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MODULAR AUTOMATA

THOMAS N. HIBBARD†, CAMILO A. JADUR, AND JORGE F. YAZLLE

Abstract. Let M and b be integers greater than 1, and let p be a positive
probability vector for the alphabet Ab = {0, . . . , b − 1}. Let us consider a
random sequence w0, w1, . . . , wj over Ab, where the wi’s are independent and
identically distributed according to p. Such a sequence represents, in base b,
the number n =

∑j

i=0 wib
j−i. In this paper, we explore the asymptotic

distribution of n mod M , the remainder of n divided by M . In particular, by
using the theory of Markov chains, we show that if M and b are coprime, then
n mod M exhibits an asymptotic discrete uniform distribution, independent
of p; on the other hand, when M and b are not coprime, n mod M does not
necessarily have a uniform distribution, and we obtain an explicit expression
for this limiting distribution.

1. Introduction

In this work we deal with non-negative integer numbers (represented in some
fixed integer base b > 1) whose digits are randomly generated step by step; we are
interested in the distribution of such numbers modulo a given integer M > 1. More
precisely, the set {0, . . . , b−1} of all digits for such representations is endowed with
a strictly positive probability vector p. Suppose that, according to p, we produce a
random sequence of independent and identically distributed digits w0, w1, . . . , wj .
Such a sequence represents, in base b, the number n =

∑j
i=0 wib

j−i. In this context,
and especially for j larger and larger, the distribution of the remainder of n divided
by M is of natural interest: Given r ∈ {0, . . . , M − 1}, what is the probability that
n mod M is precisely r? At first glance, one could be tempted to think that, in
all cases, this probability depends on r and also on p, since endowing a particular
digit with a high probability could favor some of the possible residues.

For b = 2, simulation trials show that a long sequence of 0’s and 1’s in which 0
occurs with probability p ∈ (0, 1) (that is, p = (p, 1 − p)) seems to have a steady
state probability 1/M of being the binary representation of a multiple of a given
odd number M , independently of p. Tables 1 and 2 below show outcomes of such
simulations for M = 9 and M = 11, respectively (bar charts are given in Figure 1);
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in each case, three different schemes for p were chosen, and, for each one, 50,000
trials with 100-bit random numbers were executed; we registered the frequency of
having residue 0 and, additionally, the frequency of all the other possible residues
for each case.

p 0 1 2 3 4 5 6 7 8
(0.3,0.7) 0.111 0.110 0.113 0.111 0.109 0.110 0.111 0.112 0.113
(0.1,0.9) 0.113 0.110 0.113 0.111 0.111 0.108 0.111 0.112 0.111

(0.95,0.05) 0.113 0.114 0.110 0.110 0.110 0.111 0.107 0.114 0.111

Table 1. b = 2, M = 9.

p 0 1 2 3 4 5 6 7 8 9 10
(0.3,0.7) 0.091 0.091 0.090 0.090 0.091 0.091 0.092 0.092 0.088 0.092 0.092
(0.1,0.9) 0.091 0.093 0.089 0.090 0.092 0.091 0.090 0.091 0.092 0.091 0.090

(0.95,0.05) 0.094 0.089 0.091 0.091 0.092 0.089 0.092 0.091 0.090 0.090 0.091

Table 2. b = 2, M = 11.

M = 9 M = 11
Figure 1. b = 2.

In fact, the same trials show that not only 0, but all the possible residues mod-
ulo M of the numbers represented by such sequences, seem to have the same prob-
ability 1/M , not depending on p.

Still in the binary case b = 2, but now taking M even, simulation shows that, in
general, the residues have no longer all the same probability 1/M . Moreover, for
fixed M , p has a strong influence on the results. Figure 2 shows some outcomes
for the case M = 12.

When b > 2, and depending on whether M is (or is not) coprime with b, trials
reveal similar situations. For instance, taking b = 10, Figure 3 shows outcomes for
M = 9, M = 12 and M = 75.
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p = (0.3, 0.7) p = (0.1, 0.9) p = (0.95, 0.05)

Figure 2. b = 2, M = 12.

(a) M = 9 (b) M = 12 (c) M = 75

Figure 3. b = 10, p = (0.24, 0.01, 0.01, 0.01, 0.01, 0.52, 0.01, 0.01, 0.17, 0.01).

Calling Xk =
∑k

i=0 wib
k−i mod M , the problem can be seen as that of the

evolution of the random variable Xk recursively generated under the stochastic
recurrence Xk = (bXk−1 + wk) mod M , where wk is the randomly generated kth
digit. Our simulations suggest that coprimality between b and M plays a central
role in the asymptotic distribution for Xk.

