflexive.

Let R be a ring and I an ideal of R. Recall (see [6]) that I is called ideal-
symmetric if ABC ⊆ I implies ACB ⊆ I for any ideals A,B,C of R. In this vein,
we mention the following result.

Proposition 2.17. Let R be a ring and I an ideal-symmetric ideal of R. Then
R/I is an N-reflexive ring.

Proof. Let a denote the image of a ∈ R in R/I under the natural homomorphism
from R onto R/I. Let a ∈ nil(R/I) and b ∈ R/I with a(R/I)b = 0. Then aRb ⊆ I.
So R(RaR)(RbR) ⊆ I. By hypothesis, R(RbR)(RaR) ⊆ I. Therefore bRa ⊆ I,
and so b(R/I)a = 0. It means that R/I is left N-reflexive. Similarly, it can be
shown that R/I is also right N-reflexive. �

Let R be a ring and I an ideal of R. In the short exact sequence 0 → I →
R → R/I → 0, I being N-reflexive (as a ring without identity) and R/I being
N-reflexive need not imply that R is N-reflexive.
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Example 2.18. Let F be a field and consider the ring R = D3(F ). Let I =0 F F
0 0 F
0 0 0

. Then I is left N-reflexive since I3 = 0. Also, R/I is left N-reflexive

since R/I is isomorphic to F . However, by Examples 2.5 (2), R is not left N-
reflexive.

Theorem 2.19. Let R be a ring and I an ideal of R. If I is reduced as a ring
(without identity) and R/I is left N-reflexive, then R is left N-reflexive.

Proof. Let a ∈ nil(R) and b ∈ R with aRb = 0. Then a(R/I)b = 0 and a ∈
nil(R/I). By hypothesis, b(R/I)a = 0. Hence bRa ⊆ I. Since I is reduced and
bRa is nil, bRa = 0. �

Note that Example 2.18 shows also that the reduced condition on the ideal I in
Theorem 2.19 is not superfluous.

Let R be a ring and e an idempotent in R. Then e is called left semicentral if
re = ere for all r ∈ R, and Sl(R) denotes the set of all left semicentral elements.
Similarly, e is called right semicentral if er = ere for all r ∈ R, and Sr(R) denotes
the set of all right semicentral elements of R. We use B(R) for the set of central
idempotents of R. In [5], a ring R is called left (right) principally quasi-Baer (or
simply, left (right) p.q.-Baer) if the left (right) annihilator of a principal left (right)
ideal of R is generated by an idempotent as a left (right) ideal.

Theorem 2.20. The following hold for a ring R:
(1) If R is right N-reflexive, then Sl(R) = B(R).
(2) If R is left N-reflexive, then Sr(R) = B(R).

Proof. (1) Let e ∈ Sl(R) and a ∈ R. Then (1 − e)Re = 0. It follows that (1 −
e)Re(a− ae) = (1− e)R(ea− eae) = 0. Since ea− eae is nilpotent and R is right
N-reflexive, (ea − eae)R(1 − e) = 0. Hence (ea − eae)(1 − e) = 0. This implies
ea − eae = 0. On the other hand, (1 − e)R(a − ea)e ⊆ (1 − e)Re = 0. Thus
(1 − e)R(ae − eae) = 0, and so (1 − e)(ae − eae) = 0. Then ae − eae = 0. So we
have ea = ae, i.e., e ∈ B(R). Therefore Sl(R) ⊆ B(R). The reverse inclusion is
obvious.

(2) Similar to the proof of (1). �

Theorem 2.21. Let R be a right p.q.-Baer ring. Then the following conditions
are equivalent:

(1) R is a semiprime ring.
(2) Sl(R) = B(R).
(3) R is a reflexive ring.
(4) R is a right N-reflexive ring.

