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COMPLETE PRESENTATION AND HILBERT SERIES
OF THE MIXED BRAID MONOID MB1,3

ZAFFAR IQBAL, MUHAMMAD MOBEEN MUNIR, MALEEHA AYUB,
AND ABDUL RAUF NIZAMI

Abstract. The Hilbert series is the simplest way of finding dimension and
degree of an algebraic variety defined explicitly by polynomial equations. The
mixed braid groups were introduced by Sofia Lambropoulou in 2000. In this
paper we compute the complete presentation and the Hilbert series of the
canonical words of the mixed braid monoid MB1,3.

1. Introduction

The braid group Bn+1 for the Euclidean space consisting on n + 1 strands is
given by the following Artin presentation [3]:

Bn+1 =
〈

z1, z2, . . . , zn

∣∣∣∣∣ zizj = zj zi if | i − j | ≥ 2
zi+1 zi zi+1 = zi zi+1 zi if 1 ≤ i ≤ n − 1

〉
.

Elements of Bn+1 are expressed in the generators z1, z2, . . . , zn and their inverses.
The presentation of the braid monoid MBn+1 is similar to the presentation of
Bn+1. In [12] Lambropoulou gave the presentation of the mixed braid monoid
Bm,n. Before this presentation she gave the presentation of B1,n in [11]. In this
paper we compute the Hilbert series of B1,3.

Definition 1.1 ([12]). The mixed braid group Bm,n of m + n strands is defined as

Bm,n =
〈

α1, . . . , αm,
β1, . . . , βn−1

∣∣∣∣∣
βrβs = βs βr if |r − s| ≥ 2
βr+1 βr βr+1 = βr βr+1 βr if 1 ≤ r ≤ n − 1
αp βs = βs αp if s ≥ 2, 1 ≤ p ≤ m
αp (β1 αq β−1

1 ) = (β1 αq β−1
1 ) αp if q < p

〉
.

In the mixed braid group Bm,n, the first index m denotes the strings which make
the identity braid of m strings, and the next n strings show the braiding by itself
and with m strings. The mixed braid group Bm,n is a subgroup of the Artin braid
group Bm+n. The associated Dynkin diagram for Bm,n is given in [12]:
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Figure 1.

In the above diagram, the double lines represent the relation of length 4, while
the relation of length 3 is represented by the single line. However, if the there is
no line among the generators, then they commute. Hence the Dynkin diagram for
MB1,2 reduces to

z1
•

z2
•

4

Figure 2.

Therefore we have
MB1,2 = ⟨z1, z2 | z2 z1 z2 z1 = z1 z2 z1 z2⟩ .

The complete structure and Hilbert series for MB1,2 are computed in [2]. This
motivated us to compute the Hilbert series of MB1,3, where the Dynkin diagram
for MB1,3 is as follows:

z1
@
@
@

@
@
@

•
4

z2
•

z3
•

Figure 3.

Therefore we have the following presentation of MB1,3:
MB1,3 =

〈
z1, z2, z3 | z3 z2 z3 = z2 z3 z2, z2 z1 z2 z1 = z1 z2 z1 z2, z3 z1 = z1 z3

〉
.

In this case we have three Artin relations, namely, R0 : z3 z1 = z1 z3, R1 :
z2 z1 z2 z1 = z1 z2 z1 z2, and R2 : z3 z2 z3 = z2 z3 z2. The following is an example of
a braid in B1,3.

In [6], Zafar et al. constructed a linear system for the braid monoid MBn+1 and
computed the Hilbert series for the braid monoids MB3 and MB4. The growth
series of binomial edge ideals was computed by Kumar and Sarkar in [10]. In [6],
growth series of the graded algebra of real regular functions on the symplectic
quotient associated to an SU2-module has been given.
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Figure 4.

In [9], the authors computed the Hilbert series of the braid monoid MB4 in band
generators. In [8], the authors constructed a linear system of canonical words of
finite dimensional generalized Hecke algebras H(Qm, 3), where Qm = xm − 1, m ∈
{3, 4, 5} and computed its Hilbert series. In [14] Saito computed the growth series
of Artin monoids. In [13] Mairesse and Mathéus gave the growth series of Artin
groups of dihedral type. In [1] we computed the Hilbert series of the Artin monoids
M(I2(p)), where M(I2(4)) is isomorphic to MB1,2 and MB1,2 is isomorphic to the
Artin monoid of type B2. In this paper we construct a similar kind of linear system
to compute the Hilbert series of MB1,3 which is isomorphic to the Artin monoid of
type B3.