We mention that, as an antecedent, deterministic recursive formulas of the form
Xk = (aXk−1 + c) mod m, for a, c, m fixed positive integers, have been studied as
pseudo-random number generators (see, for instance, [7]). Of course, the choice of
values for the parameters affects how good the generator is. Usually, m has many
repeated prime factors and is coprime with c; in addition, a − 1 is divisible by any
prime factor of m, and if m is a multiple of 4, so is a − 1. In such cases, Xk has
the uniform limiting distribution. In order to produce pseudo-random numbers,
programming languages use such deterministic recursions, each with its own set of
parameters (for instance, Borland C++ takes a = 22695477, c = 1, m = 232).

In the case we propose to study here, randomness is added, since the independent
coefficient in the recursion varies in some random way, and our aim is to describe
how this randomness influences the asymptotic distribution for Xk in our stochastic
recursion. To do so, we consider a special class of stochastic automata which we
call modular automata, whose definition and basic properties are given in Section 3.
Then, applying to modular automata the theory of Markov chains—thus giving a
dynamical flavor to our problem—in Section 4 we will show that Xk has uniform
asymptotic distribution (that is, all the possible remainders have the same steady
state probability 1/M) whenever M is coprime with b, regardless of the probability
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vector p. Based on this result, in Section 5 we obtain an explicit expression for
the asymptotic distribution of Xk (in terms of M , b and p) for arbitrary positive
integer values of M and b. We start by presenting, in Section 2, the necessary
formal definitions, also recalling some well-known facts which will be useful in
what follows.

Note from authors Jadur and Yazlle. Dr. Thomas Hibbard passed away in 2016.
We wish to justify his inclusion as an author of this paper. In 2011, Dr. Hibbard
commented on his observations (obtained by simulation) about an unexpected reg-
ularity of the residues (modulo an odd number) of randomly generated binary
sequences. We worked with Dr. Hibbard on this counter-intuitive problem, obtain-
ing significant advances for such binary sequences and odd moduli, and sharing
preliminary results in some scientific meetings. By 2014, he devised a strategy to
also handle the case of even moduli, which by the end of 2015 allowed us to obtain
a formula for the stationary distribution of residues modulo any positive integer,
in the case of binary sequences. This was the state of our joint research when
unfortunately Dr. Hibbard passed away. In 2019, we started working again on the
problem, and submitted the paper in 2022. It is clear to us that Dr. Hibbard merits
being an author of the present work.

2. Formal definitions

We begin with a couple of classical results in number theory. The reader is
referred to [5] for proofs and a thorough presentation.

By a natural number we mean a non-negative integer. When n and M are
integers with M > 0, by n mod M we mean the remainder of n divided by M .
We will use ≡M to denote the classical equivalence relation congruence modulo M
between integers, and ZM for Z/ ⟨M⟩, identifying [r] with r for 0 ≤ r < M . Thus,
we consider ZM = {0, . . . , M − 1}, endowed with the operations of addition and
multiplication modulo M .

Proposition 2.1. For p and q coprime numbers, n ≡pq r if and only if n ≡p r
and n ≡q r.

For M prime, ZM is a field, thus providing unique solutions for equations b×x =
c when b ̸= 0. More generally, we have the following result.

Proposition 2.2. For any ZM , given b coprime with M and c ∈ ZM , there is a
unique solution for the equation b × x = c.

2.1. b-ary expressions. An alphabet is a finite set A of symbols, or letters. A word
on A is a finite sequence of letters1; in particular, ϵ represents the empty sequence,
or empty word. The length of a word w, denoted by |w|, is the length of the
corresponding sequence. We denote by A∗ the set of all words on A. A∗ is endowed
with the concatenation operation, consisting of joining words end-to-end. Given
a natural number b > 1, by a representation of a natural number n in base b we

1By default, nonempty sequences will start from index 0.
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mean a word w on the alphabet {0, . . . , b − 1} such that n =
∑|w|−1

i=0 wib
|w|−1−i

(the empty sequence representing the number 0). In such a case, we also say that
w is a b-ary expression of n. The symbols 0, . . . , b − 1 are also called digits and,
except when it is likely to lead to confusion, b-ary expressions are written down
without any special characters between the digits. Note that the representation in
base b of a number is unique except for leading 0’s (in our application here we need
them).

Remark 2.3. There are connections between certain arithmetic operations and
manipulation of b-ary expressions:

• Multiplication by bk corresponds to appending k 0’s at the right.
• The last k digits of a b-ary expression correspond to the remainder of the

division by bk; deleting those last k digits, we obtain the integer part of
such division. Consequently, two sequences in base b represent numbers
equivalent mod bk if and only if they coincide in the last k digits.

There are a lot of very nice and comprehensive treatments of number represen-
tations (see, for instance, [2] or [3]).

2.2. Markov chains. Next, we present a classical formalism which will allow us
to consider and solve our problem within the framework of dynamical systems. We
include just a very basic summary of the theory, suited strictly for our purposes
(for a general treatment, see, for instance, [4] or [9]).

