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THE w-CORE–EP INVERSE IN RINGS WITH INVOLUTION

DIJANA MOSIĆ, HUIHUI ZHU, AND LIYUN WU

Abstract. The main goal of this paper is to present two new classes of gen-
eralized inverses in order to extend the concepts of the (dual) core–EP inverse
and the (dual) w-core inverse. Precisely, we introduce the w-core–EP in-
verse and its dual for elements of a ring with involution. We characterize the
(dual) w-core–EP invertible elements and develop several representations of
the w-core–EP inverse and its dual in terms of different well-known generalized
inverses. Using these results, we get new characterizations and expressions for
the core–EP inverse and its dual. We apply the dual w-core–EP inverse to
solve certain operator equations and give their general solution forms.

1. Introduction

Let R be an associative ring with unit 1. For a ∈ R, we define the kernel
ideals a◦ = {x ∈ R : ax = 0} and ◦a = {x ∈ R : xa = 0}, and the image ideals
aR = {ax : x ∈ R} and Ra = {xa : x ∈ R}.

An element a ∈ R is Drazin invertible if there exists x ∈ R such that

xax = x, ax = xa and ak = ak+1x (1.1)

for some nonnegative integer k. The Drazin inverse x of a is unique (if it exists)
and denoted by aD (see [6]). It is known that the Drazin inverse was defined in
a semigroup [6] and in a semigroup without the identity we have k > 0, while for
a semigroup with identity we have k ≥ 0 and for k = 0 we define a0 = 1. The
smallest above mentioned k is called the Drazin index of a and denoted by ind(a).
Recall that aD double commutes with a, that is, ay = ya implies aDy = yaD. For
ind(a) = 1, a is group invertible and its group inverse is denoted by a#. Notice
that a# satisfies a#aa# = a#, a#a = aa# and aa#a = a. It is well known that
a# exists if and only if a ∈ a2R ∩ Ra2 if and only if aR = a2R and Ra = Ra2

[6, 25]. The sets RD and R# involve all Drazin invertible and all group invertible
elements of R, respectively.
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An involution a 7→ a∗ in a ring R is an anti-isomorphism of degree 2, i.e.
(a∗)∗ = a, (a + b)∗ = a∗ + b∗ and (ab)∗ = b∗a∗ for all a, b ∈ R. An element p ∈ R
is an orthogonal projector if p2 = p = p∗. Significant results related to orthogonal
projectors can be seen in [16]. An element a ∈ R is Moore–Penrose invertible if
there exists x ∈ R satisfying the so-called Penrose equations [26]:

(1) axa = a, (2) xax = x, (3) (ax)∗ = ax, (4) (xa)∗ = xa.

The Moore–Penrose inverse x of a is uniquely determined (if it exists) and denoted
by x = a†. The set of all Moore–Penrose invertible elements of R will be denoted
by R†.

An element x ∈ R is a {1}-inverse of a ∈ R if axa = a and, in this case, we
say that a is regular. An element x ∈ R is a {1, 3}-inverse (or {1, 4}-inverse) of
a if axa = a and (ax)∗ = ax (axa = a and (xa)∗ = xa). The symbol a{1, 3}
(or a{1, 4}) stands for the set of all {1, 3}-inverses ({1, 4}-inverses) of a. The set
of all {1, 3}-invertible ({1, 4}-invertible) elements of R will be denoted by R{1,3}

(R{1,4}). An interesting class of {1}-inverses was studied in [4].
The notion of inverse along one element introduced by Mary [19] is important

because a number of well-known generalized inverses, such as group inverse, Drazin
inverse and Moore–Penrose inverse, are special cases of this inverse. For d ∈ R, an
element a ∈ R is invertible along d if there exists x ∈ R satisfying

xad = d = dax and x ∈ dR ∩ Rd.

The inverse x of a along d is unique (if it exists) and denoted by a∥d [19]. According
to [19, 21], a ∈ R# if and only if a∥a exists if and only if 1∥a exists. In addition,
a# = a∥a and 1∥a = aa#. Also, a ∈ RD if and only if a∥ak exists for some positive
integer k; and a ∈ R† if and only if a∥a∗ exists. Furthermore, aD = a∥ak and
a† = a∥a∗ . More results about the inverse along one element can be found in
[2, 3, 20, 38].

The core–EP inverse was introduced in [27] for a square matrix over an arbitrary
field, as an extension of the core inverse given in [1]. The core–EP inverse for
elements of a ring was defined in [10] in the following way. Let a ∈ R. Then a is
core–EP (or pseudo core) invertible if there exists an element x ∈ R such that

ax2 = x, xak+1 = ak and (ax)∗ = ax

for some positive integer k. The core–EP inverse of a is unique (if it exists) and
denoted by a D⃝. The smallest positive integer k in the definition of the core–EP
inverse is called the pseudo core index of a and denoted by I(a), either equals the
Drazin index ind(a) of a if ind(a) > 0, or is 1 if ind(a) = 0 (see [10, Theorem
2.3] and observe that Gao et al. defined the Drazin index of a as the smallest
positive integer k that satisfies (1.1)). Notice that a is core–EP invertible if and
only if there exist aD and (ak)(1,3) ∈ ak{1, 3} for k ≥ ind(a) [10, Theorem 2.3]. In
addition, a D⃝ = aDak(ak)(1,3). The dual core–EP inverse a D⃝ of a was introduced
as the unique solution of equations x2a = x, ak+1x = ak and (xa)∗ = xa for some
positive integer k. In a special case that ind(a) = 1, the core–EP inverse of a
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becomes the core inverse a #⃝ = a#aa† [1], and the dual core–EP inverse coincides
with the dual core inverse a #⃝ = a†aa#.

Recently, the core inverse and core–EP inverse were studied in numerous papers
[5, 11, 13, 14, 15, 17, 30, 32, 39]. For instance, different properties and representa-
tions of the core–EP inverse were proved in [8, 9, 17, 18, 23, 31]; limit representa-
tions for the core-EP inverse were given in [32]; continuity of core-EP inverse was
investigated in [12]; an iterative method for computing core-EP inverse was proved
in [28, 29]. The core–EP inverse was extended for operators on Hilbert spaces in
[22, 24] and for tensors in [30].

Two new classes of generalized inverses were recently presented in [36]. Precisely,
the w-core inverse and its dual for elements of a ring with involution were introduced
in [36] as generalizations of the core inverse and dual core inverse, respectively. We
now state the definition of the w-core inverse. Let a, w ∈ R; we say that a is w-core
invertible if there exists an element x ∈ R such that

awx2 = x, xawa = a and (awx)∗ = awx.

If such x exists, it is the uniquely determined w-core inverse of a [36] and denoted
by a

#⃝
w . Note that the 1-core inverse of a coincides with the core inverse of a, i.e.

a
#⃝
1 = a #⃝. Some significant results about the w-core inverse can be found in [35].