2. Complete presentation of MB1,3

To obtain a canonical form of a word in an algebra, the diamond lemma by
G. Bergman [4] is extremely useful. To understand the notions of ambiguities and
canonical words, we start with his terminology.

Definition 2.1 ([4]). Let α1 = ut and α2 = tv be two words consisting of the
left-hand sides of two relations Ri and Rj in MB1,3. The word of the form utv is
said to be an ambiguity and we denote it by Ri − Rj .

A word containing a sub-word of the left-hand side of any relation of a braid
monoid is called a reducible word, and a word that does not contain any sub-word
of the left-hand side of any relation is called an irreducible (or canonical) word.

Definition 2.2 ([5]). Let G be a finitely generated group and S be a finite set of
generators of G. The word length lS(g) of an element g ∈ G is the smallest integer
n for which there exist s1, . . . , sn ∈ S ∪ S−1 such that g = s1 · · · sn.

The diamond lemma says that a set of relations is complete if all the ambiguities
are solved. We call a complete set of relations in MB1,3 a complete presentation of
MB1,3. The other names for the complete presentation are being used as Gröbner
bases, presentation with solvable ambiguities and rewriting system, etc. We find
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the system of linear equations of the canonical words of MB1,3 and solve this
system, which consequently leads to the Hilbert series of MB1,3.

In a relation in MB1,3 we place the equivalent words on the left-hand side which
are greater in length-lexicographic ordering [7] (we choose a natural total order
z1 < z2 < · · · < zn between the generators). For example, the words z2z1z2z1
and z1z2z1z2 are equivalent in the mixed braid monoid MB1,3. Hence we write
z2z1z2z1 = z1z2z1z2 as the basic braid relation. We use the notation R

(4)
j to express

jth generalized relation in MB1,3. The words Xz2 ×2 z2Y and Xz2z1 ×21 z2z1Y
denote the products Xz2Y and Xz2z1Y , respectively.

The ambiguity utv has two resolutions, namely (ut)v and u(tv). Let w = utv.
Then by L(w) we mean the canonical form of (ut)v and by R(w) we mean the
canonical form of u(tv). If L(w) and R(w) are identical, then the ambiguity is
solvable. If L(w) and R(w) differ by lexicographic order, then we get a new relation
in MB1,3.

Theorem 2.3. The complete presentation of MB1,3 is given by〈
z1, z2, z3 | z3 z1 = z1 z3, z3 z2 z3 = z2 z3 z2, z2 z1 z2 z1 = z1 z2 z1 z2, R

(4)
1 , . . . , R

(4)
11

〉
,

where
(1) R

(4)
1 : z2zn+1

1 z2z1z2 = z1z2z1z2
2zn

1
(2) R

(4)
2 : z3z2zn

1 z3 = z2z3z2zn
1

(3) R
(4)
3 : z3zn

2 z3z2 = z2z3z2
2zn

3
(4) R

(4)
4 : z3z2zn

1 zn1
2 z3z2 = z2z3z2zn

1 z2zn1
3

(5) R
(4)
5 : z3z2z1zn

2 z3z2 = z2z3z2z1z2zn
3

(6) R
(4)
6 : z3zn

2 zn1
1 z3z2z1z2 = z2z3z2

2z1zn
3 z2zn1

1
(7) R

(4)
7 : z3z2zn

1 zn1
2 zn2

1 z3z2z1z2 = z2z3z2zn
1 z2z1zn1

3 z2zn2
1

(8) R
(4)
8 : z3z2z1zn

2 zn1
1 z3z2z1z2 = z2z1z3z2z1z2zn

3 z2zn1
1

(9) R
(4)
9 : z3(zn

2 zn1
1 zn2

2 zn3
1 · · · )z3z2z1z2z3 = z2z3z2

2z1zn
3 z2zn1

1 z3(zn2
2 zn3

1 · · · )
(10) R

(4)
10 : z3z2(zn

1 zn1
2 zn2

1 zn3
2 zn4

1 · · · )z3z2z1z2z3
= z2z3z2zn

1 z2z1zn1
3 z2zn2

1 z3(zn3
2 zn4

1 · · · )
(11) R

(4)
11 : z3z2z1(zn

2 zn1
1 zn2

2 · · · )z3z2z1z2z3
= z2z1z3z2z1z2zn

3 z2zn1
1 z3(zn2

2 zn3
1 · · · ),

with n, n1, n2, n3, . . . ∈ N.

Proof. In this proof we use the inductive argument. We compute the relations
by solving the ambiguities involving the relations R0, R1, and R2 and the new
relations.

(1) In [1] we computed the first relation (for p = 4) R
(4)
1 , which is given by

R
(4)
1 : z2zn+1

1 z2z1z2 = z1z2z1z2
2zn

1 .