A discrete-time finite-state homogeneous Markov chain is a sequence {Xn}n∈N
of random variables on a finite state space K whose conditional probabilities satisfy
the homogeneous Markov property:

P (Xn+1 = r | Xn = q, Xn−1 = sn−1, . . . , X0 = s0) = P (X1 = r | X0 = q)

for any n ∈ N and any q, r, s0, . . . , sn−1 ∈ K.
From now on, discrete-time finite-state homogeneous Markov chains will be re-

ferred to as simply Markov chains, or Markov processes.
P (X1 = r | X0 = q) is the one-step transition probability from state q to state r,

and is denoted by Pq,r. The whole 2-dimensional array P = (Pq,r)q,r∈K is called
the transition matrix of the chain, and completely characterizes the chain (up to a
renaming of the states).

It is well known that P (Xn = r | X0 = q), the n-step transition probability from
state q to state r, is the (q, r)-entry of the nth power of P, that is, (Pn)q,r.

The Markov chain is called irreducible if each pair q, r ∈ K admits n ∈ N such
that (Pn)q,r > 0.

The period of a state q, denoted by per(q), is

per(q) = gcd
{

n > 0 : (Pn)q,q > 0
}

.

A state having period 1 is said to be aperiodic. The Markov process is called
aperiodic when all its states are aperiodic.
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A known fact about any irreducible Markov process is that all its states have
the same period.

A Markov chain which is both irreducible and aperiodic is said to be ergodic.
A fundamental question about the transition matrix of a Markov chain is the

existence of an invariant vector, that is, a probability vector v for the states such
that vP = v, and whether such v is unique. A known deep result about Markov
processes, which is of fundamental importance in this work, is that the transition
matrix of any ergodic Markov chain possesses exactly one invariant vector, and
the asymptotic probability that the process is in a given state is the corresponding
entry of such vector. In [4, p. 208] there is a proof of this result (in a more general
setting, for arbitrary Markov chains) which we state as follows:

Lemma 2.4 ([4, Theorem 6.4 (3)]). Let {Xn}n∈N be an ergodic Markov chain
with transition matrix P. Then, there exists a unique vector v such that vP = v.
Moreover, for any state r, we have that limn→∞ P (Xn = r) = vr.

2.3. Stochastic automata. Markov chains have a graphical and intuitive coun-
terpart, which we will introduce now (see [8] for a general treatment).

Definition 2.5. A stochastic automaton is a 4-tuple (K, A, δ, p), where K is a
finite set of states, A is a finite input alphabet, δ is the next state function from
K ×A to K, and p is a strictly positive probability vector for A, that is, 0 < pa < 1
for each a ∈ A and

∑
a∈A pa = 1.

In other words, a stochastic automaton is a standard deterministic finite-state
automaton (without indication of initial and final states) together with a positive
probability function for its input alphabet. A classical presentation of finite-state
automata is given in [6].

It is customary to represent the stochastic automaton as a directed arc-labeled
graph having K as its vertex set, and whose edge set is as follows: from vertex q
there is an edge labeled “a : pa” to vertex r if and only if δ(q, a) = r.

We extend inductively δ to K × A∗ the way we do for finite automata, that is,
• δ(q, ϵ) = q for each q ∈ K;
• δ(q, va) = δ(δ(q, v), a) for each q ∈ K, v ∈ A∗ and a ∈ A.

Similarly, the probability distribution p for A is extended to A∗ in the natural way:
p(ϵ) = 1 and p (t0 . . . tj) = pt0 · · · ptj . In particular, such extension of p defines a
positive probability for each path (of any length) in the graph.

Stochastic automata can be regarded as Markov processes. The stochastic au-
tomaton (K, A, δ, p) corresponds to the Markov chain having state space K, with
the one-step transition probability from state q to state r being the sum of the
probabilities of all the edges from q to r in the automaton; i.e., the transition ma-
trix P of the chain (which we will also call the transition matrix of the automaton)
is defined by

Pq,r =
∑

a∈A:δ(q,a)=r

pa. (2.1)
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Definition 2.6. A stochastic automaton is said to be irreducible (resp., aperi-
odic, ergodic) when its corresponding Markov chain is irreducible (resp., aperiodic,
ergodic).

With P as defined in (2.1), the (q, r)-entry of Pn contains the sum of the prob-
abilities of all the paths of length n in the graph going from state q to state r.
Having this in mind, we can check ergodicity of the chain in terms of paths and
cycles in the graph, as follows:

• For q, r ∈ K and n ∈ N, we have that (Pn)q,r > 0 if and only if there exists
some path of length n going from q to r in the graph. Hence, irreducibility
of the chain is equivalent to having at least one path (of any length) from
each vertex to each other.