Motivated by a number of researches and popularity of the core–EP inverse and a
recent investigation about the w-core inverse, the aim of this paper is to introduce
a new class of generalized inverses which includes the core–EP inverse and the
w-core inverse. In particular, we present the w-core–EP inverse and its dual for
elements of a ring with involution. In this way, we define two new wider classes
of generalized inverses, extending the notions of the core–EP inverse, the w-core
inverse and their duals. Various characterizations for the existence of the w-core–
EP inverse and its dual are established as well as corresponding representations
involving the inverse of w along a corresponding element, group inverse, Drazin
inverse, {1, 3}-inverse and {1, 4}-inverse of adequate elements. Using these results,
we obtain new characterizations and representations of the core–EP inverse and its
dual. Applying the dual w-core–EP inverse, we solve several operator equations
and give the forms of their general solutions.

We shortly describe the content of this paper. In Section 2, we define the w-core–
EP inverse and investigate necessary and sufficient conditions for the existence of
the w-core–EP inverse and its representations. New characterizations and expres-
sions of the core–EP inverse are also given. The dual w-core–EP inverse is studied
in Section 3 as well as the dual core–EP inverse. Section 4 contains applications of
the dual w-core–EP inverse in solving some operator matrix equations.

2. The w-core–EP inverse

In order to extend the notions of the core–EP inverse and the w-core inverse,
we define the w-core–EP inverse in a ring R with involution.
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Definition 2.1. Let a, w ∈ R. Then a is called w-core–EP invertible if there exists
an element x ∈ R such that

awx2 = x, x(aw)k+1a = (aw)ka and (awx)∗ = awx

for some nonnegative integer k. In this case, x is a w-core–EP inverse of a.

Observe that, for k = 0 in the above definition, the w-core–EP inverse becomes
the w-core inverse. Notice that the 1-core-EP inverse is equal to the core–EP
inverse. Thus, core–EP invertible and w-core invertible elements are w-core-EP
invertible. The smallest nonnegative integer k in the definition of the w-core–EP
inverse is called the w-core–EP index of a and denoted by iw(a).

Theorem 2.2. Let a, w ∈ R. Then a has at most one w-core-EP inverse.

Proof. If x is the w-core–EP inverse of a, then awx2 = x, x(aw)k+1a = (aw)ka
and (awx)∗ = awx for some nonnegative integer k. We have x(aw)k+2 = (aw)k+1

and thus x = (aw) D⃝. □

Since the w-core–EP inverse of a is unique, if it exists, by Theorem 2.2, we use
the symbol a

D⃝
w to denote the w-core–EP inverse of a.

Although core–EP invertible elements are w-core-EP invertible, the converse is
not true in general. In the next example, we give a w-core-EP invertible element
which is not core-EP invertible.

Example 2.3. Let R = Z be the ring of all integers. For a = 2 and w = 0, we
conclude that a is w-core–EP invertible with a

D⃝
w = 0. However, a is not Drazin

invertible in Z and so it is not core–EP invertible.

Several necessary and sufficient conditions for the existence of the w-core–EP
inverse are established now.

Theorem 2.4. Let a, w ∈ R. Then the following statements are equivalent:
(i) a is w-core–EP invertible;
(ii) there exists an element x ∈ R such that

awx2 = x, x(aw)k+1a = (aw)ka, xawx = x,

awx(aw)ka = (aw)ka and (awx)∗ = awx

for some nonnegative integer k;
(iii) there exists an element x ∈ R such that

awx(aw)ka = (aw)ka, (aw)kaR = xR and Rx = R
(
(aw)ka

)∗

for some nonnegative integer k;
(iv) there exists an element x ∈ R such that

awx(aw)ka = (aw)ka and (aw)kaR = xR = x∗R

for some nonnegative integer k;
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(v) there exists an element x ∈ R such that
awx(aw)ka = (aw)ka and (aw)kaR = xR ⊇ x∗R

for some nonnegative integer k;
(vi) there exists an element x ∈ R such that

awx(aw)ka = (aw)ka, ◦ (
(aw)ka

)
= ◦x and x◦ =

(
((aw)ka)∗)◦

for some nonnegative integer k;
(vii) there exists an element x ∈ R such that

awx(aw)ka = (aw)ka, ◦ (
(aw)ka

)
= ◦x and x◦ ⊇

(
((aw)ka)∗)◦

for some nonnegative integer k;
(viii) there exists an element x ∈ R such that

awx2 = x, x(aw)k+1a = (aw)ka, awx = (aw)nxn and (awx)∗ = awx

for some nonnegative integer k and all/some positive integer n.

Proof. (i) ⇒ (ii): Assume that x is the w-core–EP inverse of a. Thus, for some
nonnegative integer k, awx2 = x, x(aw)k+1a = (aw)ka and (awx)∗ = awx. Then

x = awx2 = (aw)2x3 = · · · = (aw)k+1xk+2 = ((aw)ka)wxk+2

= x(aw)k+1awxk+2 = xawx

and
(aw)ka = x(aw)k+1a = awx2(aw)k+1a = awx(aw)ka.

(ii) ⇒ (iii): Using x(aw)k+1a = (aw)ka and awx2 = x, we have
(aw)kaR = x(aw)k+1aR ⊆ xR = awx2R = (aw)kawxk+2R ⊆ (aw)kaR.

Thus, (aw)kaR = xR. The assumptions awx(aw)ka = (aw)ka and (awx)∗ = awx
imply

R
(
(aw)ka

)∗ = R
(
awx(aw)ka

)∗ = R
(
(aw)ka

)∗
awx ⊆ Rx.

Since awx = (aw)k+1xk+1, we have

x = xawx = x(awx)∗ = x
(
(aw)k+1xk+1)∗

= x
(
(aw)kawxk+1)∗ = x

(
wxk+1)∗ (

(aw)ka
)∗

,

which gives Rx ⊆ R
(
(aw)ka

)∗. Hence, Rx = R
(
(aw)ka

)∗.
(iii) ⇒ (iv) ⇒ (v): It is evident.
(v) ⇒ (i): From awx(aw)ka = (aw)ka and (aw)kaR = xR, we get, for some

u ∈ R,
x = (aw)kau = awx

(
(aw)kau

)
= awx2.

The hypothesis (aw)kaR ⊇ x∗R yields, for some y ∈ R,

x = y
(
(aw)ka

)∗ = y
(
awx(aw)ka

)∗ = y
(
(aw)ka

)∗ (awx)∗ = x(awx)∗.

