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PROPERTIES OF THE CONVOLUTION OPERATION
IN THE COMPLEXITY SPACE AND ITS DUAL

JOSÉ M. HERNÁNDEZ-MORALES, NETZAHUALCÓYOTL C. CASTAÑEDA-ROLDÁN,
AND LUZ C. ÁLVAREZ-MARÍN

Abstract. We give the basic properties of discrete convolution in the space
of complexity functions and its dual space. Two inequalities are identified,
and defined in the general context of an arbitrary binary operation in any
weighted quasi-metric space. In that setting, some quasi-metric and conver-
gence consequences of those inequalities are proven. Using convolution, we
show a method for building improver functionals in the complexity space. We
also consider convolution in three topologies within the dual space, obtaining
two topological monoids.

1. Introduction

The main purpose of this article is to study the quasi-metric and topological
properties of convolution in the complexity space C and in its dual C∗. We are also
interested in identifying those properties that can be extended to the general case of
a binary operation in a weighted quasi-metric space. These include properties about
continuity, quasi-uniform continuity, and several types of sequence convergence.

Discrete convolution has applications in a wide variety of fields. In mathematical
analysis it is well known that convolution is associated with the product of power
series [19]. In probability theory, convolution gives the distribution for the sum of
two independent random variables with non-negative integer values. Convolution
helps in solving many combinatorial problems [10]. It is also used in digital signal
processing.

We use the term quasi-metric to denote the asymmetric concept of distance,
as presented in [3], [5] and [13]. This non-symmetric interpretation of the term
quasi-metric differs from the meaning given to it by authors in other fields, for
example, in quasi-metric measure spaces [1], [11]. Matthews [14] introduced the
concept of a weighted quasi-metric, as part of a topological, non-Hausdorff approach
to the semantics of data-flow networks. The (weightable) quasi-metric space of

2020 Mathematics Subject Classification. Primary 42A85, 54A10, 54A20; Secondary 54C35,
54C40, 54E15, 54E40, 54F05.

Key words and phrases. Convolution of sequences; complexity spaces; weigthed quasi-metric;
quasi-uniformity; topological monoid; quasi-uniformly continuous; improver functional.

The second author was supported by CONACYT (grant 2019-000037-02NACF-29689).

281

https://doi.org/10.33044/revuma.3402
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complexity functions C was defined by Schellekens [20] as a topological foundation
for the complexity analysis of algorithms. Later, Romaguera and Schellekens [18]
introduced the dual complexity space C∗ in order to obtain quasi-metric properties
of the complexity space. They noted that, although C and C∗ are isometric, the
dual space is more appealing from a mathematical perspective since it admits the
structure of a semilinear quasi-normed space [17].

The article is organized as follows. Section 2 covers the notation and concepts
relevant to the results that will be proven later. Section 3 begins with the closure
under convolution for the complexity spaces. Next we show some inequalities relat-
ing convolution to the weighted quasi-metric and the order structures in C and C∗.
In Section 4 we generalize the background context for two of those inequalities,
and draw some of the consequences they have regarding the quasi-metric proper-
ties of any binary operation that satisfies them in a given weighted quasi-metric
space. Section 5 gives the properties of a convolution-based functional in C∗, as
well as a way to use it in order to obtain a wide family of improver functionals
in C. We also examine convolution in relation to some equivalence classes of ds

C∗ -
Cauchy sequences. In Section 6 we examine two topologies for C∗, other than the
quasi-metric one, in relation to the question of whether or not convolution, along
with each one of those topologies, yields a topological monoid.

2. Preliminaries

Throughout this article, the symbols N, ω, R, R+ and (0, ∞] denote the pos-
itive integers, the non-negative integers, the real numbers, the non-negative real
numbers, and the extended positive real numbers, respectively. If a, b ∈ R, the
notations a ∨ b and a ∧ b indicate max {a, b} and min {a, b}, respectively. We use
the notations O (“big-oh”) and Ω (“big-omega”) with the standard meaning they
have in computer science.

A quasi-uniformity U on a set X is a filter on X × X such that (i) every U ∈ U
is a reflexive relation on X, and (ii) ∀U ∈ U , ∃V ∈ U : V ◦ V ⊆ U . When U
has the additional property (iii) ∀U ∈ U , U−1 ∈ U , then it is called a uniformity
on X. The pair (X, U) is a quasi-uniform space (or a uniform space, when U
is a uniformity). For a presentation of the theory of quasi-uniform spaces, we
recommend the book [6] by Fletcher and Lindgren. The elements of U are called
entourages. The family U−1 =

{
U−1 | U ∈ U

}
is also a quasi-uniformity called the

conjugate quasi-uniformity. U is a uniformity if and only if U−1 = U . A function
f : (X, U) → (Y, V) between quasi-uniform spaces is quasi-uniformly continuous
when ∀V ∈ V, ∃U ∈ U : (x, y) ∈ U ⇒ (f(x), f(y)) ∈ V for all x, y ∈ X.

A subset B ⊆ U of a quasi-uniformity is a base of U when ∀U ∈ U , ∃B ∈ B :
B ⊆ U . Then we say that B generates U . Given a family B = {Ui}i∈I of subsets
of X × X, there exists some quasi-uniformity U on X generated by B if and only
if (i) B is a filterbase in X × X, (ii) Ui is a reflexive relation on X for every i ∈ I,
and (iii) ∀i ∈ I, ∃j ∈ I : Uj ◦ Uj ⊆ Ui. If U and V are quasi-uniformities on X,
with B1 being a base for U , and B2 a base for V, we say that B1 is finer than
B2 (and B2 is coarser than B1) if each member of B2 contains a member of B1.
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So, U is finer than V provided V ⊆ U . If U is a quasi-uniformity, then the family
B =

{
U ∩ U−1 | U ∈ U

}
is a base for a uniformity that we denote by Us.

The topology τ(U) induced by a quasi-uniformity U on X is the only topology
where, for each x ∈ X, the neighborhood filter of x is Nx = {U(x) | U ∈ U}. We
call τ(U) the quasi-uniform topology. If τ is a topology on X, then U is said to be
compatible with τ provided τ = τ(U). In that case we say that (X, τ) admits U .

In any quasi-uniform space (X, U), the relation
⋂

U on X is a preorder. We call
it the quasi-uniform preorder or the preorder associated with U , and we denote it
by ≤U . The topology τ(U) is T0 when ≤U is a partial order, and it is T1 when ≤U
is the identity relation on X.

According to [5], the relationship of strong inclusion (denoted by ≪) between
subsets A, B ⊆ X in a quasi-uniform space (X, U) is the following: A ≪ B when
there exists an entourage U ∈ U such that U ∩ (A × (X \ B)) = ∅. This means
y ∈ B whenever (x, y) ∈ U and x ∈ A for all x, y ∈ X.