(2) For an ambiguity R2 − R0 = z3z2z3z1 = w1 (say), we have

R(w1) = z3z2z3z1 = z3z2z1z3, L(w1) = z3z2z3z1 = z2z3z2z1.
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Hence we have a relation Rw1 : z3z2z1z3 = z2z3z2z1. Again by solving a new
ambiguity Rw1 − R0 = z3z2z1z3z1 = w2 we have

R(w2) = z3z2z1z3z1 = z3z2z2
1z3, L(w2) = z3z2z1z3z1 = z2z3z2z1z2,

which gives another relation Rw2 : z3z2z2
1z3 = z2z3z2z1z2. By continuing the same

process we have the general relation

R
(4)
2 : z3z2zn

1 z3 = z2z3z2zn
1 .

(3) In the ambiguity R2 − R2 = z3z2z3z2z3 = w3, we have

R(w3) = z3z2z3z2z3 = z3z2
2z3z2, L(w3) = z3z2z3z2z3 = z2z3z2

2z3.

Hence we have a relation Rw3 : z3z2
2z3z2 = z2z3z2

2z3. Therefore in general we have

R
(4)
3 : z3zn

2 z3z2 = z2z3z2
2zn

3 .

(4) Successive ambiguities of R
(4)
2 and R2 lead to the relation

R
(4)
4 : z3z2zn

1 zn1
2 z3z2 = z2z3z2zn

1 z2zn1
3 .

(5) By solving Rw1 − R2 = z3z2z1z3z2z3 and generalizing, we have

R
(4)
5 : z3z2z1zn

2 z3z2 = z2z3z2z1z2zn
3 .

(6) R
(4)
6 : z3zn

2 zn1
1 z3z2z1z2 = z2z3z2

2z1zn
3 z2zn1

1 is obtained by solving the ambi-
guity of the relations R

(4)
3 and R1.

(7) Solving the ambiguities formed by R
(4)
4 and R1, we get

R
(4)
7 : z3z2zn

1 zn1
2 zn2

1 z3z2z1z2 = z2z3z2zn
1 z2z1zn1

3 z2zn2
1 .

(8) Successive ambiguities of R
(4)
5 and R1 lead to the relation

R
(4)
8 : z3z2z1zn

2 zn1
1 z3z2z1z2 = z2z1z3z2z1z2zn

3 z2zn1
1 .

(9) Now, solving the ambiguity formed by R
(4)
6 , R

(4)
4 , and R0, we have

R
(4)
9 : z3(zn

2 zn1
1 zn2

2 zn3
1 · · · )z3z2z1z2z3 = z2z3z2

2z1zn
3 z2zn1

1 z3(zn2
2 zn3

1 · · · ).

(10) The relation

R
(4)
10 : z3z2(zn

1 zn1
2 zn2

1 zn3
2 zn4

1 · · · )z3z2z1z2z3 = z2z3z2zn
1 z2z1zn1

3 z2zn2
1 z3(zn3

2 zn4
1 · · · )

is obtained by solving the ambiguities formed by R
(4)
7 , R

(4)
4 , and R0.

(11) Successively solving the ambiguities formed by R
(4)
8 , R

(4)
4 , and R0, we get

R
(4)
11 : z3z2z1(zn

2 zn1
1 zn2

2 zn3
1 · · · )z3z2z1z2z3 = z2z1z3z2z1z2zn

3 z2zn1
1 z3(zn2

2 zn3
1 · · · ).

All other ambiguities are solvable. Hence we have the complete set of relations. □
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3. Hilbert series of MB1,3

Definition 3.1 ([5]). Let M be a group or a monoid and an be the number of
elements of M of word length n. The Hilbert series of M for arbitrary variable t is
denoted by HM (t) and is defined by HM (t) =

∞∑
n=0

antn.

We use the complete presentation of MB1,3 to compute the Hilbert series. Let
A(m+n) and B(m+n) denote the set of all canonical and reducible words in MBm,n,
respectively. In particular assume that A

(m+n)
µ and B

(m+n)
µ,ν denote the set of

all canonical and reducible words in MBm,n, respectively, where µ is related to
the prefix of a word while ν is the suffix of the word. For example, A

(n+m)
j(j−1)...k

denotes the collection of all canonical words in MBm,n that start with zjzj−1 . . . zk

and B
(m+n)
j,v , B

(m+n)
j(j+1),v denote the collection of all reducible words that start with

z(m+n)−1z(m+n)−2 . . . zj and z(m+n)−1z(m+n)−2 · · · z1z2 · · · zj , respectively, and v is
a word in the generators z1, . . . , zn. The set B