Further, awx = awx(awx)∗ implies that (awx)∗ = awx and so x = xawx. Because
(aw)ka = xv for some v ∈ R, we have (aw)ka = xv = xaw(xv) = x(aw)k+1a.
Therefore, x = a

D⃝
w .
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(iii) ⇒ (vi) ⇒ (vii): These implications are obvious.
(vii) ⇒ (i): The condition awx(aw)ka = (aw)ka gives 1 − awx ∈ ◦ (

(aw)ka
)

=
◦x. Thus, (1 − awx)x = 0, i.e. x = awx2. Since ((aw)ka)∗(awx)∗ = ((aw)ka)∗,
we have 1 − (awx)∗ ∈

(
((aw)ka)∗)◦ ⊆ x◦. Hence, x = x(awx)∗ yields awx =

awx(awx)∗ = (awx)∗ and x = xawx. Now, 1 − xaw ∈ ◦x = ◦ (
(aw)ka

)
implies

(aw)ka = x(aw)k+1a. So, x is the w-core–EP inverse of a.
(i) ⇔ (viii): This equivalence is clear. □

In the case that k = 0, notice that Theorem 2.4 recovers [36, Theorem 2.6]
related to w-core invertible elements.

Remark 2.5. Let a, b, c ∈ R. An element x ∈ R is a (b, c)-inverse of a if xax = x,
xR = bR and Rx = Rc. The (b, c)-inverse of a is unique, if it exists, and denoted
by a∥(b,c) [7]. By Theorem 2.4(iii), for a, w ∈ R, we have that a is w-core–EP
invertible if and only if aw is ((aw)ka, ((aw)ka)∗)-invertible for some nonnegative
integer k. In this case, a

D⃝
w = (aw)∥((aw)ka,((aw)ka)∗).

Applying Theorem 2.4 for w = 1, we get new characterizations for core–EP
invertible elements.

Remark 2.6. Let a ∈ R. Then a is core–EP invertible if and only if there exists
an element x ∈ R such that, for some nonnegative integer k and all/some positive
integer n, one of the following equivalent statements holds:

(i) ax2 = x, xak+2 = ak+1, xax = x, axak+1 = ak+1 and (ax)∗ = ax;
(ii) axak+1 = ak+1, ak+1R = xR and Rx = R(ak+1)∗;
(iii) axak+1 = ak+1 and ak+1R = xR = x∗R;
(iv) axak+1 = ak+1 and ak+1R = xR ⊇ x∗R;
(v) axak+1 = ak+1, ◦(ak+1) = ◦x and x◦ = ((ak+1)∗)◦;
(vi) axak+1 = ak+1, ◦(ak+1) = ◦x and x◦ ⊇ ((ak+1)∗)◦;
(vii) ax2 = x, xak+2 = ak+1 and (ax)∗ = ax = anxn.

By [36, Theorem 2.11], a is w-core invertible if and only if there exist w∥a and
a(1,3) ∈ a{1, 3}. In this case, a

#⃝
w = w∥aa(1,3). We can develop a representation of

the w-core–EP inverse in terms of the inverse along a corresponding element and
{1, 3}-inverse, generalizing [36, Theorem 2.11] for the w-core inverse.

Theorem 2.7. Let a, w ∈ R. Then the following statements are equivalent:
(i) a is w-core–EP invertible;
(ii) there exist w∥(aw)ka and

(
(aw)ka

)(1,3) ∈
(
(aw)ka

)
{1, 3} for some nonneg-

ative integer k;
(iii) there exist w∥(aw)ka and

(
(aw)k+1)(1,3) ∈

(
(aw)k+1)

{1, 3} for some non-
negative integer k;

(iv) there exist w∥(aw)ka and
(
(aw)k+1a

)(1,3) ∈
(
(aw)k+1a

)
{1, 3} for some non-

negative integer k.
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In addition, if any of statements (i)–(iv) holds, then, for some nonnegative integer k

and
(
(aw)ka

)(1,3) ∈
(
(aw)ka

)
{1, 3},

a D⃝
w = (aw)kw∥(aw)ka

(
(aw)ka

)(1,3)
.

Proof. (i) ⇒ (ii): Let x be the w-core–EP inverse of a. Then awx2 = x, x(aw)k+1a =
(aw)ka and (awx)∗ = awx for some nonnegative integer k. Because

(aw)ka = x(aw)k+1a = x
(
(aw)ka

)
wa = x2(aw)k+1awa = x2(aw)kawawa = . . .

= xk+1(aw)kaw(aw)ka ∈ R
(
(aw)ka

)
w

(
(aw)ka

)
and

(aw)ka = x(aw)k+1a = awx2(aw)k+1a = · · · = (aw)2k+2x2k+3(aw)k+1a

= (aw)kaw(aw)kawx2k+3(aw)k+1a ∈
(
(aw)ka

)
w

(
(aw)ka

)
R,

by [21, Theorem 2.2], we deduce that w ∈ R∥(aw)ka. Furthermore, from the rela-
tions

(aw)ka = (aw)kaw(aw)kawx2k+3(aw)k+1a

=
(
(aw)ka

)
w(aw)kawx2k+3aw

(
(aw)ka

) (2.1)

and
(aw)kawxk+1 = awx = (awx)∗ =

(
(aw)kawxk+1)∗

,

we observe that (aw)ka ∈ R(1,3).
(ii) ⇒ (i): Suppose that x = (aw)kw∥(aw)ka

(
(aw)ka

)(1,3) for some nonnegative
integer k and

(
(aw)ka

)(1,3) ∈
(
(aw)ka

)
{1, 3}. Notice that

(aw)ka = (aw)kaww∥(aw)ka = (aw)k+1w∥(aw)ka

and (aw)ka = w∥(aw)kaw(aw)ka = w∥(aw)ka(wa)k+1. Since w∥(aw)ka = (aw)kau =
v(aw)ka for some u, v ∈ R, we get w∥(aw)ka = (aw)ka

(
(aw)ka

)(1,3)
w∥(aw)ka and

w∥(aw)ka = w∥(aw)ka
(
(aw)ka

)(1,3) (aw)ka. Therefore,

awx = (aw)k+1w∥(aw)ka
(
(aw)ka

)(1,3) = (aw)ka
(
(aw)ka

)(1,3)

gives (awx)∗ = awx and

awx2 = (aw)ka
(
(aw)ka

)(1,3) (aw)kw∥(aw)ka
(
(aw)ka

)(1,3)

=
[
(aw)ka

(
(aw)ka

)(1,3) (aw)ka
]

(wa)ku
(
(aw)ka

)(1,3)

= (aw)k[a(wa)ku]
(
(aw)ka

)(1,3) = (aw)kw∥(aw)ka
(
(aw)ka

)(1,3)

= x.

According to [21, Theorem 2.1], we have

w∥(aw)ka = ((aw)k+1)#(aw)ka = (aw)k((aw)k+1)#a.
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So,

x(aw)k+1a = (aw)kw∥(aw)ka
(
(aw)ka

)(1,3) (aw)k+1a

= (aw)k
[
w∥(aw)ka

(
(aw)ka

)(1,3) (aw)ka
]

wa = (aw)kw∥(aw)kawa

= (aw)k((aw)k+1)#(aw)kawa = [(aw)k((aw)k+1)#a](wa)k+1

= w∥(aw)ka(wa)k+1 = (aw)ka

and x = a
D⃝
w .