• For q ∈ K and n > 0, (Pn)q,q > 0 if and only if there exists a cycle of
length n on q. Hence, the period of state q is the greatest common divisor
of the lengths of all nonempty cycles on q, i.e., per(q) = gcd{|w| : w ̸=
ϵ, δ(q, w) = q}. In particular, a state with a loop is aperiodic.

Observe that the sum of all the entries in row q of P equals the sum of the prob-
abilities of all the edges in the automaton starting at state q; since δ is a function
with domain K × A, we have that

∑
r∈K Pq,r =

∑
a∈A pa = 1, that is, each row

of P is a probability vector for K. Concerning the columns of P, the sum of all
the entries in column r equals the sum of the probabilities of all the edges in the
automaton arriving at state r (but this sum is not always 1). Note that Pq,r = 0
if there is no a ∈ A such that δ(q, a) = r.

3. Modular automata

In this section, we define a subclass of the family of stochastic automata, which
will be very useful for our purposes.

For the rest of this work, b > 1 will represent an integer base, Ab = {0, . . . , b − 1}
will be the set of digits for b-ary expressions and p will represent a strictly positive
probability vector for Ab.

Definition 3.1. Let M be an integer greater than 1. The (b, M, p)-modular au-
tomaton is the stochastic automaton (ZM , Ab, δ, p), where δ(q, a) = (qb+a) mod M
for each q ∈ K and a ∈ Ab.

Example 3.2. The (2, 3, (0.1, 0.9))-modular automaton has states Z3 = {0, 1, 2},
input alphabet A2 = {0, 1} and function δ as specified in Figure 4 (in the table at
left, rows correspond to members of Z3 and columns to members of A2; at right,
the picture of the corresponding graph).

The finite automaton underlying a (b, M, p)-modular automaton is a classical
example in the framework of finite-state automata (see, for instance, [3]). It allows
a very easy computation of n mod M provided we have a b-ary expression w of
the number n: in the graph which represents the automaton, start at state 0 and
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δ 0 1
0 0 1
1 2 0
2 1 2

Figure 4. (2, 3, (0.1, 0.9))-modular automaton.

follow the unique labeled path corresponding to the sequence of symbols in w; the
final vertex of this path is n mod M . More generally, we have the following result.

Proposition 3.3. Consider any (b, M, p)-modular automaton. For every state
q ∈ ZM and every word w in A∗

b , if w is a b-ary expression of a number n, then
δ(q, w) =

(
b|w|q + n

)
mod M .

Proof. Let q be any state in ZM . We will proceed by induction on |w|, the length
of w:

• |w| = 0: then w = ϵ, so n = 0. Hence
(
b0q + 0

)
mod M = q = δ(q, ϵ), as

desired.
• Let us suppose the statement valid for any word of length k, and let w be

a word of length k + 1. Hence w = va for some v ∈ A∗
b of length k and

a ∈ Ab. Let n, m be the numbers whose b-ary expressions are respectively
w and v. Observe that n = mb + a.

From the definition of δ (and its extension to K ×A∗
b), we have δ(q, w) =

δ(q, va) = δ(δ(q, v), a) = (δ(q, v)b + a) mod M . But |v| = k, so from the
induction hypotesis we have δ(q, v) =

(
b|v|q + m

)
mod M . Hence

δ(q, w) =
(((

b|v|q + m
)

mod M
)

b + a
)

mod M.

The value of the right-hand side does not change if we ignore the first ‘mod
M ’ and take mod M just once at the end. Therefore,

δ(q, w) =
(

b|v|+1q + mb + a
)

mod M =
(

b|w|q + n
)

mod M,

and the inductive step is established.
□

Remark 3.4. From our previous result, observe that, as a particular case in
any (b, M, p)-modular automaton, if w is the representation of n in base b, then
δ(0, w) = n mod M , according to our comment before Proposition 3.3.

Intuitively, it is clear that any sequence of digits can be extended to a b-ary
representation of a number whose remainder modulo M is any desired value. Just
for the sake of completeness, we include here a proof of this fact in our next result.
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Lemma 3.5. Every modular automaton is irreducible.

Proof. Let us consider any (b, M, p)-modular automaton, and let q, r be states with
q ̸= r. Take any integer k with bk ≥ M . Put n =

(
r − qbk

)
mod M , and let w be

a word of length k which represents n in base b (note that 0 ≤ n < M ≤ bk, so
there is a word of length at most k which represents n in base b; by appending 0’s
at left of this word if necessary, we obtain such w). From Proposition 3.3, we have
that δ(q, w) = (qbk + n) mod M = r, as desired. □

We have the following even stronger property of modular automata.

Lemma 3.6. Every modular automaton is ergodic.