A quasi-pseudo-metric on a set X is a function d : X × X → R+ that satisfies,
for every x, y, z ∈ X, the following conditions: (i) d(x, x) = 0, and (ii) d(x, z) ≤
d(x, y) + d(y, z). If, in addition, d satisfies (d(x, y) = d(y, x) = 0) ⇒ x = y,
then it is called a quasi-metric. A quasi-metric is called a metric when it also
satisfies the symmetry condition d(y, x) = d(x, y). As references on the subject
of quasi-metric spaces, we recommend the books [9] and [3]. The conjugate quasi-
pseudo-metric is the map d−1(x, y) = d(y, x). The induced pseudo-metric is defined
by ds(x, y) = d(x, y) ∨ d−1(x, y). When d is a quasi-metric, ds is a metric. A func-
tion f : (X, dX) → (Y, dY ) between quasi-pseudo-metric spaces is quasi-uniformly
continuous provided for all ε > 0 there exists δ > 0 such that dY (f(x), f(y)) < ε
whenever dX(x, y) < δ for all x, y ∈ X.

If (X, d) is a quasi-pseudo-metric space, then the family B = {Un | n ∈ N},
where Un = {(x, y) ∈ X × X | d(x, y) < 2−n} for each n ∈ N, is a base for a quasi-
uniformity Ud on X called the quasi-uniformity generated by d. The conjugate
quasi-pseudo-metric d−1 generates the conjugate quasi-uniformity U−1, and the
induced pseudo-metric ds generates Us. If d is a pseudo-metric, then d = d−1 and
Ud is a uniformity.

A quasi-pseudo-metric d on a set X induces a topology τ(d) generated by the
family of open balls B = {Bd(x, ε) | x ∈ X, ε > 0}. The topology τ(d) is called
the quasi-pseudo-metric topology, or the topology induced by d. We always have
τ(d) = τ (Ud). If d is a quasi-metric, then the topology τ(d) is T0.

Given subsets A, B ⊆ X in a quasi-pseudo-metric space (X, d), the condition
stated above for A to be strongly contained in B in the quasi-uniformity Ud is
equivalent to the existence of a real ε > 0 such that y ∈ B when d(x, y) < ε and
x ∈ A for all x, y ∈ X. A map f : X → X in a quasi-pseudo-metric space (X, d)
is called a d-contraction map [20] provided there exists a value c < 1 such that
d(f(x), f(y)) ≤ c · d(x, y) for all x, y ∈ X.

A sequence (xn)n in a quasi-metric space (X, d) is called a left K-Cauchy se-
quence [7] provided that ∀ε > 0, ∃n0 ∈ N : d (xn, xm) < ε whenever m ≥ n ≥ n0.
The sequence (xn)n converges to x ∈ X, with respect to τ(d) [3] (we will just
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say “with respect to d”), provided limn→∞ d (x, xn) = 0. This convergence is
also referred to as left d-convergence. Statistical convergence is defined in terms
of asymptotic density [12]. The asymptotic density ϱ(A) of a subset A ⊆ N is
ϱ(A) = limn→∞

1
n |A ∩ {1, . . . , n}|, provided this limit exists. Here the symbol

|A| indicates the cardinality of a set A. The sequence (xn)n is forward statistically
convergent to x ∈ X when the asymptotic density ϱ ({k ∈ N | d (x, xk) ≥ ε}) equals
zero for every ε > 0.

A quasi-metric space (X, d) is said to be weighted, or weightable (see [13], [20])
if there exists a function w : X → R+ (called a weighting function) such that,
for every x, y ∈ X, we have d(x, y) + w(x) = d(y, x) + w(y). Consequently, in a
weightable space, w(x) ≤ d(y, x) + w(y) holds for all x, y ∈ X.

A quasi-pseudo-metric d on a set X induces a preorder ≤d called the preorder
associated with d, or the quasi-metric preorder, defined by x ≤d y ⇔ d(x, y) = 0
for x, y ∈ X. In a preordered set (X, ≤), given a subset A ⊆ X, its increasing
(resp., decreasing) hull, also called the upward (resp., downward) closure of A,
is denoted by ↑ A (resp., ↓ A), and it is defined as follows (see [16]): ↑ A =
{x ∈ X | ∃a ∈ A : a ≤ x} and ↓ A = {x ∈ X | ∃a ∈ A : x ≤ a}. A is called upward
(resp., downward) closed when ↑ A = A (resp., ↓ A = A).

A topological monoid (X, m, τ) is a topological space (X, τ) together with a
continuous and associative binary operation m : X × X → X that has a unit [2].
An Alexandroff space is a topological space where arbitrary intersections of open
sets are open. An equivalent condition is that every point has a minimum open
neighborhood [8].

The quasi-metric space (C, dC) of complexity functions has its origins in com-
puter science as well as in topology. Scott and Strachey [22], [23] initiated the study
of denotational semantics and domain theory in order to provide rigorous defini-
tions of programming languages, and to develop mathematical models for them.
Completion of partial orders plays an important role in domain theory. Some au-
thors, notably Nachbin [15], have studied the connections between order theory
and topology. Smyth [24] introduced the concept of a topological quasi-uniform
space, a category extending that of the quasi-uniform spaces, and he developed
a completion for quasi-uniform spaces, based also on the syntopological spaces
of Császár [4]. According to Schellekens [21], “the Smyth completion allows one
to develop denotational semantics completions as true topological completions.”
Sünderhauf [25] presented a construction of the Smyth completion that uses topo-
logical quasi-uniform spaces but makes no use of syntopological spaces. Künzi [13]
characterized the property of Smyth-completability in terms of left K-Cauchy fil-
ters. He also proved that, if (X, d, w) is a weightable quasi-metric space, then the
topological quasi-uniform space (X, Ud, τ (Ud)) is Smyth-completable. In this con-
text, Schellekens [20] defined his complexity distance (a weightable quasi-metric) as
a way to measure the relative progress made by syntactic transformations in low-
ering the complexity of programs. Later, Schellekens and Romaguera [18] proved
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that (C∗, dC∗), the dual complexity space, is Smyth-complete. We have the follow-
ing definitions, where we adopt the convention that 1/∞ = 0:

C =
{

f : ω −→ (0, ∞]
∣∣∣∣ ∞∑

n=0
2−n 1

f(n) < ∞
}

,

dC(f, g) =
∞∑

n=0
2−n

[(
1

g(n) − 1
f(n)

)
∨ 0
]

,

wC(f) =
∞∑

n=0
2−n 1

f(n) .