Proof. (1) ⇔ (2): By [5, Proposition 1.17(i)].
(1) ⇔ (3): By [14, Proposition 3.15].
(3) ⇒ (4): Clear by definitions.
(4) ⇒ (2): By Theorem 2.20 (1). �
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Theorem 2.22. Let R be a left p.q.-Baer ring. Then the following conditions are
equivalent:

(1) R is a semiprime ring.
(2) Sr(R) = B(R).
(3) R is a reflexive ring.
(4) R is a left N-reflexive ring.

Proof. Similar to the proof of Theorem 2.21. �

Question: If a ring R is N-reflexive, then is R a 2-primal ring?

There is a 2-primal ring which is not N-reflexive.

Example 2.23. Consider the 2 by 2 upper triangular matrix ring R =
[
Z2 Z2
0 Z2

]
over the field Z2 of integers modulo 2. For A =

[
0 1
0 0

]
∈ nil(R) and B =

[
1 1
0 0

]
∈

R, we have ARB = 0 but BRA 6= 0. But R is 2-primal by [4, Proposition 2.5].

Proposition 2.24. Let {Ri}i∈I be a class of rings. Then R =
∏
i∈I

Ri is left N-

reflexive if and only if Ri is left N-reflexive for each i ∈ I.

Proof. Assume that R =
∏
i∈I

Ri is left N-reflexive. By Proposition 2.4, for each i ∈ I

Ri is left N-reflexive. Conversely, let a = (ai) ∈ R be nilpotent and b = (bi) ∈ R
with aRb = 0. Then aiRibi = 0 for each i ∈ I. Since each ai is nilpotent in Ri
for each i ∈ I, by hypothesis, biRiai = 0 for every i ∈ I. Hence bRa = 0. This
completes the proof. �

3. Extensions of N-reflexive rings

In this section, we study some kinds of extensions of N-reflexive rings. We start
with the Dorroh extension. The Dorroh extension D(R,Z) = {(r, n) | r ∈ R, n ∈
Z} of a ring R is a ring with operations (r1, n1) + (r2, n2) = (r1 + r2, n1 + n2) and
(r1, n1)(r2, n2) = (r1r2 + n1r2 + n2r1, n1n2), where ri ∈ R and ni ∈ Z for i = 1, 2.

Proposition 3.1. A ring R is left N-reflexive if and only if the Dorroh extension
D(R,Z) of R is left N-reflexive.

Proof. Firstly, we note that nil(D(R,Z)) = {(r, 0) | r ∈ nil(R)}. For the necessity,
let (a, b) ∈ D(R,Z) and (r, 0) ∈ nil(D(R,Z)) with (r, 0)D(R,Z)(a, b) = 0. Then
(r, 0)(s, 0)(a, b) = 0 for every s ∈ R. Hence rs(a + b1R) = 0 for all s ∈ R,
and so rR(a + b1R) = 0. Since R is left N-reflexive, (a + b1R)Rr = 0. Thus
(a, b)(x, y)(r, 0) = ((a + b1R)(x + y1R)r, 0) = 0 for any (x, y) ∈ D(R,Z). For the
sufficiency, let s ∈ R and r ∈ nil(R) with rRs = 0. We have (r, 0) ∈ nil(D(R,Z)).
This implies (r, 0)D(R,Z)(s, 0) = 0. By hypothesis, (s, 0)D(R,Z)(r, 0) = 0. In
particular, (s, 0)(x, 0)(r, 0) = 0 for all x ∈ R. Therefore sRr = 0. So R is left
N-reflexive. �
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Let R be a ring and S the subset of R consisting of identity and central regular
elements. Set S−1R = {s−1r | s ∈ S, r ∈ R}. Then S−1R is a ring with an
identity.
Theorem 3.2. A ring R is left N-reflexive if and only if S−1R is left N-reflexive.
Proof. Assume that R is left N-reflexive and let s−1a ∈ nil(S−1R), t−1b ∈ S−1R
with (s−1a)(S−1R)(t−1b) = 0. Then a ∈ nil(R) and aRb = 0. By assump-
tion, bRa = 0. Hence (t−1b)(S−1R)(s−1a) = 0. This implies that S−1R is left
N-reflexive. Conversely, assume that S−1R is left N-reflexive. Let a ∈ nil(R)
and b ∈ R with aRb = 0. Since 1 ∈ S, (1a)(S−1R)(1b) = 0. It follows that
(1b)(S−1R)(1a) = 0. This yields bRa = 0. Therefore R is left N-reflexive. �

Corollary 3.3. For a ring R, R[x] is left N-reflexive if and only if R[x;x−1] is
left N-reflexive.
Proof. Consider the subset S = {1, x, x2, . . . } of R[x]. Then S consists of 1 and
central regular elements. So the claim holds by Theorem 3.2. �

Proposition 3.4. For a ring R, R[x] is left N-reflexive if and only if (S−1R)[x]
is left N-reflexive.
Proof. For the necessity, letR[x] be left N-reflexive, f(x) =

∑m
i=0 s

−1
i aix

i nilpotent,
and g(x) =

∑n
i=0 t

−1
i bix

i ∈ (S−1R)[x] such that f(x)(S−1R)[x]g(x) = 0. Let
s = s0s1 . . . sm and t = t0t1t2 . . . tn. Then f1(x) = sf(x) is nilpotent, g1(x) =
tg(x) ∈ R[x], and f1(x)R[x]g1(x) = 0. By hypothesis, g1(x)R[x]f1(x) = 0. Then
g(x)(S−1R)[x]f(x) = 0. The sufficiency is clear. �

According to [9], a ring R is said to be quasi-Armendariz if whenever f(x) =∑m
i=0 aix

i and g(x) =
∑n
j=0 bjx

j ∈ R[x] satisfy f(x)R[x]g(x) = 0, we have aiRbj =
0 for each i, j.

The left N-reflexivity or right N-reflexivity and the quasi-Armendariz property
of rings do not imply each other.

Examples 3.5. (1) Let F be a field and consider the ring R =
[
F F
0 F

]
. Then R

is quasi-Armendariz by [9, Corollary 3.15]. However, R is not left N-reflexive. For

A =
[
0 1
0 0

]
∈ nil(R) and B =

[
1 1
0 0

]
∈ R, we have ARB = 0 but BA 6= 0.

(2) Consider the ring R = {
[
a b
0 a

]
| a, b ∈ Z4}. Since R is commutative, R

is N-reflexive. For f(x) =
[
0 1
0 0

]
+
[
2 1
0 2

]
x and g(x) =

[
0 1
0 0

]
+
[
2 3
0 2

]
x ∈

R[x], we have f(x)Rg(x) = 0, and so by [9, Lemma 2.1] f(x)R[x]g(x) = 0, but[
2 1
0 2

]
R

[
0 1
0 0

]
6= 0. Thus R is not quasi-Armendariz.

Proposition 3.6. Let R be a quasi-Armendariz ring. Assume that coefficients of
any nilpotent polynomial in R[x] are nilpotent in R. Then R is left N-reflexive if
and only if R[x] is left N-reflexive.
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Proof. Suppose thatR is left N-reflexive and f(x) =
∑m
i=0 aix

i, g(x) =
∑n
j=0 bjx

j ∈
R[x] with f(x)R[x]g(x) = 0 and f(x) nilpotent. The ringR being quasi-Armendariz
implies aiRbj = 0 for all i and j, and f(x) being nilpotent gives rise to all a0,
a1, a2, . . . , am nilpotent. By supposition bjRai = 0 for all i and j. Therefore
g(x)R[x]f(x) = 0, and so R[x] is left N-reflexive. Conversely, assume that R[x] is
left N-reflexive. Let a ∈ R be nilpotent and let b ∈ R be any element with aRb = 0.
Then aR[x]b = 0. Hence bR[x]a = 0. Thus bRa = 0 and R is left N-reflexive. �

Note that in the commutative case, the coefficients of any nilpotent polynomial
are nilpotent. However, this is not the case for noncommutative rings in general.
Therefore in Proposition 3.6 the assumption “coefficients of any nilpotent poly-
nomial in R[x] are nilpotent in R” is not superfluous, as the following example
shows.