(ii) ⇒ (iii): By [37, Lemma 2.2], recall that u ∈ R{1,3} if and only if u ∈
Ru∗u. Since (aw)ka ∈ R{1,3} for some nonnegative integer k, we have (aw)ka ∈
R

(
(aw)ka

)∗ (aw)ka, which yields (aw)k+1 ∈ R
(
(aw)ka

)∗ (aw)k+1. Notice that,
by the equivalence (i) ⇔ (ii), (2.1) holds. Hence, (aw)ka ∈ (aw)k+1R, which gives(
(aw)ka

)∗ ∈ R
(
(aw)k+1)∗. Now (aw)k+1 ∈ R

(
(aw)k+1)∗ (aw)k+1 implies that

(aw)k+1 ∈ R{1,3}.
(iii) ⇒ (iv): Because (aw)k+1 ∈ R{1,3} gives (aw)k+1 ∈ R

(
(aw)k+1)∗ (aw)k+1,

then (aw)k+1a ∈ R
(
(aw)k+1)∗ (aw)k+1a. Also, (aw)ka = (aw)k+1w∥(aw)ka and

w∥(aw)ka = (aw)kau for some u ∈ R imply

(aw)k+1 = (aw)kaw = (aw)k+1w∥(aw)kaw = (aw)k+1a(wa)kuw.

Therefore,
(
(aw)k+1)∗ ∈ R

(
(aw)k+1a

)∗ yields (aw)k+1a ∈ R
(
(aw)k+1a

)∗ (aw)k+1a

and so (aw)k+1a ∈ R{1,3}.
(iv) ⇒ (ii): Since w∥(aw)ka exists, by [21, p. 1132], (aw)ka is regular. Using(

(aw)k+1a
)(1,3) ∈

(
(aw)k+1a

)
{1, 3}, for some nonnegative integer k, we have

(aw)kawa
(
(aw)k+1a

)(1,3) = (aw)k+1a
(
(aw)k+1a

)(1,3) and thus
(
(aw)ka

)
{1, 3} ≠

∅. □

Remark 2.8. It is clear that the representation of the w-core–EP inverse given
in Theorem 2.7 does not depend on the choice of {1, 3}-inverse. Indeed, for x, y ∈(
(aw)ka

)
{1, 3}, we have that (aw)kax = (aw)kay and w∥(aw)ka = w∥(aw)kay(aw)ka,

which imply w∥(aw)kax = w∥(aw)kay(aw)kax = (w∥(aw)kay(aw)ka)y = w∥(aw)kay

and (aw)kw∥(aw)kax = (aw)kw∥(aw)kay.

As a consequence of Theorem 2.7, we obtain the following characterization of a
core–EP invertible element and its expression based on the inverse along an element
and the {1, 3}-inverse.

Corollary 2.9. Let a ∈ R. Then the following statements are equivalent:
(i) a is core–EP invertible;
(ii) there exist 1∥ak+1 and (ak+1)(1,3) ∈ (ak+1){1, 3} for some nonnegative in-

teger k;
(iii) there exist 1∥ak+1 and

(
ak+2)(1,3) ∈

(
ak+2)

{1, 3} for some nonnegative
integer k.
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In addition, if any of statements (i)–(ii) holds, then, for some nonnegative integer k

and
(
(aw)ka

)(1,3) ∈
(
(aw)ka

)
{1, 3},

a D⃝ = ak1∥ak+1
(ak+1)(1,3).

By Theorem 2.7 and some properties of inverse along an element proved in [21],
we can provide more characterizations of w-core–EP invertible elements.

Theorem 2.10. Let a, w ∈ R. Then the following statements are equivalent:
(i) a is w-core–EP invertible;
(ii) (aw)ka ∈ (aw)k+1R and there exist

(
(aw)k+1)# and

(
(aw)ka

)(1,3) ∈(
(aw)ka

)
{1, 3} for some nonnegative integer k;

(iii) (aw)ka ∈ R(wa)k+1 and there exist
(
(wa)k+1)# and

(
(aw)ka

)(1,3) ∈(
(aw)ka

)
{1, 3} for some nonnegative integer k;

(iv) (aw)ka ∈ (aw)2k+1aR ∩ R(aw)2k+1a and there exists
(
(aw)ka

)(1,3) ∈(
(aw)ka

)
{1, 3} for some nonnegative integer k.

In addition, if any of statements (i)–(iv) holds, then, for some nonnegative integer k

and
(
(aw)ka

)(1,3) ∈
(
(aw)ka

)
{1, 3},

a D⃝
w =

(
(aw)k+1)# (aw)2ka

(
(aw)ka

)(1,3) = (aw)2ka
(
(wa)k+1)# (

(aw)ka
)(1,3)

.

Proof. This result is evident by Theorem 2.7 and [21, Theorems 2.1 and 2.2]. □

For w = 1 in Theorem 2.10, we get the next result.

Corollary 2.11. Let a ∈ R. Then the following statements are equivalent:
(i) a is core–EP invertible;
(ii) ak+1 ∈ R# ∩ R(1,3) for some nonnegative integer k.

In addition, if any of statements (i)–(ii) holds, then, for some nonnegative integer k
and (ak+1)(1,3) ∈ ak+1{1, 3},

a D⃝ = (ak+1)#a2k+1(ak+1)(1,3) = ak(ak+1) #⃝.

We can show that a is a core–EP invertible element if and only if a is a-core–EP
invertible.

Theorem 2.12. Let a ∈ R. Then the following statements are equivalent:
(i) a is core–EP invertible;
(ii) a is a-core–EP invertible.

Proof. Since a is core–EP invertible, by Corollary 2.11, ak+1 ∈ R# ∩ R(1,3) for
some nonnegative integer k. Then a2k+2 = (ak+1)2 ∈ R# and a2k+1 = akak+1 =
ak(ak+1)2(ak+1)# ∈ a2k+2R. For y ∈ ak+1{1, 3}, the equalities ak+1yak+1 = ak+1

and ak+1y = (ak+1y)∗ imply a2k+1a(ak+1)#ya2k+1 = a2k+1 and
a2k+1a(ak+1)#y = ak+1y = (ak+1y)∗ = (a2k+1a(ak+1)#y)∗,

i.e. a(ak+1)#y ∈ a2k+1{1, 3}. Using Theorem 2.10, we deduce that a is a-core–EP
invertible.
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If a is a-core EP-invertible, then, by Theorem 2.7, a∥a2k+1 exists and a2k+1 ∈
R(1,3) for some nonnegative integer k. Since a∥a2k+1 exists, we have that a ∈ RD

with ind(a) ≤ 2k + 1. So, by [10, Theorem 2.3], a is core-EP invertible. □

Consequently, when w = a in Theorem 2.4, Theorem 2.7 and Theorem 2.10,
we present a list of characterizations for core–EP invertible element using Theo-
rem 2.12.