The dual complexity space (C∗, dC∗), introduced by Romaguera and Schellekens
in [18], has its own weighting function wC∗ . We have

C∗ =
{

f : ω −→ R+
∣∣∣∣ ∞∑

n=0
2−nf(n) < ∞

}
,

dC∗(f, g) =
∞∑

n=0
2−n[(g(n) − f(n)) ∨ 0],

wC∗(f) =
∞∑

n=0
2−nf(n).

We use the symbol C∗
0 to denote the subset of C∗ formed by all strictly positive

functions. In the complexity space C, the quasi-metric preorder ≤dC coincides with
the pointwise order. On the other hand, in the dual complexity space C∗ the
associated preorder ≤dC∗ is the opposite of the pointwise order. In both spaces we
indicate the pointwise order by ≤. A functional ξ : C → C is monotone if ξf ≤ ξg
whenever f ≤ g for all f, g ∈ C. Monotone functionals in C∗ are defined in the same
way. Given a function g ∈ C, the functional ξ : C → C is called an improver with
respect to g when it satisfies ∀n ∈ ω, ξn+1g ≤ ξng. If the functional ξ is monotone,
in order for it to be an improver with respect to g, it is sufficient to verify that
ξg ≤ g.

The inversion map Ψ : (C∗, dC∗) → (C, dC) is specified by Ψ(f) = 1/f , where the
sequence 1/f is defined pointwise by adopting the convention that 1/0 = ∞. The
map Ψ is an isometry, since it is a bijection satisfying dC (Ψ(f), Ψ(g)) = dC∗(f, g).
This implies the complexity space is Smyth-complete, also. Besides addition, the
binary operations ∨ and ∧ on sequences are defined pointwise in both spaces, C
and C∗. Given any value c ∈ R+ ∪ {∞}, the notation c will indicate the function
with constant value c. Additionally, if n ∈ N, we use the notation n̂ to represent
the sequence with only n initial 1’s, followed by the sequence 0.

We use the term convolution in its discrete sense, as defined in [10] for real-
valued, ω-indexed sequences. That is, if f, g ∈ Rω, then their convolution f ⊗ g is
given by

(f ⊗ g)(n) =
n∑

k=0
f(k)g(n − k) for all n ∈ ω.
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Notice that, in case f, g ∈ C∗, the same formula works as far as producing output
values that belong to R+. Similarly, when f, g ∈ C, the formula outputs values
belonging to (0, ∞]. It is well known that convolution is associative, commutative,
and it distributes over addition. Also, when f, g, h ∈ C∗ are such that f ⊗g = f ⊗h,
if f(0) > 0, then g = h. Convolution can be used to express some recurrences.
For example, if f represents the Fibonacci sequence, then f(0) = 0, f(1) = 1
and f(n) =

(
f ⊗ 2̂

)
(n − 1) for n ≥ 2. We use exponents to indicate repeated

convolution. That is, f0 = 1̂ and fn = f ⊗ fn−1 for all n > 0.

3. Convolution in C and C∗: closure and inequalities

In this section we show that C and C∗ are closed under convolution. Also, we
give some inequalities that relate convolution to the following: the inversion map,
the pointwise order in each space, the asymptotic order of growth in C∗, and the
quasi-metric distance and weight function in C∗.

Proposition 3.1. The complexity space C is closed under convolution. Also, for
any two sequences in C, the weight of their convolution is no greater than the
product of their weights.

Proof. If f, g ∈ C,
∞∑

s=0
2−s 1

(f ⊗ g)(s) =
∞∑

s=0
2−s 1∑s

n=0 f(n)g(s − n)

≤
∞∑

s=0

s∑
n=0

2−s

f(n)g(s − n)

=
∞∑

n=0

∞∑
k=0

2−n−k

f(n)g(k)

=
∞∑

n=0
2−n 1

f(n)

∞∑
k=0

2−k 1
g(k) . □

Proposition 3.2. The dual complexity space C∗ is closed under convolution. Fur-
thermore, given any two sequences f, g ∈ C∗, the weight of their convolution equals
the product of their weights.

Proof. If f, g ∈ C∗,
∞∑

s=0
2−s(f ⊗ g)(s) =

∞∑
s=0

2−s
s∑

n=0
f(n)g(s − n)

=
∞∑

n=0

∞∑
k=0

2−n−kf(n)g(k)

=
∞∑

n=0
2−nf(n)

∞∑
k=0

2−kg(k). □
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In view of the previous result, if A ⊆ R+ is closed under multiplication, then the
subspace of C∗ defined by WA = {f ∈ C∗ | wC∗(f) ∈ A} is closed under convolution.
Also, if a sequence f belongs to C, then the sequence of partial sums of its series∑

f belongs to C as well, since
∑n

k=0 f(k) =
(
f ⊗ 1

)
(n). The same applies to C∗.

The function 1̂ ∈ C∗ defined by 1̂(0) = 1 and 1̂(n) = 0 if n > 0 is the neutral
element for convolution. This makes the triple

(
C∗, ⊗, 1̂

)
an abelian monoid.

Lemma 3.3. In both spaces C and C∗, convolution is consistent with the pointwise
order. That is, given f, g, h such that g ≤ h, then f ⊗ g ≤ f ⊗ h.

It follows that, in both spaces C and C∗, for any functions f, g, h there, we have

f ⊗ (g ∧ h) ≤ (f ⊗ g) ∧ (f ⊗ h) ≤ (f ⊗ g) ∨ (f ⊗ h) ≤ f ⊗ (g ∨ h).

Proposition 3.4. Given any f, g ∈ C∗, we have Ψ(f ⊗ g) ≤ Ψf ⊗ Ψg in C. Also,
if f, g ∈ C, then Ψ−1(f ⊗ g) ≤ Ψ−1f ⊗ Ψ−1g in C∗.

Proof. For every s ∈ ω, we have the inequality

Ψ(f ⊗ g)(s) = 1∑s
n=0 f(n)g(s − n)

≤
s∑

n=0

1
f(n) · 1

g(s − n) = (Ψf ⊗ Ψg)(s).

The proof for the second part is similar. □

Proposition 3.5. If f, g, h ∈ C∗
0 and f ∈ O(g), then f ⊗ h ∈ O(g ⊗ h).