Example 3.7. Let S = Mn(R) for a ring R. Consider the polynomial f(x) =
e21 + (e11 − e22)x − e12x

2 ∈ S[x], where the eij ’s are the matrix units. Then
f(x)2 = 0, but e11 − e22 is not nilpotent.

4. Applications

In this section, we study some subrings of full matrix rings whether or not they
are left or right N-reflexive rings.

The rings H(s,t)(R): Let R be a ring and let s, t be in the center of R. Let

H(s,t)(R) =


a 0 0
c d e
0 0 f

 ∈M3(R) | a, c, d, e, f ∈ R, a− d = sc, d− f = te

.
Then H(s,t)(R) is a subring of M3(R). Note that any element A of H(s,t)(R) has

the form

sc+ te+ f 0 0
c te+ f e
0 0 f

.
Lemma 4.1. Let R be a ring, and let s, t be in the center of R. Then the set of
all nilpotent elements of H(s,t)(R) is

nil(H(s,t)(R)) =


a 0 0
c d e
0 0 f

 ∈ H(s,t)(R) | a, d, f ∈ nil(R), c, e ∈ R

.
Proof. Let A =

a 0 0
c d e
0 0 f

 ∈ nil(H(s,t)(R)) be nilpotent. There exists a positive

integer n such that An = 0. Then an = dn = fn = 0. Conversely, assume that an =
0, dm = 0, and fk = 0 for some positive integers n,m, k. Let p = max{n,m, k}.
Then A2p = 0. �
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Theorem 4.2. The following hold for a ring R:

(1) If R is a reduced ring, then H(0,0)(R) is N-reflexive but not reduced.
(2) If R is reduced, then H(1,0)(R) is N-reflexive but not reduced.
(3) If R is reduced, then H(0,1)(R) is N-reflexive but not reduced.
(4) R is reduced if and only if H(1,1)(R) is reduced.

Proof. (1) Let R be a reduced ring and A =

a 0 0
c a e
0 0 a

 ∈ nil(H(0,0)(R)) be nilpo-

tent. By Lemma 4.1, a is nilpotent. By assumption, a = 0. Let B =

k 0 0
l k n
0 0 k

 ∈
H(0,0)(R) with AH(0,0)(R)B = 0. Then AB = 0 implies ck = 0 and ek = 0. For

any X =

x 0 0
y x u
0 0 x

 ∈ H(0,0)(R), AXB =

 0 0 0
cxk 0 exk
0 0 0

 = 0. Then cxk = 0

and exk = 0 for all x ∈ R. The ring R being reduced implies kxc = 0 and kxe = 0

for all x ∈ R. Then BXA =

 0 0 0
kxc 0 kxe
0 0 0

 = 0 for all X ∈ H(0,0)(R). Hence

H(0,0)(R) is left N-reflexive. A similar discussion reveals that H(0,0)(R) is also
right N-reflexive. Note that R being reduced does not imply H(0,0)(R) is reduced,

because A =

0 0 0
1 0 1
0 0 0

 ∈ H(0,0)(R) is a nonzero nilpotent element.

(2) Let R be a reduced ring, A =

0 0 0
0 0 e
0 0 0

 ∈ nil(H(1,0)(R)), and B =f + c 0 0
c f d
0 0 f

 ∈ H(1,0)(R), withAH(1,0)(R)B = 0. For any C =

m+ n 0 0
n m u
0 0 m

 ∈
H(1,0)(R), ACB = 0. Then emf = 0 and fme = 0. This implies BCA = 0. There-
fore H(1,0)(R) is left N-reflexive. Similarly, H(1,0)(R) is also right N-reflexive.