Corollary 2.13. Let a ∈ R. Then the following statements are equivalent:
(i) a is core–EP invertible;
(ii) there exist a∥a2k+1 and (a2k+1)(1,3) ∈ a2k+1{1, 3} for some nonnegative

integer k;
(iii) there exists an element x ∈ R such that

a2x2 = x, xa2k+3 = a2k+1 and (a2x)∗ = a2x

for some nonnegative integer k;
(iv) there exists an element x ∈ R such that

a2x2 = x, xa2k+3 = a2k+1, xa2x = x, a2xa2k+1 = a2k+1 and (a2x)∗ = a2x

for some nonnegative integer k;
(v) there exists an element x ∈ R such that

a2xa2k+1 = a2k+1, a2k+1R = xR and Rx = R(a2k+1)∗

for some nonnegative integer k;
(vi) there exists an element x ∈ R such that

a2xa2k+1 = a2k+1 and a2k+1aR = xR = x∗R

for some nonnegative integer k;
(vii) there exists an element x ∈ R such that

a2xa2k+1 = a2k+1 and a2k+1R = xR ⊇ x∗R

for some nonnegative integer k;
(viii) there exists an element x ∈ R such that

a2xa2k+1 = a2k+1, ◦(a2k+1) = ◦x and x◦ =
(
(a2k+1)∗)◦

for some nonnegative integer k;
(ix) there exists an element x ∈ R such that

a2xa2k+1 = a2k+1, ◦(a2k+1) = ◦x and x◦ ⊇
(
(a2k+1)∗)◦

for some nonnegative integer k;
(x) a2k+1 ∈ a2k+2R and there exist (a2k+2)# and (a2k+1)(1,3) ∈ a2k+1{1, 3}

for some nonnegative integer k;
(xi) a2k+1 ∈ Ra2k+2 and there exist (a2k+2)# and (a2k+1)(1,3) ∈ a2k+1{1, 3}

for some nonnegative integer k;
(xii) a2k+1 ∈ a4k+3R ∩ Ra4k+3 and there exists (a2k+1)(1,3) ∈ a2k+1{1, 3} for

some nonnegative integer k.
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In addition, if any of statements (i)–(xii) holds, then, for some nonnegative inte-
ger k and (a2k+1)(1,3) ∈ (a2k+1){1, 3},

a D⃝
a = a2ka∥a2k+1

(a2k+1)(1,3) = (a2k+1)#a4k+1(a2k+1)(1,3).

It is interesting to observe that a being w-core–EP invertible is equivalent to aw
being core–EP invertible.
Theorem 2.14. Let a, w ∈ R. Then the following statements are equivalent:

(i) a is w-core–EP invertible;
(ii) aw is core–EP invertible;
(iii) there exist (aw)D and

(
(aw)k

)(1,3) ∈ (aw)k{1, 3} for k ≥ ind(aw);
(iv) there exist (aw)D and the unique orthogonal projector p ∈ R such that

pR = (aw)kaR for k ≥ ind(aw).
In addition, if any of statements (i)–(ii) holds, then iw(a) ≤ I(aw) ≤ iw(a) + 1
and, for

(
(aw)ka

)(1,3) ∈
(
(aw)ka

)
{1, 3},

a D⃝
w = (aw) D⃝ = (aw)Dp = (aw)D(aw)ka

(
(aw)ka

)(1,3)
.

Proof. (i) ⇒ (ii): It is clear by Theorem 2.2.
(ii) ⇒ (i): If x is the core–EP inverse of aw, then awx2 = x, x(aw)k+1 = (aw)k

and (awx)∗ = awx for some positive integer k. Because x(aw)k+1a = (aw)ka, we
conclude that x is the w-core–EP inverse of a.

(ii) ⇔ (iii): This equivalence follows by [10, Theorem 2.3].
(iii) ⇒ (iv): For k ≥ ind(aw) and

(
(aw)k

)(1,3) ∈ (aw)k{1, 3}, we observe that
y = w(aw)D

(
(aw)k

)(1,3) ∈
(
(aw)ka

)
{1, 3} by

(aw)kay = (aw)kaw(aw)D
(
(aw)k

)(1,3) = (aw)k
(
(aw)k

)(1,3)

and
(aw)kay(aw)ka = (aw)k

(
(aw)k

)(1,3) (aw)ka = (aw)ka.

Set p = (aw)kay. Hence, p = p∗ = p2 and pR = (aw)kayR = (aw)kaR.
To prove the uniqueness of p, let two orthogonal projectors p and p1 satisfy

pR = (aw)kaR = p1R. Then p = p1p and p1 = pp1 gives p = p∗ = (p1p)∗ = pp1 =
p1.

(iv) ⇒ (i): Because there exist (aw)D and the unique orthogonal projector
p ∈ R such that pR = (aw)kaR for k ≥ ind(aw), we have p = (aw)kau for
some u ∈ R, and (aw)ka = p(aw)ka. Therefore, (aw)ka = (aw)kau(aw)ka and
((aw)kau)∗ = p = (aw)kau, that is, (aw)ka ∈ R(1,3). We now observe that
p = (aw)kau = (aw)ka

(
(aw)ka

)(1,3) (aw)kau = (aw)ka
(
(aw)ka

)(1,3)
p, where(

(aw)ka
)(1,3) ∈ (aw)k{1, 3}. So,

p = p∗ = p(aw)ka
(
(aw)ka

)(1,3) = (aw)ka
(
(aw)ka

)(1,3)
.

Denote by x = (aw)Dp = (aw)D(aw)ka
(
(aw)ka

)(1,3). From the relations

awx = (aw(aw)D(aw)k)a
(
(aw)ka

)(1,3) = (aw)ka
(
(aw)ka

)(1,3) = p,

Rev. Un. Mat. Argentina, Vol. 67, No. 2 (2024)
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awx2 = px =
[
(aw)ka

(
(aw)ka

)(1,3) (aw)ka
]

w((aw)D)2a
(
(aw)ka

)(1,3)

= (aw)k(aw)Da
(
(aw)ka

)(1,3) = x

and
x(aw)k+1a = (aw)Dp(aw)k+1a = (aw)D(aw)k+1a = (aw)ka,

we deduce that x is the w-core–EP inverse of a. □

As a consequence of Theorem 2.14 and [34, Theorem 4.4], we develop one more
representation for the w-core–EP inverse.