Proof. Since f ∈ O(g), there are n0 ∈ N and c > 0 such that n ≥ n0 ⇒
f(n) ≤ cg(n). Define cn = f(n)/g(n) for each 0 ≤ n < n0 and take k =
max {c, c0, . . . , cn0−1}. So k > 0 and f(n) = cng(n) ≤ kg(n) for 0 ≤ n < n0.
Now if s ≥ n0, we have

(f ⊗ h)(s) =
s∑

n=0
f(n)h(s − n) ≤

s∑
n=0

kg(n)h(s − n) = k(g ⊗ h)(s). □

In general, for arbitrary functions in C∗, the above result is not necessarily true,
as shown in the next two examples.

Example 3.6. 1̂ ∈ O
(
0
)
; however, 1̂ ⊗ (n)n = (n)n /∈ O

(
0
)

= O
(
0 ⊗ (n)n

)
.

Example 3.7. Let f = 2̂ and the function h be given by h(n) = (n/2 + 1)2 if n
is even and h(n) = (n + 1)/2 if n is odd. Then every single term of f ⊗ h is of
quadratic order. So we have f ∈ O

(
1̂
)

but f ⊗ h /∈ O(h) = O
(

1̂ ⊗ h
)

.
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Proposition 3.8. Given any f, f1, g, g1 ∈ C∗,

dC∗ (f ⊗ g, f1 ⊗ g1) ≤ wC∗(g) · dC∗ (f, f1) + wC∗ (f1) · dC∗ (g, g1) .

Proof.
dC∗ (f ⊗ g, f1 ⊗ g1)

=
∞∑

s=0
2−s [((f1 ⊗ g1) (s) − (f ⊗ g)(s)) ∨ 0]

≤
∞∑

s=0

[
s∑

n=0

(
2−s [f1(n)g1(s − n) − f(n)g(s − n)] ∨ 0

)]

=
∞∑

n=0

∞∑
k=0

(
2−(n+k) [f1(n)g1(k) − f(n)g(k)] ∨ 0

)
≤

∞∑
n=0

∞∑
k=0

2−(n+k)( [f1(n) (g1(k) − g(k)) ∨ 0] + [g(k) (f1(n) − f(n)) ∨ 0]
)

=
∞∑

n=0
2−n (f1(n) · dC∗ (g, g1) + [(f1(n) − f(n)) ∨ 0] · wC∗(g))

= dC∗ (g, g1) · wC∗ (f1) + wC∗(g) · dC∗ (f, f1) . □

Corollary 3.9. Given f, f1, g, g1 ∈ C∗, and ε, δ > 0, if dC∗(f, f1) < ε and
dC∗(g, g1) < δ, then dC∗(f ⊗ g, f1 ⊗ g1) < (ε ∨ δ) · wC∗(f + g) + εδ.

The inequality in Proposition 3.8 has important consequences that can be gen-
eralized to other weighted quasi-metric spaces. We do that in the following section.

4. Steady operations in a weightable quasi-metric space

The inequalities in Propositions 3.1 and 3.8 may not hold for any binary op-
eration in a weighted quasi-metric space. Here we give a few examples of spaces
and operations that satisfy those inequalities. We also prove some of the continu-
ity, quasi-uniform continuity, and sequence convergence properties that follow as a
consequence of a given operation satisfying those inequalities.

Definition 4.1 (Steady, and sub-multiplicative operations). Let (X, d, w) be a
weightable quasi-metric space with weight function w. Given a binary operation
∗ : X × X → X, we call it

(i) steady with respect to d and w if and only if, for all x, y, u, v ∈ X, it satisfies

d(x ∗ y, u ∗ v) ≤ w(y)d(x, u) + w(u)d(y, v).

(ii) sub-multiplicative with respect to w, provided w(x ∗ y) ≤ w(x)w(y) for all
x, y ∈ X.

A constant binary operation is trivially steady with respect to any weighted
quasi-metric and its weighting function(s).
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Lemma 4.2. Let (X, d, w) be a weightable quasi-metric space with weight func-
tion w, and let ∗ be a binary operation on X. If ∗ is steady with respect to d
and w, then, for all a, x, y ∈ X,

max {d(a ∗ x, a ∗ y), d(x ∗ a, y ∗ a)} ≤ w(a)d(x, y).

Lemma 4.3. If (X, d, w) is a weighted quasi-metric space, and ∗ is an operation
on X that is steady with respect to d and w, then ∗ is steady with respect to d−1

and w if and only if d is a metric.

Proof. If ∗ is steady with respect to d−1 and w, then w is a weighting function for
d−1. Since w is already a weighting function for d, it follows that d = d−1. □

Example 4.4. In the dual complexity space (C∗, dC∗ , wC∗), the convolution of
sequences ⊗ is both steady with respect to dC∗ and wC∗ , and also sub-multiplicative
with respect to wC∗ .

Example 4.5. Let X be the interval (0, 1), and define d(x, x) = 0, d(x, y) = y
when x ̸= y, and w(x) = x for all x, y ∈ X. Then (X, d, w) is a weightable
quasi-metric space where multiplication is steady with respect to d and w, and
sub-multiplicative with respect to w. The function r(x) = 1 − x is a weighting
function for d−1, the conjugate quasi-metric. However, multiplication is not sub-
multiplicative with respect to r, and it is not steady with respect to d−1 and r.

Example 4.6. As stated in [13], the space (R+, u, w), with u(x, y) = (y−x)∨0 and
the weight function given by w(x) = x, is a weightable quasi-metric space. Here,
multiplication is steady with respect to u and w, and it is also sub-multiplicative
with respect to w. In this space, w is not a weighting function for u−1, so ∗ is not
steady with respect to u−1 and w, even though the inequality u−1(a ∗ b, x ∗ y) ≤
w(b)u−1(a, x) + w(x)u−1(b, y) is valid for all a, b, x, y ∈ R+.

Example 4.7. A metric space (X, d) is weightable by any constant function w(x) =
c ∈ R+. In particular, let X ⊆ R be closed under addition. If we take d to be the
Euclidean metric, and set w(x) = 1 for all x ∈ X, then the operation of addition is
steady with respect to d and w, and it is also sub-multiplicative with respect to w.

Example 4.8. If F is a non-empty finite set, make X = P(F ), and define, for all
A, B ⊆ F , d(A, B) = |B \A|, and w(A) = |A|. In this case (X, d, w) is a weightable
quasi-metric space. Here, the binary operation of intersection between subsets of
F is both steady with respect to d and w and sub-multiplicative with respect to w.

Example 4.9. This example is very similar to the dual complexity space, only
extending its basic concepts to the continuous case. Consider the space X, con-
sisting of the weighted integrable functions from R+ to R+, and equipped with the
following quasi-metric distance d, weighting function w, and the binary operation
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of continuous convolution:

X =
{

f : R+ → R+
∣∣∣∣ ∫ ∞

0
e−xf(x) dx < ∞

}
,

d(f, g) =
∫ ∞

0
e−x [(g(x) − f(x)) ∨ 0] dx,

(f ∗ g)(s) =
∫ s

0
f(t)g(s − t) dt, and w(f) =

∫ ∞

0
e−xf(x) dx.