(m+n)
∗,v denotes all the reducible words

starting with any word and ending in the generators z1, . . . , zn. Hence in MB1,3
we have the following set of reducible words:

B
(4)
1,2 = {z2z1z2z1}, B

(4)
1,212 = {z2zn+1

1 z2z1z2}, B
(4)
2,3 = {z3z2z3},

B
(4)
1,3 = {z3z2zn

1 z3}, B
(4)
2,32 = {z3zn

2 z3z2}, B
(4)
1,32 = {z3z2zn

1 zn1
2 z3z2},

B
(4)
12,32 = {z3z2z1zn

2 z3z2},

B
(4)
2,3212 = {z3zn

2 zn1
1 z3z2z1z2}, B

(4)
1,3212 = {z3z2zn

1 zn1
2 zn2

1 z3z2z1z2},

B
(4)
12,3212 = {z3z2z1zn

2 zn1
1 z3z2z1z2}, B

(4)
2,32123 = {z3(zn

2 zn1
1 zn2

2 zn3
1 · · · )z3z2z1z2z3},

B
(4)
1,32123 = {z3z2(zn

1 zn1
2 zn2

1 zn3
2 zn4

1 · · · )z3z2z1z2z3},

B
(4)
12,32123 = {z3z2z1(zn

2 zn1
1 zn2

2 · · · )z3z2z1z2z3}.

Assume that Q
(m+n)
µ,ν (t) denotes the Hilbert series of B

(m+n)
µ,ν and P

(m+n)
µ (t) denotes

the Hilbert series of A
(m+n)
µ . If A

(m+n)
∗ denotes a set of canonical words in MBm,n,

then ΣA
(m+n)
∗ denotes the same set of canonical words with each index increased

by 1. For example, for A
(2)
1 = {z1, z2

1 , z3
1 , . . .}, we have ΣA

(2)
1 = {z2, z2

2 , z3
2 , . . .}.

Therefore

P
(2)
1 = t + t2 + t3 + · · · = t

1 − t
.

Lemma 3.2 ([2]). The following equations hold for the canonical words in MB1,2:

(1) P
(3)
1 (t) = t

(1−t)(1−t−t2−t3) ,
(2) P

(3)
2 (t) = t(1+t+t2)

(1−t−t2−t3) ,
(3) P

(3)
21 (t) = t2(1+t)

(1−t−t2−t3) ,
(4) P

(3)
212(t) = t3

(1−t−t2−t3) .
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Corollary 3.3 ([2]). The Hilbert series for the canonical words in MB1,2 is

H
(3)
M (t) = 1

(1 − t)(1 − t − t2 − t3) .

Now, we have to find P
(4)
1 (t), P

(4)
2 (t), and P

(4)
3 (t) for the computation of the

Hilbert series H
(4)
M (t) of MB1,3.

Lemma 3.4. The following equations hold for the reducible words in MB1,3:

(1) Q
(4)
1,2 = t4 (2) Q

(4)
1,212 = t6

1 − t

(3) Q
(4)
2,3 = t3 (4) Q

(4)
1,3 = t4

1 − t

(5) Q
(4)
µ,3 = t3

1 − t
(6) Q

(4)
2,32 = t5

1 − t

(7) Q
(4)
1,32 = t6

(1 − t)2 (8) Q
(4)
12,32 = t6

1 − t

(9) Q
(4)
∗,32 = t5

(1 − t)2 (10) Q
(4)
2,3212 = t8

(1 − t)2

(11) Q
(4)
1,3212 = t10

(1 − t)3 (12) Q
(4)
12,3212 = t10

(1 − t)2

(13) Q
(4)
∗,3212 = t8(1 − t + 2t2 − t3)

(1 − t)3 (14) Q
(4)
2,32123 = t10(1 + t2)

(1 − t − t2 − t3)(1 − t)2

(15) Q
(4)
1,32123 = 2t13

(1 − t − t2 − t3)(1 − t)3 (16) Q
(4)
12,32123 = t12(1 + t2)

(1 − t − t2 − t3)(1 − t)2

(17) Q
(4)
∗,32123 = t10(1 − t + 2t2 + t4 − t5)

(1 − t − t2 − t3)(1 − t)3 .

Proof. We proceed with the proof by considering tail-wise reducible words. Here
for all the reducible words we use the decompositions.

(1) We have only one word that starts and ends with z2z1, i.e., B
(4)
1,2 = {z2z1z2z1}.

Hence we have Q
(4)
1,2 = t4.