Corollary 2.15. Let a, w ∈ R. Then the following statements are equivalent:
(i) a is w-core–EP invertible;
(ii) R = R(aw)k ⊕ ◦((aw)k) = R((aw)k)∗ ⊕ ◦((aw)k) for some positive inte-

ger k;
(iii) R = (aw)kR ⊕ ((aw)k)◦ = R((aw)k)∗ ⊕ ◦((aw)k) for some positive inte-

ger k.
In addition, if any of statements (i)–(iii) holds, then a

D⃝
w = (aw)2k−1b2aks∗, where

b, s ∈ R, c ∈ ((aw)k)◦ and t ∈ ◦((aw)k) such that (aw)kb + c = s((aw)k)∗ + t = 1.

Proof. (i) ⇔ (ii) ⇔ (iii): These equivalences follow by Theorem 2.14 and [34,
Theorem 4.4]. □

Under the assumption (aw)ka ∈ R†, we prove that the w-core–EP inverse of a
is equal to the inverse of aw along (aw)ka((aw)ka)∗.

Theorem 2.16. Let a, w ∈ R such that (aw)ka ∈ R† for some nonnegative inte-
ger k. Then the following statements are equivalent:

(i) a is w-core–EP invertible with iw(a) = k;
(ii) aw is invertible along (aw)ka((aw)ka)∗.

In addition, if any of statements (i)–(ii) holds, then a
D⃝
w = (aw)∥(aw)ka((aw)ka)∗ .

Proof. (i) ⇒ (ii): For d = (aw)ka((aw)ka)∗ and x = a
D⃝
w , we have

xawd = x(aw)k+1a((aw)ka)∗ = (aw)ka((aw)ka)∗ = d

and

dawx = (awxd)∗ = (awx(aw)ka((aw)ka)∗)∗ = ((aw)ka((aw)ka)∗)∗ = d∗ = d.

Applying Theorem 2.4 and the hypothesis (aw)ka ∈ R†, it is clear that x ∈
(aw)kaR ∩ R

(
(aw)ka

)∗ = (aw)ka
(
(aw)ka

)∗ R ∩ R(aw)ka
(
(aw)ka

)∗ = dR ∩ Rd.
So, we deduce that x = (aw)∥(aw)ka((aw)ka)∗ .

(ii) ⇒ (i): Let x = (aw)∥(aw)ka((aw)ka)∗ and d = (aw)ka((aw)ka)∗. Then xR =
dR = (aw)kaR and Rx = Rd = R((aw)ka)∗. We observe that (aw)ka((aw)ka)∗ =
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d = dawx = (aw)ka((aw)ka)∗awx and x = du = (aw)ka((aw)ka)∗u for some
u ∈ R, which imply

awx = (aw)k+1a((aw)ka)∗u = (aw)ka((aw)ka)†((aw)k+1a((aw)ka)∗u)
= (aw)ka((aw)ka)†awx = [((aw)ka)†]∗((aw)ka)†((aw)ka((aw)ka)∗awx)
= [((aw)ka)†]∗((aw)ka)†(aw)ka((aw)ka)∗ = (aw)ka((aw)ka)†.

Thus, (awx)∗ = awx. Since

((aw)ka)∗ = ((aw)ka)†((aw)ka((aw)ka)∗) = ((aw)ka)†(aw)ka((aw)ka)∗awx

= ((aw)ka)∗awx,

we get (aw)ka = awx(aw)ka. By Theorem 2.4, we conclude that x = a
D⃝
w . □

We also verify that a being w-core–EP invertible implies that awa
D⃝
w a is w-core

invertible.

Theorem 2.17. Let a, w ∈ R. If a is w-core–EP invertible, then awa
D⃝
w a is w-core

invertible and
(awa D⃝

w a) #⃝
w = a D⃝

w .

Proof. Suppose that a is w-core–EP invertible and a′ = awa
D⃝
w a. Then aw(a D⃝

w )2 =
a

D⃝
w , a

D⃝
w (aw)k+1a = (aw)ka and (awa

D⃝
w )∗ = awa

D⃝
w for some nonnegative integer k.

Now, a′wa
D⃝
w = aw(a D⃝

w awa
D⃝
w ) = awa

D⃝
w , which yields (a′wa

D⃝
w )∗ = (awa

D⃝
w )∗ =

awa
D⃝
w = a′wa

D⃝
w and a′w(a D⃝

w )2 = aw(a D⃝
w )2 = a

D⃝
w . Furthermore, since

a D⃝
w a′wa′ = (a D⃝

w awa D⃝
w )aw(awa D⃝

w )a = a D⃝
w aw(aw)k+1(a D⃝

w )k+1a

= (a D⃝
w (aw)k+1a)w(a D⃝

w )k+1a = (aw)kaw(a D⃝
w )k+1a

= awa D⃝
w a = a′,

we deduce that (awa
D⃝
w a) #⃝

w = a
D⃝
w . □

3. The dual w-core–EP inverse

This section is dedicated to investigating the dual w-core–EP inverse.

Definition 3.1. Let a, w ∈ R. Then a is called dual w-core–EP invertible if there
exists an element x ∈ R such that

x2wa = x, (aw)k+1ax = (aw)ka and (xwa)∗ = xwa

for some nonnegative integer k. In this case, x is a dual w-core–EP inverse of a.

When k = 0 in the above definition, the dual w-core–EP inverse coincides with
the dual w-core inverse. Also, the dual 1-core-EP inverse is the dual core–EP
inverse, i.e. dual core–EP invertible elements are w-core-EP invertible. The smallest
nonnegative integer k in the definition of the dual w-core–EP inverse is called the
dual w-core–EP index of a and denoted by i′

w(a).
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As in Theorem 2.2, we can check the following result.

Theorem 3.2. Let a, w ∈ R. Then a has at most one dual w-core-EP inverse.

Thus, if the dual w-core-EP inverse of a exists, it is unique and denoted by
a D⃝,w.

Lemma 3.3. Let a, w ∈ R. Then a is dual w-core–EP invertible if and only if a∗

is w∗-core–EP invertible. In addition, (a D⃝,w)∗ = (a∗) D⃝
w∗ and i′

w(a) = iw∗(a∗).

Proof. Note that x is the dual w-core-EP inverse of a if and only if x2wa = x,
(aw)k+1ax = (aw)ka and (xwa)∗ = xwa for some nonnegative integer k, which
is equivalent to a∗w∗(x∗)2 = x∗, x∗(a∗w∗)k+1a∗ = (a∗w∗)ka∗ and (a∗w∗x∗)∗ =
a∗w∗x∗ for some nonnegative integer k, that is, x∗ is the w∗-core–EP inverse of a∗.

□

Note that, for w = 1, Lemma 3.3 recovers the well-known fact that a is dual
core–EP invertible if and only if a∗ is core–EP invertible [10]. In this case, (a D⃝)∗ =
(a∗) D⃝.

Using Theorem 2.4 and Lemma 3.3, we can present the next characterizations
of dual w-core–EP invertible elements.