(X, d, w) is a weightable quasi-metric space with weighting function w.
If f, g, h, l ∈ X, we have∫ ∞

0
e−s(f ∗ g)(s) ds =

∫ ∞

0

∫ s

0
e−sf(t)g(s − t) dtds

=
∫ ∞

0

∫ ∞

0
e−x−yf(x)g(y) dydx = w(f)w(g) < ∞.

Thus ∗ is closed and sub-multiplicative on X. The proof that ∗ is steady with
respect to d and w is quite similar to the one given in the discrete case (Proposition
3.8).

Lemma 4.10. Let ∗ be a binary operation in the weightable quasi-metric space
(X, d, w). For any x ∈ X, define its right powers, relative to ∗, by x1 = x and
xn+1 = xn ∗ x for all n ≥ 1. Suppose that ∗ is steady with respect to d and w. If,
additionally, ∗ is sub-multiplicative with respect to w, then the following inequality
holds for all n ∈ N:

d (xn, yn) ≤ d(x, y)
n∑

k=1
w(x)n−kw(y)k−1.

Proof. The base case for induction, with n = 1, is trivially true. For the induction
step we have:

d
(
xn+1, yn+1) = d (xn ∗ x, yn ∗ y)

≤ w(x)d (xn, yn) + w (yn) d(x, y)

≤ w(x)d(x, y)
n∑

k=1
w(x)n−kw(y)k−1 + w (yn) d(x, y)

= d(x, y)
(

n∑
k=1

[
w(x)n−k+1w(y)k−1]+ w (yn)

)

≤ d(x, y)
n+1∑
k=1

w(x)n+1−kw(y)k−1. □

Proposition 4.11. Let (X, d, w) be a weightable quasi-metric space, equipped with
a binary operation ∗ : X × X → X. If this operation is steady with respect to d
and w, then it is continuous with respect to the quasi-metric topology τ(d) in X,
and the corresponding product topology in X × X.
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Proof. Let x, y ∈ X and ε > 0. Make a = w(x) + w(y), and define the quantity δ
as follows:

δ = −a

2 +
√

ε + a2

4 .

So, δ > 0 and δ2 + aδ = ε. Consider u, v ∈ X such that d(x, u), d(y, v) < δ. We
have

d(x ∗ y, u ∗ v) ≤ w(y)d(x, u) + w(u)d(y, v)
< δ [w(y) + w(u)]
≤ δ [w(y) + d(x, u) + w(x)]
< δ(a + δ) = ε. □

Corollary 4.12. Under the hypothesis of Proposition 4.11, if the operation ∗ is
associative and has a neutral element, then (X, ∗, τ(d)) is a topological monoid.

Proposition 4.13. If (X, d, w) is a weightable quasi-metric space with weight func-
tion w, and there is a binary operation ∗ : X × X → X, steady with respect to
d and w, then, given a fixed element a ∈ X with positive weight, the function
fa : X → X defined by fa(x) = a ∗ x for all x ∈ X is quasi-uniformly continuous.

Proof. Let ε > 0. Define δ = ε/w(a), and take any x, y ∈ X such that d(x, y) < δ.
Therefore

d (fa(x), fa(y)) = d(a ∗ x, a ∗ y) ≤ w(a)d(x, y) < ε. □

Proposition 4.14. Let (xn)n , (yn)n be left K-Cauchy sequences in a weightable
quasi-metric space (X, d, w). Additionally, suppose ∗ : X × X → X is a steady
binary operation with respect to d and w. Then (xn ∗ yn)n is also a left K-Cauchy
sequence.

Proof. There are n1, n2 ∈ N such that d (xn1 , xm) < 1 if m ≥ n1, and d (yn2 , ym) <
1 whenever m ≥ n2. Therefore w (xm) ≤ d (xn1 , xm) + w (xn1) < w (xn1) + 1, and
also w (ym) < w (yn2) + 1. For ε > 0, with a = w (xn1) + 1, b = w (yn2) + 1, and
δ = ε/(a + b) > 0, there exist n3, n4 ∈ N such that d (xn, xm) < δ whenever m ≥
n ≥ n3, and d (yn, ym) < δ whenever m ≥ n ≥ n4. If n0 = max {n1, n2, n3, n4},
and m ≥ n ≥ n0:

d (xn ∗ yn, xm ∗ ym) ≤ w (yn) d (xn, xm) + w (xm) d (yn, ym)
< δ (w (xm) + w (yn)) < ε. □

Proposition 4.15. Assume (X, d, w) is a weightable quasi-metric space, and
∗ : X × X → X is a binary operation on X, steady with respect to d and w.
Let x, y ∈ X, and suppose (xn)n and (yn)n are sequences in X. Then we have:

(i) If (xn)n and (yn)n converge to x and y, respectively, with respect to d, then
the sequence (xn ∗ yn)n converges to x ∗ y with respect to d.

(ii) If (xn)n and (yn)n converge to x and y, respectively, with respect to ds,
then the sequence (xn ∗ yn)n converges to x ∗ y with respect to ds.
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(iii) If (xn)n and (yn)n converge to x and y, respectively, with respect to d−1,
and either (w (yn))n is bounded, or the operation ∗ is commutative and
(w (xn))n is bounded, then (xn ∗ yn)n converges to x∗y with respect to d−1.

(iv) If (xn)n and (yn)n are forward statistically convergent to x and y, respec-
tively, then the sequence (xn ∗ yn)n is forward statistically convergent to
x ∗ y.

Proof. For (i), given ε > 0, we make δ the same as in the proof of Proposition 4.11.
There exists n0 ∈ N such that d (x, xn) , d (y, yn) < δ for n ≥ n0. Then

d (x ∗ y, xn ∗ yn) ≤ w (xn) · d (y, yn) + w(y) · d (x, xn)
< δ (w (xn) + w(y))
≤ δ (d (x, xn) + w(x) + w(y))
< δ(δ + a) = ε.

To prove (ii), observe that, as (xn)n and (yn)n converge to x and y, respectively,
with respect to ds, they also converge with respect to d and d−1. Part (i) implies
(xn ∗ yn)n converges to x ∗ y with respect to d. In order to show its convergence
with respect to ds, it will be sufficient to prove convergence with respect to d−1.
Take any ε > 0, and define a and δ the same way as in part (i). Then, there exists
n0 ∈ N such that ds (x, xn) < δ and ds (y, yn) < δ whenever n ≥ n0. For such
n ≥ n0, we have

d−1 (x ∗ y, xn ∗ yn) = d (xn ∗ yn, x ∗ y)
≤ w(x) · d (yn, y) + w (yn) · d (xn, x)
< δ (w(x) + w (yn))
< δ(a + δ) = ε.