(2) Since B
(4)
1,212 = {z2zn+1

1 z2z1z2} = {z2z1}×A
(2)
1 ×{z2z1z2}, we have Q

(4)
1,212 =

t6

1−t .
(3) For B

(4)
2,3 = {z3z2z3}, we have Q

(4)
2,3 = t3.

(4) Similarly, B
(4)
1,3 = {z3z2zn

1 z3} = {z3z2z1} ×1 A
(2)
1 × {z3}. Therefore Q

(4)
1,3 =

t4

1−t .
(5) As there are two types of reducible words whose tail is z3, that is, B

(4)
∗,3 =

B
(4)
2,3 ⊔ B

(4)
1,3 , we have

Q
(4)
∗,3 = t3 + t4

1 − t
= t3

1 − t
.

(6) The decomposition B
(4)
2,32 = {z3zn

2 z3z2} = {z3z2} × ΣA
(2)
1 × {z3z2} gives

Q
(4)
2,32 = t5

1−t .
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(7) The set B
(4)
1,32 = {z3z2zn

1 zn1
2 z3z2} = {z3z2z1} ×1 A

(2)
1 × ΣA

(2)
1 × {z3z2} gives

the relation Q
(4)
1,32 = t6

(1−t)2 .
(8) Similarly, B

(4)
12,32 = {z3z2z1zn

2 z3z2} = {z3z2z1z2} ×2 ΣA
(2)
1 × {z3z2}. There-

fore Q
(4)
12,32 = t6

1−t .
(9) Using complete presentation, we have two different types of reducible words

ending with z3z2 (as B
(4)
12,32 is a subword of B

(4)
1,32 for n = 1), i.e., B

(4)
∗,32 = B

(4)
2,32 ⊔

B
(4)
1,32. Hence, we have

Q
(4)
∗,32 = Q

(4)
2,32 + Q

(4)
1,32 = t5

1 − t
+ t6

(1 − t)2 = t5

(1 − t)2 .

(10) As B
(4)
2,3212 = {z3zn

2 zn1
1 z3z2z1z2} = {z3z2} × ΣA

(2)
1 × A

(2)
1 × {z3z2z1z2}, we

have Q
(4)
2,3212 = t8

(1−t)2 .
(11) B

(4)
1,3212 = {z3z2zn

1 zn1
2 zn2

1 z3z2z1z2} = {z3z2z1} × A
(2)
1 × ΣA

(2)
1 × A

(2)
1 ×

{z3z2z1z2} gives Q
(4)
1,3212 = t10

(1−t)3 .
(12) B

(4)
12,3212 = {z3z2z1zn

2 zn1
1 z3z2z1z2} = {z3z2z1} × ΣA

(2)
1 × A

(2)
1 × {z3z2z1z2}

gives the relation Q
(4)
12,3212 = t10

(1−t)2 .
(13) Using reduced complete presentation, we have three types of reducible words

ending with z3z2z1z2, i.e., B
(4)
∗,3212 = B

(4)
2,3212 ⊔ B

(4)
1,3212 ⊔ B

(4)
12,3212. Hence we get

Q
(4)
∗,3212 = Q

(4)
2,3212 + Q

(4)
1,3212 + Q

(4)
12,3212

= t8

(1 − t)2 + t10

(1 − t)3 + t10

(1 − t)2

= t8(1 − t + 2t2 − t3)
(1 − t)3 .

(14) The word B
(4)
2,32123 = {z3(zn

2 zn1
1 zn2

2 zn3
1 · · · )z3z2z1z2z3} = {z3z2} × A

(3)
2 ×

{z3z2z1z2z3} can be written as {z3z2} × ΣA
(2)
1 × {z3z2} × {z1z2z3} as well as

{z3z2}×ΣA
(2)
1 ×A

(2)
1 ×{z3z2z1z2}×{z3}. In this case we have reducible subwords,

which will be subtracted. Hence we have

B
(4)
2,32123 = {z3z2} × A

(3)
2 × {z3z2z1z2z3}\

(
(B(4)

2,32 × {z1z2z3}) ⊔ (B(4)
2,3212 × {z3})

)
,

for which we have

Q
(4)
2,32123 = t7P 3

2 − t8

1 − t
− t9

(1 − t)2 .