Proof. Let M be a modular automaton. We have that δ(0, 0) = 0, so state 0 has a
loop. Then, per(0) = 1, that is, 0 is aperiodic. From Lemma 3.5, we know that M
is irreducible, and consequently all its states have the same period 1, so M itself
is aperiodic. Since M is irreducible and aperiodic, we have the result. □

Due to Lemma 3.6, and having in mind Lemma 2.4 and Remark 3.4, we can
solve our problem of finding the asymptotic distribution of the number represented
by a random b-ary expression, modulo M , by obtaining the unique invariant vector
of the corresponding ergodic (b, M, p)-modular automaton. In the next section, we
do so for the case that gcd(b, M) = 1, and in Section 5 we obtain the invariant
vector for the general case.

4. The case b and M coprime

Throughout the present section, M > 1 will represent an integer coprime with b,
and P will be the transition matrix of the (b, M, p)-modular automaton.

Suppose that a long sequence w = w0w1 . . . wj of digits from the base is gen-
erated digit by digit, in such a way that each wi is a with probability pa, in-
dependently of the other terms of the sequence. Such w is a b-ary expression
of a number n. As announced in Section 1, we will now prove that, for any
r ∈ {0, . . . , M − 1}, in the steady state the event n mod M = r has probabil-
ity 1/M , independently of r and p. That is, in the steady state the distribution of
n mod M is the discrete uniform vector

( 1
M

)
r∈{0,...,M−1}. In order to achieve this

result, we will consider the (b, M, p)-modular automaton.
Given a state r ∈ ZM and a digit a ∈ Ab, we ask how many edges labeled

“a : pa” end at r in the corresponding graph. As we will see in our next result,
due to the coprimality between b and M there is one, and only one, such edge.

Lemma 4.1. Let r ∈ ZM and a ∈ Ab. Then, there is exactly one state qa ∈ ZM

such that δ(qa, a) = r

Proof. According to Definition 3.1, for any state q ∈ ZM , we have δ(q, a) = (bq +
a) mod M , so the condition δ(q, a) = r is met exactly for all those q such that
bq + a ≡M r. As b and M are coprime numbers, from Proposition 2.2 there exists
exactly one state qa ∈ ZM such that bqa ≡M r − a. That is, δ(qa, a) = r, and for
all q ̸= qa, we have δ(q, a) ̸= r. □
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Given states q and r, it will be useful to have a notation for the set of digits
corresponding to edges from q to r in the modular automaton. Concretely, for
q, r ∈ ZM , we set Eq,r = {a ∈ Ab : δ(q, a) = r}.

For instance, concerning Example 3.2, E1,0 = {1} and E2,0 = ∅.
Fixed r ∈ ZM , it turns out that {Eq,r : q ∈ ZM } is a pairwise disjoint family

whose union is Ab, as we will see next.

Lemma 4.2. Let r ∈ ZM . Then, Ab =
⋃

q∈ZM
Eq,r, where the union is pairwise

disjoint.

Proof. First let us see the equality.
⋃

q∈ZM
Eq,r ⊂ Ab is trivial, since each Eq,r is

a subset of Ab. For the other inclusion, let a ∈ Ab. From Lemma 4.1, there is
a unique qa ∈ ZM such that δ(qa, a) = r. Then a ∈ Eqa,r, which is a subset of⋃

q∈ZM
Eq,r, so we have Ab ⊂

⋃
q∈ZM

Eq,r.
Now let q1, q2 ∈ ZM , and suppose that there is a ∈ Eq1,r∩Eq2,r. This means that

δ(q1, a) = r and δ(q2, a) = r. But again from Lemma 4.1, we have that q1 = q2.
That is, the family {Eq,r : q ∈ ZM } is pairwise disjoint. □

Our previous result has an important consequence for the column vectors of P:
all of them are probability vectors.

Proposition 4.3. Let r ∈ ZM . Then,
∑

q∈ZM
Pq,r = 1.

Proof. Recall that, for any q ∈ ZM , we have

Pq,r =
∑

a∈Ab:δ(q,a)=r

pa.

According to the definition of Eq,r, the righ-hand member is
∑

a∈Eq,r
pa. Adding

up over q ∈ ZM , and applying Lemma 4.2, we have∑
q∈ZM

Pq,r =
∑

q∈ZM

∑
a∈Eq,r

pa =
∑

a∈
⋃

q∈ZM
Eq,r

pa =
∑

a∈Ab

pa = 1,

and the result is established. □

From this, we arrive to our first main result.

Theorem 4.4. Let u be the uniform vector for ZM , that is, uq = 1/M for each
q ∈ ZM . Then, u is the unique invariant vector of P.

Proof. From Lemmas 2.4 and 3.6, we know that P has a unique invariant vector,
so all we have to do is check that u is invariant under multiplication by P. Let
r ∈ ZM . We have that

(uP)r =
∑

q∈ZM

uqPq,r =
∑

q∈ZM

1
M

Pq,r = 1
M

∑
q∈ZM

Pq,r = 1
M

= ur,

where we have applied Proposition 4.3. Since (uP)r = ur for any r ∈ ZM , we have
uP = u, and the result is established. □
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Theorem 4.4 is an explanation for the results of simulations shown in Figures 1
and 3 (a) concerning the frequencies of residues modulo an M coprime with the
base: in the long term (here, this means long sequences of digits from the base),
the Markov chain is in any state with probability 1/M , and by virtue of Remark 3.4
and Lemma 2.4, this is equivalent to saying that any possible residue has probability
1/M .