For (iii), first consider the case where (w (yn))n is bounded by M ∈ R+. Take
any ε > 0 and define δ = ε/ (w(x) + (M ∨ 1)). So, there exists n0 ∈ N such that
d−1 (x, xn) < δ and d−1 (y, yn) < δ whenever n ≥ n0. Then, for large enough n,

d−1 (x ∗ y, xn ∗ yn) ≤ w(x) · d−1 (y, yn) + w (yn) · d−1 (x, xn)
< δ (w(x) + (M ∨ 1)) = ε.

For the second case, assume the operation ∗ is commutative, and that the se-
quence (w (xn))n is bounded by K ∈ R+. Given ε > 0, let δ = ε/ (w(y) + (K ∨ 1)).
Then there exists n0 ∈ N such that d−1 (x, xn) < δ and d−1 (y, yn) < δ whenever
n ≥ n0. For such n,

d−1 (x ∗ y, xn ∗ yn) = d (xn ∗ yn, x ∗ y)
= d (yn ∗ xn, y ∗ x)
≤ w (xn) · d (yn, y) + w(y) · d (xn, x)
< δ (w(y) + (K ∨ 1)) = ε.

We turn now to part (iv). For r > 0, n ∈ N, and z ∈ {x, y}, let us define
the sets Az

r = {k ∈ N | d (z, zk) ≥ r}, Az
r,n = Az

r ∩ {1, . . . , n}. Similarly, make
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Hr = {k ∈ N | d (x ∗ y, xk ∗ yk) ≥ r}, and Hr,n = Hr ∩ {1, . . . , n}. By hypothesis,
ϱ(Az

ε) = limn→∞
1
n

∣∣Az
ε,n

∣∣ = 0 for every ε > 0. Now, take ε > 0 and define δ the
same way it was defined in part (i). As shown there, for any k ∈ N,

(d (x, xk) < δ and d (y, yk) < δ) ⇒ d (x ∗ y, xk ∗ yk) < ε.

Therefore N \ (Ax
δ ∪ Ay

δ ) = (N \ Ax
δ ) ∩ (N \ Ay

δ ) ⊆ N \ Hε. Then, Hε ⊆ Ax
δ ∪ Ay

δ . So,
for every n ∈ N, Hε,n ⊆ Ax

δ,n ∪ Ay
δ,n, which implies |Hε,n| ≤

∣∣∣Ax
δ,n

∣∣∣+ ∣∣∣Ay
δ,n

∣∣∣, and we
have

ϱ (Hε) = lim
n→∞

1
n

|Hε,n| ≤ lim
n→∞

1
n

∣∣Ax
δ,n

∣∣+ lim
n→∞

1
n

∣∣∣Ay
δ,n

∣∣∣ = 0. □

5. Convolution functionals in C and C∗

In the complexity analysis of divide-and-conquer algorithms presented in [20], a
key concept is that of an improver functional in the complexity space C. In this
section we use convolution to build such a functional in C from each function f ∈ C∗

such that f(0) ≥ 1. Additionally, we show that convolution is consistent with a
certain equivalence relation defined between ds

C∗ -Cauchy sequences.

Definition 5.1 (Convolution functional). Given f ∈ C∗, we define the functional
Φf : C∗ → C∗ by Φf (g) = f ⊗ g for all g ∈ C∗.

Proposition 5.2. If f ∈ C∗, the functional Φf satisfies the following:
(i) Φf is a monotone functional.
(ii) When wC∗(f) < 1, the functional Φf is a dC∗-contraction map.
(iii) If f(0) > 0, then Φf is injective.
(iv) If f(0) ≥ 1, then Φf (g) ≥ g for every g ∈ C∗.
(v) When f(0) > 0 and A, B ⊆ C∗ with Φf A ≪ Φf B, we have A ≪ B.
(vi) Φf : (C∗, dC∗) → (C∗, dC∗) is quasi-uniformly continuous.

Proof. Part (i) follows from Lemma 3.3. Part (ii) is a consequence of Lemma 4.2.
Part (iii) is easy to verify by induction. To prove (iv), take any s ∈ ω; then

(f ⊗ g)(s) =
s∑

n=0
f(n)g(s − n) = f(0)g(s) +

s∑
n=1

f(n)g(s − n) ≥ g(s).

To verify (v), notice there exists ε > 0 such that, if x ∈ Φf A and dC∗(x, y) < ε,
then y ∈ Φf B for all x, y ∈ C∗. Let δ = ε/wC∗(f), and take a ∈ A and z ∈ C∗

with dC∗(a, z) < δ. Using Lemma 4.2, we see dC∗(f ⊗ a, f ⊗ z) < wC∗(f) · δ = ε.
This implies f ⊗ z ∈ Φf B, so there exists b ∈ B such that f ⊗ z = f ⊗ b, but
Φf here is injective, so z = b ∈ B, and then A ≪ B. Part (vi) follows from
Proposition 4.13. □

Corollary 5.3. (i) If f ∈ C∗ and (gn)n is a left K-Cauchy sequence in C∗,
then the sequence (Φf (gn))n is also left K-Cauchy.

(ii) Given a filter F in C∗ and h ∈ C∗ such that F converges to h, the im-
age filter G generated by the filterbase Γ = {Φf (F ) | F ∈ F} converges to
Φf (h).
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Definition 5.4 (The ICI functional). To any given function f in the dual com-
plexity space C∗ we associate a functional Υf : C → C defined on the complexity
space C by means of the composition Υf = Ψ◦Φf ◦Ψ−1. We call Υf the inversion-
convolution-inversion (ICI) functional associated with f :

C C

C∗ C∗

Υf

Ψ−1 Ψ

Φf

Proposition 5.5. Let f ∈ C∗. The ICI functional Υf associated with f satisfies
the following:

(i) Υf is monotone.
(ii) If f(0) ≥ 1, then Υf is an improver with respect to any function g ∈ C.

Proof. For (i), take g, h ∈ C such that g ≤ h. Then Ψ−1g = 1/g ≥ 1/h = Ψ−1h,
and so Φf Ψ−1g ≥ Φf Ψ−1h, since Φf is monotone. Now we have

Υf (g) = Ψ ◦ Φf ◦ Ψ−1g = 1
Φf Ψ−1g

≤ 1
Φf Ψ−1h

= Ψ ◦ Φf ◦ Ψ−1h = Υf (h).