Theorem 3.4. Let a, w ∈ R. Then the following statements are equivalent:
(i) a is dual w-core–EP invertible;
(ii) there exists an element x ∈ R such that

x2wa = x, (aw)k+1ax = (aw)ka, xwax = x,

(aw)kaxwa = (aw)ka and (xwa)∗ = xwa

for some nonnegative integer k;
(iii) there exists an element x ∈ R such that

(aw)kaxwa = (aw)ka, R(aw)ka = Rx and xR =
(
(aw)ka

)∗ R
for some nonnegative integer k;

(iv) there exists an element x ∈ R such that

(aw)kaxwa = (aw)ka and
(
(aw)ka

)∗ R = xR = x∗R
for some nonnegative integer k;

(v) there exists an element x ∈ R such that

(aw)kaxwa = (aw)ka and
(
(aw)ka

)∗ R = x∗R ⊇ xR
for some nonnegative integer k;

(vi) there exists an element x ∈ R such that

(aw)kaxwa = (aw)ka,
(
(aw)ka

)◦ = x◦ and ◦x = ◦ (
((aw)ka)∗)

for some nonnegative integer k;
(vii) there exists an element x ∈ R such that

(aw)kaxwa = (aw)ka,
(
(aw)ka

)◦ = x◦ and ◦x ⊇ ◦ (
((aw)ka)∗)

for some nonnegative integer k;
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(viii) there exists an element x ∈ R such that
x2wa = x, (aw)k+1ax = (aw)ka, xwa = xn(wa)n and (xwa)∗ = xwa

for some nonnegative integer k and all/some positive integer n.

Consequently, we have the following result concerning dual core–EP invertible
elements.

Corollary 3.5. Let a ∈ R. Then the following statements are equivalent:
(i) a is dual core–EP invertible;
(ii) there exists an element x ∈ R such that
x2a = x, ak+2x = ak+1, xax = x, ak+1xa = ak+1 and (xa)∗ = xa

for some nonnegative integer k;
(iii) there exists an element x ∈ R such that

ak+1xa = ak+1, Rak+1 = Rx and xR = (ak+1)∗R
for some nonnegative integer k;

(iv) there exists an element x ∈ R such that
ak+1xa = ak+1 and (ak+1)∗R = xR = x∗R

for some nonnegative integer k;
(v) there exists an element x ∈ R such that

ak+1xa = ak+1 and (ak+1)∗R = x∗R ⊇ xR
for some nonnegative integer k;

(vi) there exists an element x ∈ R such that
ak+1xa = ak+1, (ak+1)◦ = x◦ and ◦x = ◦ (

(ak+1)∗)
for some nonnegative integer k;

(vii) there exists an element x ∈ R such that
ak+1xa = ak+1, (ak+1)◦ = x◦ and ◦x ⊇ ◦ (

(ak+1)∗)
for some nonnegative integer k;

(viii) there exists an element x ∈ R such that
x2a = x, ak+2x = ak+1 and (xa)∗ = xa = xnan

for some nonnegative integer k and all/some positive integer n.

Based on w∥(aw)ka and
(
(aw)ka

)(1,4), we give an expression for the w-core–EP
inverse of a.

Theorem 3.6. Let a, w ∈ R. Then the following statements are equivalent:
(i) a is dual w-core–EP invertible;
(ii) there exist w∥(aw)ka and

(
(aw)ka

)(1,4) ∈
(
(aw)ka

)
{1, 4} for some nonneg-

ative integer k;
(iii) there exist w∥(aw)ka and

(
(aw)k+1)(1,4) ∈

(
(aw)k+1)

{1, 4} for some non-
negative integer k;
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(iv) there exist w∥(aw)ka and
(
(aw)k+1a

)(1,4) ∈
(
(aw)k+1a

)
{1, 4} for some non-

negative integer k;
(v) (aw)ka ∈ (aw)k+1R and there exist

(
(aw)k+1)# and

(
(aw)ka

)(1,4) ∈(
(aw)ka

)
{1, 4} for some nonnegative integer k;

(vi) (aw)ka ∈ R(wa)k+1 and there exist
(
(wa)k+1)# and

(
(aw)ka

)(1,4) ∈(
(aw)ka

)
{1, 4} for some nonnegative integer k;

(vii) (aw)ka ∈ (aw)2k+1aR ∩ R(aw)2k+1a and there exists
(
(aw)ka

)(1,4) ∈(
(aw)ka

)
{1, 4} for some nonnegative integer k.

In addition, if any of statements (i)–(ii) holds, then, for some nonnegative integer k

and
(
(aw)ka

)(1,4) ∈
(
(aw)ka

)
{1, 4},

a D⃝,w =
(
(aw)ka

)(1,4)
w∥(aw)ka(wa)k =

(
(aw)ka

)(1,4) (aw)2ka
(
(wa)k+1)#

=
(
(aw)ka

)(1,4) (
(aw)k+1)# (aw)2ka.

Now, we get new representations for the dual core–EP inverse.

Corollary 3.7. Let a ∈ R. Then the following statements are equivalent:
(i) a is dual core–EP invertible;
(ii) there exist 1∥ak+1 and (ak+1)(1,4) ∈ (ak+1){1, 4} for some nonnegative in-

teger k

(iii) there exist 1∥ak+1 and
(
ak+2)(1,4) ∈

(
ak+2)

{1, 4} for some nonnegative
integer k;

(iv) ak+1 ∈ R# ∩ R(1,4) for some nonnegative integer k.
In addition, if any of statements (i)–(ii) holds, then, for some nonnegative integer k
and (ak+1)(1,4) ∈ (ak+1){1, 4},

a D⃝ = (ak+1)(1,4)1∥ak+1
ak = (ak+1)(1,4)a2k+1(ak+1)# = (ak+1) #⃝ak.

Theorem 2.7 and Theorem 3.6 imply the following result.

Corollary 3.8. Let a, w ∈ R. Then the following statements are equivalent:
(i) a is both w-core–EP invertible and dual w-core–EP invertible;
(ii) there exist w∥(aw)ka and

(
(aw)ka

)† for some nonnegative integer k;
(iii) there exist w∥(aw)ka and

(
(aw)k+1)† for some nonnegative integer k;

(iv) there exist w∥(aw)ka and
(
(aw)k+1a

)† for some nonnegative integer k.

Clearly, we have the next relation between dual w-core–EP invertibility of a and
core–EP invertibility of wa.

Theorem 3.9. Let a, w ∈ R. Then the following statements are equivalent:
(i) a is dual w-core–EP invertible;
(ii) wa is dual core–EP invertible;
(iii) there exist (wa)D and

(
(aw)k

)(1,4) ∈ (aw)k{1, 4} for k ≥ ind(wa);
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(iv) there exist (wa)D and the unique orthogonal projector p ∈ R such that
pR =

(
(aw)ka

)∗ R for k ≥ ind(aw).