5. The invariant vector for the general case

In this section we will consider the case that the modulo M > 1 is not necessarily
coprime with b.

From Lemma 3.6 we know that, even in this case, the Markov process has still
an invariant vector v, whose entries indicate the steady state frequencies of each
possible remainder. One (tedious) way to get such v is to solve the system of
equations implicit in vP = v and

∑
vr = 1. In order to get some insight about

the shape of the entries of v, we considered the case of binary representations
(b = 2), taking the probability p of digit 0 as a parameter (hence being 1 − p
the probability of digit 1). By using a mathematical software to solve the above
system, we obtained the invariant vector v for the cases M = 2, 4, 6, 8, 10, 12, as
seen in Table 3 below.

M v

2 (p, 1 − p)

4
(
p2, p(1 − p), p(1 − p), (1 − p)2)

6
(

p
3 , 1−p

3 , p
3 , 1−p

3 , p
3 , 1−p

3

)
8

(
p3, p2(1 − p), p2(1 − p), p(1 − p)2, p2(1 − p), p(1 − p)2, p(1 − p)2, (1 − p)3)

10
(

p
5 , 1−p

5 , p
5 , 1−p

5 , p
5 , 1−p

5 , p
5 , 1−p

5 , p
5 , 1−p

5

)
12

(
p2

3 , p(1−p)
3 , p(1−p)

3 , (1−p)2

3 , p2

3 , p(1−p)
3 , p(1−p)

3 , (1−p)2

3 , p2

3 , p(1−p)
3 , p(1−p)

3 , (1−p)2

3

)
Table 3. Invariant vector for b = 2, p = (p, 1 − p) and M ≤ 12, M even.

The result obtained left us with the conjecture that, in the case of binary rep-
resentations and M even, all vr have the form pi(1−p)j

m with i + j = s for some
integers s, m. In fact, we seem to be dealing with the probabilities of all the s-digit
binary sequences, weighted by some factor 1/m. It is indeed the case for b = 2,
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and the explanation for this is encompassed in our next considerations, where we
will obtain explicit formulas for vr in terms of b, M , p and r.

For the rest of this section, we fix the following notation:
• m will represent the greatest factor of M which is coprime with b.
• k will be the positive integer such that M = km.

From the above definitions, two facts follow easily.

Lemma 5.1. k and m are coprime numbers.

Proof. Suppose that k and m had a common prime factor q. Since m and b are
coprime, q could not divide b, so gcd(q, b) = 1. Being also gcd(m, b) = 1, qm would
result a divisor of M coprime with b, contradicting the maximality of m. Hence, k
and m cannot have common prime factors. □

Lemma 5.2. Let q be any prime factor of k. Then, q is also a factor of b.

Proof. If q were not a divisor of b, then we would have gcd(q, b) = 1 and gcd(m, b) =
1, and therefore qm would be a divisor of M coprime with b, contradicting the
maximality of m. Hence, q is necessarily a factor of b. □

As a consequence, some power of b is divisible by k, as we see next.

Lemma 5.3. There exists a natural number s such that k is a factor of bs.

Proof. If k = 1, take s = 0 and we are done.
If k > 1, let qs1

1 · · · qsl

l be the prime factorization of k (that is, all the qi are
primes different from each other, and all the si are positive integers), and take s =
max{s1, . . . , sl}. From Lemma 5.2, we have that each qsi

i is a factor of bsi , which
in turn divides bs. Since gcd

(
qsi

i , q
sj

j

)
= 1 for i ̸= j, we have that k divides bs. □

Observe that the number s produced in the previous proof is actually the least
natural number with the property that k is a factor of bs. From now on, s will
represent this minimal value.

For the rest of our work, it will be handy to introduce two new notations.
The first one, for the set of all the s-digit b-ary expressions which represent a
number congruent modulo k with a given r ∈ ZM . Specifically, for r ∈ ZM , we
put Tr =

{
t0 . . . ts−1 ∈ A∗

b :
∑s−1

i=0 tib
s−1−i ≡k r

}
. For instance, taking b = 10,

k = 25 and s = 2, and representing sequences of digits as quoted text, we have
T0 = {‘00’, ‘25’, ‘50’, ‘75’}.

The second notation is addresed to represent the number of times that a given
digit appears in a b-ary expression.