To prove (ii), consider any g ∈ C and let h = 1/g = Ψ−1g ∈ C∗. Therefore
g = 1/h = Ψh. Also, because of part (iv) of Proposition 5.2, h ≤ Φf (h) = Φf Ψ−1g.
Then,

g(n) = 1
h(n) ≥ 1

[Φf (h)] (n) =
[
Ψ ◦ Φf ◦ Ψ−1g

]
(n) = [Υf (g)] (n). □

Schellekens [20], in his sequential completion of a quasi-uniform space (X, U)
with a countable base, defines an equivalence relation ≈ between Us-Cauchy se-
quences. In the particular case of the quasi-metric dual complexity space, con-
volution can be defined between equivalence classes using representatives. The
equivalence relation here looks as follows.

Definition 5.6 ([20]). If (xn)n , (yn)n are ds
C∗ -Cauchy sequences, then (xn)n ≈

(yn)n if and only if, for every ε > 0, there exists n0 ∈ N such that ds
C∗ (xm, yn) < ε

whenever m, n ≥ n0.

To prove that convolution is consistent with the equivalence relation defined
above, we will use the corollary following the next lemma.

Lemma 5.7. Suppose a sequence (xn)n in R+ has the following property: for every
ε > 0, there exists z ∈ N such that xm ≤ xn + ε whenever m ≥ n ≥ z. Then (xn)n

converges.

Proof. Notice that (xn)n must be bounded, so it has a convergent subsequence
(xnk

)k. Let L = limk→∞ xnk
and take ε > 0. For a K ∈ N such that |L − xnk

| <
ε/2 if k ≥ K, and a z ∈ N such that xm ≤ xn + ε/2 whenever m ≥ n ≥ z, define
M = K ∨ z, and take any m ≥ nM . Therefore |L − xnM

| < ε/2 and m ≥ nM ≥
nz ≥ z, which implies xm ≤ xnM

+ ε/2 < L + ε. Now by way of contradiction
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assume xm ≤ L − ε. Since m ≥ nM ≥ M ≥ K, we have |L − xnm | < ε/2. Besides,
nm ≥ m ≥ z, and from this we conclude the contradiction xnm

≤ xm + ε/2 ≤
(L − ε) + ε/2 = L − ε/2. Therefore L − ε < xm, and so (xn)n converges to L. □

Corollary 5.8. Given a left K-Cauchy sequence (fn)n in C∗, the sequence of
weights (wC∗ (fn))n converges in R+.

Proof. Given ε > 0, we choose n0 ∈ N such that dC∗ (fn, fm) < ε whenever
m ≥ n ≥ n0. If that is the case, then wC∗ (fm) = dC∗

(
0, fm

)
≤ dC∗

(
0, fn

)
+

dC∗ (fn, fm) < wC∗ (fn) + ε and this means the sequence (wC∗ (fn))n satisfies the
hypothesis of Lemma 5.7. □

Proposition 5.9. Given ds
C∗-Cauchy sequences (an)n , (bn)n , (fn)n , (gn)n satis-

fying the relations (an)n ≈ (fn)n and (bn)n ≈ (gn)n, we have (an ⊗ bn)n ≈
(fn ⊗ gn)n.

Proof. Since (fn)n and (bn)n are ds
C∗ -Cauchy sequences, they are also left K-Cauchy

sequences in C∗. In view of Corollary 5.8, the sequences (wC∗ (fn))n and (wC∗ (bn))n

converge to Lf , Lb ∈ R+, respectively. Now take any ε > 0 and define the quantity

δ = −Lf + Lb

4 +

√
(Lf + Lb)2

16 + ε

2 .

Therefore δ > 0 and also δ (2δ + Lf + Lb) = ε, so there are ni ∈ N, i = 1, . . . , 4
such that ds

C∗ (am, fn) < δ when m, n ≥ n1, ds
C∗ (bm, gn) < δ if m, n ≥ n2,

|Lf − wC∗ (fn)| < δ provided n ≥ n3, and |Lb − wC∗ (bn)| < δ when n ≥ n4.
If n0 = max {ni} and m, n ≥ n0 then, applying Proposition 3.8, we have

dC∗ (am ⊗ bm, fn ⊗ gn) ≤ wC∗ (fn) · dC∗ (bm, gn) + wC∗ (bm) · dC∗ (am, fn)
≤ wC∗ (fn) · ds

C∗ (bm, gn) + wC∗ (bm) · ds
C∗ (am, fn)

< δ (2δ + Lf + Lb) = ε.

Since convolution is commutative, dC∗ (fn ⊗ gn, am ⊗ bm) = dC∗ (gn ⊗ fn, bm ⊗ am)
and we can take the same steps as above to verify that dC∗ (fn ⊗ gn, am ⊗ bm) < ε.
Thus, ds

C∗ (fn ⊗ gn, am ⊗ bm) < ε. □

6. Convolution and topological monoids in C∗

As a consequence of Corollary 4.12, we know that (C∗, ⊗, τ (dC∗)) is a topological
monoid. In this section we work with two topologies for C∗, different from the
quasi-metric one but closely related to it, and we show that convolution also yields
a topological monoid with one of them but not with the other.

Proposition 6.1. The smallest Alexandroff topology in C∗ finer than τ (dC∗) is the
one generated by the base B = {↓ {f} | f ∈ C∗}.

Proof. To show that B is a basis for a topology, take A, B ∈ B, and x ∈ A ∩ B.
Then, there exist f, g ∈ C∗ such that A = ↓ {f} and B = ↓ {g}. It follows that
x ≤ f and x ≤ g. Therefore x ∈ ↓ {x} ⊆ A ∩ B. Let us call α the topology
generated by B. It is well known ([9, Section 4.2]) that the upward closed subsets
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in a preordered set form an Alexandroff topology. Given any A ⊆ C∗ such that
↓ A = A, it is clear that A =

⋃
a∈A ↓ {a}. It follows that α is the Alexandroff

topology given by the upward closed sets in (C∗, ≥). Now let σ be an Alexandroff
topology defined on C∗ and finer than τ (dC∗). Since arbitrary intersections of open
sets are open in σ, given any f ∈ C∗, we have the following:

↓ {f} = {g ∈ C∗ | g ≤ f}
= {g ∈ C∗ | dC∗(f, g) = 0}

=
⋂
ε>0

{g ∈ C∗ | dC∗(f, g) < ε} ∈ σ.