Using Lemma 3.2 we have

Q
(4)
2,32123 = t8(1 + t + t2)

1 − t − t2 − t3 − t8

1 − t
− t9

(1 − t)2

= t10(1 + t2)
(1 − t − t2 − t3)(1 − t)2 .
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(15) As we have B
(4)
1,32123 = z3z2(zn

1 zn1
2 zn2

1 zn3
2 zn4

1 · · · )z3z2z1z2z3, we can write
B

(4)
1,32123 = {z3z2z1} × A

(3)
1 × {z3z2z1z2z3}. Using the above argument we have

B
(4)
1,32123 = {z3z2z1} × A

(3)
1 × {z3z2z1z2z3}

\
(

({z3z2z1} × A
(2)
1 × {z2z1z2} ×212 ×A

(3)
212 × {z3z2z1z2z3})

⊔ ({z3z2z1} × A
(2)
1 × {z3} × {z2z1z2z3})

⊔ ({z3z2z1} × A
(2)
1 × ΣA

(2)
1 × {z3z2} × {z1z2z3})

⊔ ({z3z2z1} × A
(2)
1 × ΣA

(2)
1 × A

(2)
1 × {z3z2z1z2} × {z3})

)
.

Hence

Q
(4)
1,32123 = t8P

(3)
1 − t9

1 − t
P

(3)
212 − t9

1 − t
− t10

(1 − t)2 − t11

(1 − t)3

= 2t13

(1 − t − t2 − t3)(1 − t)3 .

(16) Similarly, as B
(4)
12,32123 = z3z2z1(zn

2 zn1
1 zn2

2 · · · )z3z2z1z2z3, we can write

B
(4)
12,32123 = {z3z2z1z2} × A

(3)
2 × {z3z2z1z2z3}

\
(

({z3z2z1z2} × ΣA
(2)
1 × {z3z2} × {z1z2z3})

⊔ ({z3z2z1z2} × ΣA
(2)
1 × A

(2)
1 × {z3z2z1z2} × {z3})

)
.

Hence, using Lemma 3.2, we have

Q
(4)
12,32123 = t9P

(3)
2 − t10

1 − t
− t11

(1 − t)2

= t12(1 + t2)
(1 − t − t2 − t3)(1 − t)2 .

(17) We have three types of reducible words ending with z3z2z1z2z3, i.e.,

B
(4)
∗,32123 = B

(4)
2,32123 ⊔ B

(4)
1,32123 ⊔ B

(4)
12,32123.

Therefore we get

Q
(4)
∗,32123 = Q

(4)
2,32123 + Q

(4)
1,32123 + Q

(4)
12,32123

= t10(1 + t2)
(1 − t − t2 − t3)(1 − t)2 + 2t13

(1 − t − t2 − t3)(1 − t)3

+ t12(1 + t2)
(1 − t − t2 − t3)(1 − t)2

= t10(1 − t + 2t2 + t4 − t5)
(1 − t − t2 − t3)(1 − t)3 . □

For the computation of the Hilbert series of MB1,3, we have the following linear
system for the canonical words.
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Lemma 3.5. The following equations hold for the canonical words in MB1,3:

(1) P
(4)
1 = P

(3)
1 + P

(3)
1 P

(4)
3

(2) P
(4)
2 = P

(3)
2 + P

(3)
2 P

(4)
3

(3) P
(4)
21 = P

(3)
21 + P

(3)
21 P

(4)
3

(4) P
(4)
212 = P

(3)
212 + P

(3)
212P

(4)
3

(5) P
(4)
3 = t + tP

(4)
3 + P

(4)
32

(6) P
(4)
32 = tP

(4)
2 − t2

1−t P
(4)
3 − t3(1+t−t2)

(1−t)2 P
(4)
32 − t4(1−t+2t2−t3)

(1−t)3 P
(4)
3212

− t5(1−t+2t2+t4−t5)
(1−t−t2−t3)(1−t)3 P

(4)
32123

(7) P
(4)
321 = tP

(4)
21 − t3

1−t P
(4)
3 − t4

(1−t)2 P
(4)
32 − t6(2−t)

(1−t)3 P
(4)
3212 − t7(1+t+t2−t3)

(1−t−t2−t3)(1−t)3 P
(4)
32123

(8) P
(4)
3212 = tP

(4)
212 − t4

1−t P
(4)
32 − t6

(1−t)2 P
(4)
3212 − t7(1+t2)

(1−t−t2−t3)(1−t)2 P
(4)
32123

(9) P
(4)
32123 = t4P

(4)
3 − t4P

(4)
32 .

Proof. The canonical words may start with z1, z2, z2z1, z2z1z2, z3, z3z2, z3z2z1,
z3z2z1z2 or z3z2z1z2z3. By ⊔ we mean the disjoint union of sets.

(1) For the canonical words starting with z1, we have the decomposition of the
form A

(4)
1 = A

(3)
1 ⊔ (A(3)

1 × A
(4)
3 ). The associated Hilbert series becomes

P
(4)
1 = P

(3)
1 + P

(3)
1 P

(4)
3 .