Definition 5.4. Let a ∈ Ab and t ∈ A∗
b . The number of occurrences of a in t,

denoted by #a(t), is defined to be 0 if t = ϵ, and, for t = t0t1 . . . tj (with each
ti ∈ Ab), #a(t) = #{i : ti = a}.
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Recall that we have extended p to A∗
b by letting p (t) = pt0 · · · ptj whenever

t = t0t1 . . . tj with ti ∈ Ab. Grouping factors corresponding to identical digits,
and considering that p#a(t)

a = 1 whenever a does not appear in t, we have that
p (t) =

∏b−1
a=0 p#a(t)

a .
Now we are in a position to state our main result, which gives an explicit formula

for the entries of the invariant vector v we are looking for.

Theorem 5.5. Let w0w1 . . . wj be a random sequence of digits from Ab, represent-
ing in base b the number n. Then, for any r ∈ ZM , the steady state probability that
r = n mod M is given by

vr = 1
m

∑
t∈Tr

b−1∏
a=0

p#a(t)
a

with Tr and #a(t) as defined above.

Proof. Let L and R be the numbers represented in base b by w0 . . . wj−s and
wj−s+1 . . . wj , respectively. That is, R is the number represented in base b by the
last s digits of w, and L is the number represented by the previous digits:

w =
L︷ ︸︸ ︷

w0w1 · · · wj−s

R︷ ︸︸ ︷
wj−s+1 · · · wj .

Hence we have n = Lbs + R.
Let r be a given number in ZM . Since M = km with gcd(k, m) = 1 (Lemma 5.1),

from Proposition 2.1 we have that n ≡M r is equivalent to having, simultaneously,
Lbs + R ≡m r and Lbs + R ≡k r. The former condition requires that L ≡m

(r − R) (bs)−1. Hence, as m is coprime with b, from Theorem 4.4 we have that the
first congruence has probability 1/m.

Concerning the second congruence, and since k is a factor of bs (Lemma 5.3), we
need to have simply R ≡k r. This congruence occurs with a probability given by
the sum of the probabilities of all the b-ary expressions of length s representing in
base b a number congruent modulo k with r. That is to say, R ≡k r has probability∑

t∈Tr
p(t), or

∑
t∈Tr

∏b−1
a=0 p#a(t)

a .
Since the events corresponding to each congruence are independent, we conclude

that the probability that n ≡M r is

vr = 1
m

∑
t∈Tr

b−1∏
a=0

p#a(t)
a ,

and the result is established. □

Observe that Theorem 5.5 is in fact a generalization of Theorem 4.4: if M is
coprime with b, then m = M and k = 1, so s = 0, and in such a case Tr is nothing
but the singleton {ϵ}, and thus

∑
t∈Tr

∏b−1
a=0 p#a(t)

a =
∏b−1

a=0 p#a(ϵ)
a = 1; hence,

according to Theorem 5.5, for gcd(b, M) = 1, we have vr = 1/m = 1/M for any r,
which agrees with Theorem 4.4.
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Let us illustrate the statement in Theorem 5.5 with some examples.

Example 5.6. Take b = 10, M = 18, and suppose that digit 0 has probability
24/100, 5 has probability 52/100, 8 has probability 17/100 and each other decimal
digit has probability 1/100. That is,

p = (0.24, 0.01, 0.01, 0.01, 0.01, 0.52, 0.01, 0.01, 0.17, 0.01) .

In this case, we have m = 9, k = 21 and s = 1.
Using the notation given in the theorem, we have, for instance, T4 = {‘0’, ‘2’, ‘4’,

‘6’, ‘8’}, so the probability for n ≡18 4 is v4 = 1
9 (p0 + p2 + p4 + p6 + p8) = 44

900 .
This is the same value of vr for any r even. Similarly, for any odd r, we have
Tr = {‘1’, ‘3’, ‘5’, ‘7’, ‘9’}, and therefore vr = 1

9 (p1 + p3 + p5 + p7 + p9) = 56
900 .

Example 5.7. Let b = 10, M = 75 and let p be as in Example 5.6. Now we have
m = 3, k = 52 and s = 2. Let us calculate the probability of having a multiple of
75. We have T0 = {‘00’, ‘25’, ‘50’, ‘75’}, so the probability for n ≡75 0 is

v0 = 1
3

(
p2

0 + p2p5 + p5p0 + p7p5
)

= 1928
30000 ≃ 0.064,

which agrees with the value for the first bar in the simulation shown in Figure 3 (c).

Example 5.8. For b = 2, M = 12, p = (p, 1 − p) (where p is a parameter in the
open interval (0, 1)), we have m = 3, k = 22, s = 2. Consider r = 3. We have
T3 = {‘11’}, so v3 = 1

3 p2
1 = (1−p)2

3 . This is in accordance with the entry for 3 at
the last row in Table 3.