Therefore B ⊆ σ, so σ is finer than α. All that is left to prove is that α is
finer than τ (dC∗). Take f ∈ C∗ and ε > 0. We need to show that BdC∗ (f, ε)
is a union of elements of B. If g ∈ BdC∗ (f, ε), this means dC∗(f, g) < ε. Then
if h ≤ g, by the triangle inequality, dC∗(f, h) ≤ dC∗(f, g) + dC∗(g, h) < ε. So
g ∈ ↓ {g} ⊆ BdC∗ (f, ε). □

Proposition 6.2. In the topological space (C∗, α), with α being the Alexandroff
topology generated by the base B = {↓ {f} | f ∈ C∗}, the binary operation of con-
volution, considered as a function ⊗ : (C∗, α)2 → (C∗, α), is continuous.

Proof. Let f, g, h ∈ C∗ and assume f ⊗ g ≤ h. Given a, b ∈ C∗, if a ≤ f and b ≤ g,
then a ⊗ b ≤ f ⊗ g. This means ⊗ (↓ {f} × ↓ {g}) ⊆ ↓ {h}. Therefore the inverse
image under convolution of any basic set of α is the union of basic sets for the
product topology in (C∗, α)2. □

Corollary 6.3. The triple (C∗, ⊗, α) is a topological monoid.

To finish, we exhibit another topology in C∗, one that is strictly finer than
τ (dC∗), and strictly coarser than α, but with respect to which convolution is not
continuous. Given f, g ∈ C∗, we use the notation f ≺ g to indicate f(n) < g(n) for
all n ∈ ω.

Proposition 6.4. Given h ∈ C∗
0 , let Uh =

{
(f, g) ∈ C∗ × C∗ | (g − f) ∨ 0 ≺ h

}
.

Then, the family B = {Uh | h ∈ C∗
0 } is a base for a quasi-uniformity U in C∗ with

the following properties:
(i) τ(U) is strictly finer than τ (dC∗).
(ii) α is strictly finer than τ(U).
(iii) ⊗ : (C∗, τ(U))2 → (C∗, τ(U)) is not continuous.

Proof. Given any h ∈ C∗
0 , it is clear that (f, f) ∈ Uh for all f ∈ C∗. Then Uh ̸= ∅

and ∅ /∈ B. Consider h1, h2 ∈ C∗
0 , put h3 = h1 ∧ h2, and take (f, g) ∈ Uh3 .

Therefore (g − f) ∨ 0 ≺ h1 ∧ h2. From this it follows that (f, g) ∈ Uh1 ∩ Uh2 , so B
is a filterbase in C∗ × C∗. To finish proving that B is a base for a quasi-uniformity,
define, for h ∈ C∗

0 , b = h/2. Now, if (x, y), (y, z) ∈ Ub, then (y − x) ∨ 0 ≺ b and
(z − y) ∨ 0 ≺ b. Therefore (z − x) ∨ 0 ≺ 2b = h, so we have Ub ◦ Ub ⊆ Uh. Call
U the quasi-uniformity generated by B. To prove (i), take f ∈ C∗, a real ε > 0,
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and a function g ∈ BdC∗ (f, ε). If a = dC∗(f, g), take δ = ε − a > 0 and define the
constant function h = δ/2 ∈ C∗

0 . Given u ∈ Uh(g), we have (u − g) ∨ 0 ≺ h, so

dC∗(f, u) ≤ dC∗(f, g) + dC∗(g, u)

= a +
∞∑

n=0
2−n [(u(n) − g(n)) ∨ 0]

< a +
∞∑

n=0
2−n

[
δ

2

]
= ε.

So we see that Uh(g) ⊆ BdC∗ (f, ε). This implies that τ(U) is finer than τ (dC∗). To
see that this refinement is strict, consider the function h = (1/n)n ∈ C∗

0 . We claim
there is no ε > 0 such that BdC∗ (f, ε) ⊆ Uh(f). For k ∈ ω, define the function
gk ∈ C∗ by setting gk(n) = f(n) if n ̸= k, and gk(k) = f(k) + ε · 2k−1. Then

dC∗ (f, gk) =
∞∑

n=0
2−n [(gk(n) − f(n)) ∨ 0]

= 2−k
(
f(k) + ε · 2k−1 − f(k)

)
= ε

2 < ε.

So, gk ∈ BdC∗ (f, ε) for all k ∈ ω. Now assume gk ∈ Uh(f). This implies that
(gk − f)∨0 ≺ h, and therefore ∀n ∈ ω, (gk(n) − f(n))∨0 < 1/n. In particular, for
n = k, we have ε · 2k−1 < 1/k, and this is false for large k. For (ii), given f, g ∈ C∗

and h ∈ C∗
0 with g ∈ Uh(f), we have g ≺ f + h. If b = g + (f + h − g)/2, then

g ∈ ↓ {b}. Now, for any a ∈ ↓ {b} and each n ∈ ω, we have

a(n) ≤ (f(n) + h(n) + g(n))/2 < f(n) + h(n).

Then (f, a) ∈ Uh, and this shows that ↓ {b} ⊆ Uh(f). So α is finer than τ(U).
To see that this refinement is strict, consider any f ∈ C∗ that takes the value
zero at some point n0 ∈ ω. No basic open set in τ(U) is contained in ↓ {f}
since, given any a ∈ C∗ and h ∈ C∗

0 , the function g = a + h/2 ∈ Uh(a), but
g (n0) = a (n0) + h (n0) /2 > 0 = f (n0). Therefore g does not belong to ↓ {f}.
In order to prove part (iii), consider the basic open set Uh

(
0
)

∈ τ(U), where
h is the sequence ((n − 1)n(n + 1)/6 + 2−n)n ∈ C∗

0 . To show that ⊗−1Uh

(
0
)

is
not an open set in (C∗, τ(U))2, consider a = b = (n)n ∈ C∗, and notice that
a ⊗ b = ((n − 1)n(n + 1)/6)n ∈ Uh

(
0
)
. We claim that, for any h1, h2 ∈ C∗

0 , the
image set ⊗ (Uh1(a) × Uh2(b)) is not contained in Uh

(
0
)
. For u = a + 1

2 h1 and
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v = b + 1
2 h2, and for large enough values of s ∈ ω, we have

(u ⊗ v) (s) =
s∑

n=0

(
n + 1

2h1(n)
)(

s − n + 1
2h2(s − n)

)

= (s − 1)s(s + 1)
6 + 1

2

s∑
n=0

n [h1(s − n) + h2(s − n)] + 1
4 (h1 ⊗ h2) (s)

≥ (s − 1)s(s + 1)
6 + 1

2 [h1(0) + h2(0)] s

>
(s − 1)s(s + 1)

6 + 2−s = h(s).

Therefore u ∈ Uh1(a) and v ∈ Uh2(b), but u ⊗ v /∈ Uh

(
0
)
. □
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