(2) The canonical words starting with z2 have the form A
(4)
2 = A

(3)
2 ⊔(A(3)

2 ×A
(4)
3 ).

Hence
P

(4)
2 = P

(3)
2 + P

(3)
2 P

(4)
3 .

(3) The decomposition A
(4)
21 = A

(3)
21 ⊔ (A(3)

21 × A
(4)
3 ) gives

P
(4)
21 = P

(3)
21 + P

(3)
21 P

(4)
3 .

(4) The decomposition A
(4)
212 = A

(3)
212 ⊔ (A(3)

212 × A
(4)
3 ) gives

P
(4)
212(t) = P

(3)
212 + P

(3)
212P

(4)
3 .

(5) The canonical words starting with z3 can be written as A
(4)
3 = {z3}⊔({z3}×

A
(4)
3 ) ⊔ A

(4)
32 . Therefore the corresponding Hilbert series is

P
(4)
3 = t + tP

(4)
3 + P

(4)
32 .

(6) By taking the product of z3 on the left side of the set of canonical words
starting with z2, we may have reducible words of any one of the form B

(4)
µ,ν . In order

to get canonical words starting with z3z2, we have to get rid of the above-mentioned

Rev. Un. Mat. Argentina, Vol. 67, No. 2 (2024)



THE MIXED BRAID MONOID MB1,3 513

reducible words from the {z3} × A
(4)
2 . Therefore,

A
(4)
32 = {z3} × A

(4)
2 \

(
(B(4)

∗,3 ×3 A
(4)
3 ) ⊔ (B(4)

∗,32 ×32 A
(4)
32 ) ⊔ (B(4)

∗,3212 ×3212 A
(4)
3212)

⊔ (B(4)
∗,32123 ×32123 A

(4)
32123)

)
.

Hence we have

P
(4)
32 = tP

(4)
2 − t2

1 − t
P

(4)
3 − t3

(1 − t)2 P
(4)
32 − t4(1 − t + 2t2 − t3)

(1 − t)3 P
(4)
3212

− t5(1 − t + 2t2 + t4 − t5)
(1 − t − t2 − t3)(1 − t)3 P

(4)
32123.

Equivalently we have

tP
(4)
2 − t2

1 − t
P

(4)
3 − (1 + t3

(1 − t)2 )P (4)
32 − t4(1 − t + 2t2 − t3)

(1 − t)3 P
(4)
3212

− t5(1 − t + 2t2 + t4 − t5)
(1 − t − t2 − t3)(1 − t)3 P

(4)
32123 = 0.

(7) Similarly we can write

A
(4)
321 = {z3z2z1} ×21 A

(4)
21 \

(
(B(4)

1,3 ×3 A
(4)
3 ) ⊔ (B(4)

1,32 ×32 A
(4)
32 )

⊔ (B(4)
1,3212 ×3212 A

(4)
3212) ⊔ (B(4)

12,3212 ×3212 A
(4)
3212)

⊔ (B(4)
1,32123 ×32123 A

(4)
32123) ⊔ (B(4)

12,32123 ×32123 A
(4)
32123)

)
.

Therefore we get

P
(4)
321 = tP

(4)
21 − t3

1 − t
P

(4)
3 − t4

(1 − t)2 P
(4)
32 − t6

(1 − t)3 P
(4)
3212 − t6

(1 − t)2 P
(4)
3212

− 2t8

(1 − t − t2 − t3)(1 − t)3 P
(4)
32123 − t7(1 + t2)

(1 − t − t2 − t3)(1 − t)2 P
(4)
32123

or

tP
(4)
21 − t3

1 − t
P

(4)
3 − t4

(1 − t)2 P
(4)
32 − P

(4)
321 − t6(2 − t)

(1 − t)3 P
(4)
3212

− t7(1 + t + t2 − t3)
(1 − t − t2 − t3)(1 − t)3 P

(4)
32123 = 0.

(8) Similarly we have

A
(4)
3212 = {z3z2z1z2} ×212 A

(4)
212\

(
(B(4)

12,32 ×32 A
(4)
32 ) ⊔ (B(4)

12,3212 ×3212 A
(4)
3212)

⊔ (B(4)
12,32123 ×32123 A

(4)
32123)

)
.

The corresponding Hilbert series becomes

P
(4)
3212 = tP

(4)
212 − t4

1 − t
P

(4)
32 − t6

(1 − t)2 P
(4)
3212 − t7(1 + t2)

(1 − t − t2 − t3)(1 − t)2 P
(4)
32123
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or

tP
(4)
212 − t4

1 − t
P

(4)
32 − t6 + t2 − 2t + 1

(1 − t)2 P
(4)
3212 − t7(1 + t2)

(1 − t − t2 − t3)(1 − t)2 P
(4)
32123 = 0.