(3) Assume that R is a reduced ring and let A =

0 0 0
c 0 0
0 0 0

 ∈ nil(H(0,1)(R))

and B =

e+ f 0 0
a e+ f e
0 0 f

 ∈ H(0,1)(R), with AH(0,1)(R)B = 0. For any C =m+ n 0 0
k m+ n m
0 0 n

 ∈ H(0,1)(R), ACB = 0. Then c(m + n)(e + f) = 0 and

(e+f)(m+n)c = 0. This implies BCA = 0. Therefore H(0,1)(R) is left N-reflexive.
Similarly, H(0,1)(R) is also right N-reflexive.
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(4) Suppose that R is a reduced ring and let A =

c+ e+ f 0 0
c e+ f e
0 0 f

 ∈
nil(H(1,1)(R)) be nilpotent. Then f is nilpotent and so f = 0. In turn, this implies
e = c = 0. Hence A = 0. Conversely, assume that H(1,1)(R) is reduced. Let

a ∈ R with an = 0. Let A =

a 0 0
0 a 0
0 0 a

 ∈ H(1,1)(R). Then A is nilpotent. By

assumption, a = 0. �

5. Generalizations and some examples

In this section, we introduce left N-right idempotent reflexive rings and right
N-left idempotent reflexive rings, to generalize the reflexive idempotent rings in
Kwak and Lee [14], Kim [11], and Kim and Baik [12]. We introduce the following
classes of rings to produce counterexamples related to left N-reflexive rings. These
classes of rings will be studied in detail in a subsequent paper by the authors.

Definition 5.1. Let R be a ring. An ideal I of R is called left N-right idempotent
reflexive if aRe ⊆ I implies eRa ⊆ I for any nilpotent a ∈ R and e2 = e ∈ R.
A ring R is called left N-right idempotent reflexive if 0 is a left N-right idempotent
reflexive ideal. Right N-left idempotent reflexive ideals and rings are defined sim-
ilarly. If a ring R is left N-right idempotent reflexive and right N-left idempotent
reflexive, then it is called an N-idempotent reflexive ring.

Every left N-reflexive ring is a left N-right idempotent reflexive ring. But there
are left N-right idempotent reflexive rings that are not left N-reflexive.

Examples 5.2. (1) Let F be a field and A = F 〈X,Y 〉 denote the free algebra
generated by noncommuting indeterminates X and Y over F . Let I denote the
ideal generated by Y X. Let R = A/I and let x = X+I, y = Y +I ∈ R. It is proved
in [11, Example 5] that R is abelian and so R has reflexive-idempotents-property
but not reflexive by showing that xRy 6= 0 and yRx = 0. Moreover, xyRx = 0 and
xRxy 6= 0. This also shows that R is not left N-reflexive since xy is nilpotent in R.

(2) Let F be a field and let A = F 〈X,Y 〉 denote the free algebra generated by
noncommuting indeterminates X and Y over F . Let I denote the ideal generated
by X3, Y 3, XY , Y X2, Y 2X in A. Let R = A/I and let x = X+ I, y = Y + I ∈ R.
Then in R, x3 = 0, y3 = 0, xy = 0, yx2 = 0, y2x = 0. In [1, Example 2.3],
xRy = 0, yRx 6= 0, and idempotents in R are 0 and 1. Hence for any r ∈ nil(R)
and e2 = e ∈ R, rRe = 0 implies eRr = 0. Thus R is left N-right idempotent
reflexive. We show that R is not a left N-reflexive ring. Since any r ∈ R has the
form r = k0 + k1x+ k2x

2 + k3y + k4y
2 + k5yx and x is nilpotent, as noted above,

xRy = 0. However, yRx 6= 0 since yx 6= 0. Thus R is not left N-reflexive.
(3) Let F be a field of characteristic zero and A = F 〈X,Y, Z〉 denote the free

algebra generated by noncommuting indeterminates X, Y , and Z over F . Let I
denote the ideal generated by XAY and X2−X. Let R = A/I and let x = X + I,
y = Y + I, z = Z + I ∈ R. Then in R, xRy = 0 and x2 = x. So xy = 0, yx
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is nilpotent, x is idempotent, and xRyx = 0. But yxRx 6= 0. Hence R is not
right N-left idempotent reflexive. In [14, Example 3.3], it is shown that R is right
idempotent reflexive.
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