Remark 5.9. In Example 5.8, we have k = bs. Whenever the values of b and M
lead to this condition, for any r ∈ ZM , the set Tr is a singleton consisting solely of
the sequence of the last s digits of the b-ary expression of r (left-padded with 0 if
necessary); so, calling t this s-digit sequence, the formula in Theorem 5.5 reduces
to

vr = 1
m

p#0(t)
0 p#1(t)

1 · · · p#b−1(t)
b−1 .

In particular, for b = 2, we have M = m2s for m odd and s natural, so, for any
r ∈ ZM ,

vr = 1
m

p#0(t)
0 p#1(t)

1 ,

where t is the word formed by the last s bits in the binary expression of r. The
above expression for vr is consistent with the results shown in Table 3.

6. Conclusions and perspectives

Given b and M integers greater than 1, together with a strictly positive probabil-
ity vector p for the digits in the base b, and for r ∈ ZM fixed, in this paper we have
obtained the formula for the probability that a randomly generated long enough
b-ary expression represents a number congruent modulo M with r (in particular,
when gcd(b, M) = 1, we have shown the counter-intuitive fact that this probability
is equal to 1/M regardless of r and p). The case of b-ary representations is then
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almost completely understood whenever we consider integer bases, leaving just the
study of the convergence rate towards the asymptotic distribution.

A future research line, suggested by Fabien Durand at UPJV (Amiens, France),
is based on considering noninteger bases, for instance, Fibonacci representations.
Let {fi}i∈N be the (shifted) classical Fibonacci sequence {1, 2, 3, 5, 8, . . .}, which
satisfies the recurrence fk = fk−1 + fk−2. It is well known that every positive
integer number n can be associated with a unique finite binary sequence w =
w0w1 · · · wj with wj = 1 and not containing two consecutive 1’s, in such a way that
n = w0f0 + w1f1 + · · · + wjfj . Fixed the probability p of digit 0 (so 1 − p is the
probability of 1), and given an integer M greater than 1 and any r ∈ ZM , it would
be interesting to obtain the probability that a random sequence of independently
generated bits (according to p), not containing 11, be the Fibonacci representation
of a number n congruent modulo M with r. Simulation induces the conjecture
that, in the steady state, this is always 1/M regardless of r and p. Although the
situation seems to be quite similar to that of integer bases, attacking the problem
via Markov chains can produce a stochastic automaton which is not ergodic, so
probably other tools and considerations are required to solve the raised conjecture.
This problem can be generalized by considering any sequence {fi}i∈N defined by
a high-order linear recurrence, in such a way that every positive integer can be
represented by a unique finite binary sequence as above.
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[2] G. Barat, V. Berthé, P. Liardet, and J. Thuswaldner, Dynamical directions in numera-
tion, Ann. Inst. Fourier (Grenoble) 56 no. 7 (2006), 1987–2092. DOI MR Zbl

[3] C. Frougny and J. Sakarovitch, Number representation and finite automata, in Combina-
torics, automata and number theory, Encyclopedia Math. Appl. 135, Cambridge Univ. Press,
Cambridge, 2010, pp. 34–107. DOI MR Zbl

[4] G. R. Grimmett and D. R. Stirzaker, Probability and random processes, third ed., Oxford
University Press, New York, 2001. MR Zbl

[5] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, fourth ed.,
Oxford, at the Clarendon Press, 1960. MR Zbl

[6] J. E. Hopcroft and J. D. Ullman, Introduction to automata theory, languages, and com-
putation, Addison-Wesley Series in Computer Science, Addison-Wesley, Reading, MA, 1979.
MR Zbl

Rev. Un. Mat. Argentina, Vol. 67, No. 1 (2024)

https://sagemath.org
https://doi.org/10.5802/aif.2233
http://www.ams.org/mathscinet-getitem?mr=2290774
https://zbmath.org/?q=an:1138.37005
https://doi.org/https://doi.org/10.1017/CBO9780511777653.003
http://www.ams.org/mathscinet-getitem?mr=2766740
https://zbmath.org/?q=an:1216.68142
http://www.ams.org/mathscinet-getitem?mr=2059709
https://zbmath.org/?q=an:1015.60002
http://www.ams.org/mathscinet-getitem?mr=67125
https://zbmath.org/?q=an:0086.25803
http://www.ams.org/mathscinet-getitem?mr=645539
https://zbmath.org/?q=an:0426.68001


244 T. N. HIBBARD, C. A. JADUR, AND J. F. YAZLLE

[7] D. E. Knuth, The art of computer programming. Vol. 2: Seminumerical algorithms, second
ed., Addison-Wesley Series in Computer Science and Information Processing, Addison-Wesley,
Reading, MA, 1981. MR Zbl

[8] M. O. Rabin, Probabilistic automata, Inf. Control 6 no. 3 (1963), 230–245. DOI Zbl

[9] S. M. Ross, Stochastic processes, second ed., Wiley Series in Probability and Statistics, John
Wiley & Sons, New York, 1996. MR Zbl

Thomas N. Hibbard
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