In addition, if any of statements (i)–(ii) holds, then, for
(
(aw)ka

)(1,4) ∈(
(aw)ka

)
{1, 4},

a D⃝,w = (wa) D⃝ = p(wa)D =
(
(aw)ka

)(1,4) (aw)ka(wa)D.

Theorem 3.10. Let a, w ∈ R be such that (aw)ka ∈ R† for some nonnegative
integer k. Then the following statements are equivalent:

(i) a is dual w-core–EP invertible with i′
w(a) = k;

(ii) wa is invertible along ((aw)ka)∗(aw)ka.

In addition, if any of statements (i)–(ii) holds, then a D⃝,w = (wa)∥((aw)ka)∗(aw)ka.

Note that the dual w-core–EP invertibility of a gives dual w-core invertibility of
an adequate element.

Theorem 3.11. Let a, w ∈ R. If a is dual w-core–EP invertible, then aa D⃝,wwa
is dual w-core invertible and

(aa D⃝,wwa) #⃝,w = a D⃝,w.

We also consider characterizations of dual a∗-core–EP invertibility. Recall that,
by [33, Theorem 3.12], a ∈ R is Moore–Penrose invertible if and only if a ∈ aa∗aR
if and only if a ∈ Raa∗a.

Theorem 3.12. Let a ∈ R. Then the following statements are equivalent:
(i) a is dual a∗-core–EP invertible;
(ii) (aa∗)ka is Moore–Penrose invertible for some nonnegative integer k;
(iii) a is a∗-core–EP invertible.

Proof. (i) ⇒ (ii): Since a is dual a∗-core–EP invertible, by Theorem 3.6, (a∗)∥(aa∗)ka

exists for some nonnegative integer k. So,

(aa∗)ka ∈ (aa∗)kaa∗(aa∗)kaR = (aa∗)2k+1aR,

which gives (aa∗)ka ∈ (aa∗)k+1(aa∗)kaR ⊆ (aa∗)k+1(aa∗)2k+1aR = (aa∗)3k+2aR.
According to [33, Theorem 3.12], we deduce that (aa∗)ka is Moore–Penrose invert-
ible.

(ii) ⇒ (iii): If (aa∗)ka is Moore–Penrose invertible, by [33, Theorem 3.12],
(aa∗)ka ∈ (aa∗)3k+1aR ∩ R(aa∗)3k+1a ⊆ (aa∗)2k+1aR ∩ R(aa∗)2k+1a. Thus,
(a∗)∥(aa∗)ka exists and, by Theorem 2.7, a is a∗-core–EP invertible.

(iii) ⇒ (i): The hypothesis a that is a∗-core–EP invertible and Theorem 2.7
imply that (aa∗)ka is Moore–Penrose invertible as in the implication (i) ⇒ (ii).
Using Theorem 3.6, we conclude that a is dual a∗-core–EP invertible. □
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4. Applications of the dual w-core–EP inverse

We can investigate solvability of some equations applying the dual w-core–EP
inverse. Precisely, we solve some operator equations using the following notations
in this section. Let B(X, Y ) be the set of all bounded linear operators from X to Y ,
where X and Y are arbitrary Hilbert spaces. Especially, B(X, X) = B(X). For
W ∈ B(Y, X) and A ∈ B(X, Y ), according to [22], observe that Drazin invertibility
of WA (or, equivalently, W -weighted Drazin invertibility of A) implies the existence
of A D⃝,W ∈ B(X). Notice that, for complex rectangular matrices A and W of
appropriated sizes, A D⃝,W always exists.

Theorem 4.1. Let W ∈ B(Y, X) and A ∈ B(X, Y ) be such that WA is Drazin
invertible and i′

W (A) = k. For b ∈ X, the equation

(AW )k+1Ax = (AW )kAb (4.1)
is consistent and its general solution is

x = A D⃝,W b + (I − A D⃝,W WA)y (4.2)
for arbitrary y ∈ X.

Proof. Assume that x has the form (4.2). Then
(AW )k+1Ax = (AW )k+1AA D⃝,W b + (AW )k+1A(I − A D⃝,W WA)y = (AW )kAb,

which shows that x is a solution to (4.1).
If x is a solution to (4.1), by the properties of the dual w-core–EP inverse A D⃝,W ,

we obtain
A D⃝,W b = A2

D⃝,W WAb = Ak+2
D⃝,W (WA)k+1b = Ak+2

D⃝,W W ((AW )kAb)

= Ak+2
D⃝,W W (AW )k+1Ax = Ak+2

D⃝,W (WA)k+2x

= A D⃝,W WAx.

Therefore,
x = A D⃝,W b + x − A D⃝,W WAx = A D⃝,W b + (I − A D⃝,W WA)x,

i.e. x has the form (4.2). □

In the case that A #⃝,W exists, we obtain the next result as a particular case of
Theorem 4.1 for k = 0.

Corollary 4.2. Let W ∈ B(Y, X) and A ∈ B(X, Y ) be such that A #⃝,W exists. For
b ∈ X, the equation

AWAx = Ab

is consistent and its general solution is
x = A #⃝,W b + (I − A #⃝,W WA)y

for arbitrary y ∈ X.

When X = Y and W = I in Theorem 4.1 and Corollary 4.2, we get solvability of
the following equations in terms of the dual core–EP inverse and dual core inverse.
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Corollary 4.3. Let W ∈ B(Y, X) and A ∈ B(X, Y ) be such that WA is Drazin
invertible and i′

W (A) = k, and let b ∈ X.
(i) The equation

Ak+2x = Ak+1b

is consistent and its general solution is
x = A D⃝b + (I − A D⃝A)y

for arbitrary y ∈ X.
(ii) If A #⃝ exists, the equation

A2x = Ab

is consistent and its general solution is
x = A #⃝b + (I − A #⃝A)y

for arbitrary y ∈ X.

For W = A∗ in Theorem 4.1 and Corollary 4.2, we can solve the equations
(AA∗)k+1Ax = (AA∗)kAb and AA∗Ax = Ab as special cases.

Corollary 4.4. Let A ∈ B(X, Y ) be such that A∗A is Drazin invertible and
i′
A∗(A) = k, and let b ∈ X.

(i) The equation
(AA∗)k+1Ax = (AA∗)kAb

is consistent and its general solution is
x = A D⃝,A∗b + (I − A D⃝,A∗A∗A)y

for arbitrary y ∈ X.
(ii) If A #⃝,A∗ exists and b ∈ X, the equation

AA∗Ax = Ab

is consistent and its general solution is
x = A #⃝,A∗b + (I − A #⃝,A∗A∗A)y

for arbitrary y ∈ X.
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[2] J. Beńıtez and E. Boasso, The inverse along an element in rings with an involution, Banach

algebras and C∗-algebras, Linear Multilinear Algebra 65 no. 2 (2017), 284–299. DOI MR
Zbl
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