(9) The decomposition A
(4)
32123 = {z3z2z1z2z3}×3 A

(4)
3 \

(
{z3z2z1z2z3z2}×32 A

(4)
32

)
gives P

(4)
32123 = t4P

(4)
3 − t4P

(4)
32 or t4P

(4)
3 − t4P

(4)
32 − P

(4)
32123 = 0. □

Finally we have our main result.

Theorem 3.6. The Hilbert series of MB1,3 is

H
(4)
M (t) = 1

(1 − t)(1 − 2t − t2 + t4 + t5 + t6 + t7 + t8) .

Proof. Let T1 = 1 − t − t2 − t3 and T2 = 1 − 2t − t2 + t4 + t5 + t6 + t7 + t8. Then
solving the linear system given in Lemma 3.5 we have the augmented matrix of the
system:

1 0 0 0 −t
(1−t)T1

0 0 0 0 t
(1−t)T1

0 1 0 0 −t(1+t+t2)
T1

0 0 0 0 t(1+t+t2)
T1

0 0 1 0 −t2(1+t)
T1

0 0 0 0 t2(1+t)
T1

0 0 0 1 −t3

T1
0 0 0 0 t3

T1

0 0 0 0 1 − t −1 0 0 0 t

0 t 0 0 −t2

1−t − (1−t)2+t3

(1−t)2 0 −t4(1−t+2t2−t3)
(1−t)3

−t5(1−t+2t2+t4−t5)
(1−t)3T1

0

0 0 t 0 −t3

1−t
−t4

(1−t)2 −1 −t6(2−t)
(1−t)3

−t7(1+t+t2−t3)
(1−t)3T1

0

0 0 0 t 0 −t4

1−t 0 − (1−t)2+t6

(1−t)2
−t7(1+t2)
(1−t)2T1

0

0 0 0 0 t4 −t4 0 0 −1 0


The solution gives the following values:

P
(4)
1 = t

(1 − t)(T2) , P
(4)
2 = t(1 + t + t2)

T2
,

P
(4)
3 = t(1 − t2 − t3 − t4 − t5 − t6 − t7)

T2
, P

(4)
21 = t2(1 + t)

T2
,

P
(4)
212 = t3

T2
, P

(4)
32 = t2(1 − t3 − t4 − t5 − t6)

T2
,

P
(4)
321 = t3(1 − t2 − t3 − t4 − t5)

T2
, P

(4)
3212 = t4(1 − t2 − t3 − t4)

T2
,

P
(4)
32123 = t5(1 − t − t2 − t3)

T2
.
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All the canonical words in MB1,3 are expressed as A(4) = {e}⊔A
(4)
1 ⊔A

(4)
2 ⊔A

(4)
3 .

Hence the corresponding Hilbert series is given by

H
(4)
M (t) = 1 + P

(4)
1 (t) + P

(4)
2 (t) + P

(4)
3 (t)

= 1 + t

(1 − t)(T2) + t(1 + t + t2)
T2

+ t(1 − t2 − t3 − t4 − t5 − t6 − t7)
T2

= 1
(1 − t)(1 − 2t − t2 + t4 + t5 + t6 + t7 + t8)

= 1 + 3t + 8t2 + 20t3 + 48t4 + 112t5 + 263t6 + · · · + a
(4)
k tk + · · · ,

where a
(4)
k is an arbitrary constant. □

Definition 3.7. Let {ak}k≥1 be a sequence of positive numbers and r be a positive
real number. The growth rate r of the sequence {ak}k≥1 is defined as

r = lim
k

exp
( log ak

k

)
.

Corollary 3.8. The growth rate of MB1,3 is 2.29.

Proof. The Hilbert series in rational form obtained in Theorem 3.6 can be resolved
(approximately) into its partial fraction, using Maple, as follows:

1
(1 − t)(1 − 2t − t2 + t4 + t5 + t6 + t7 + t8)

= 0.65564t + 0.51628
t2 + 0.98567t + 1.35852 + 0.33333

1 − t

+ 0.60593t − 0.39941
t2 − 0.98615t + 1.49520 + 0.56106t + 0.60272

t2 + 2.21096t + 1.45727

+ 0.80972
0.4364 + t

.

The first four terms have negligible contribution in the approximation of the series;
however, the last term can be approximated as

0.809722
0.43644 + t

= 1.8552 {1 + 2.29t + (2.29)2t2 + (2.29)3t3 + · · · }.

Therefore a
(4)
k ≈ 1.8552 (2.29)k. Hence the growth rate of MB1,3 is 2.29. □
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