THE PRINCIPAL SMALL INTERSECTION GRAPH OF A COMMUTATIVE RING

SOHEILA KHOJASTEH

Abstract

Let R be a commutative ring with non-zero identity. The small intersection graph of R, denoted by $G(R)$, is a graph with the vertex set $V(G(R))$, where $V(G(R))$ is the set of all proper non-small ideals of R and two distinct vertices I and J are adjacent if and only if $I \cap J$ is not small in R. In this paper, we introduce a certain subgraph $P G(R)$ of $G(R)$, called the principal small intersection graph of R. It is the subgraph of $G(R)$ induced by the set of all proper principal non-small ideals of R. We study the diameter, the girth, the clique number, the independence number and the domination number of $\operatorname{PG}(R)$. Moreover, we present some results on the complement of the principal small intersection graph.

1. Introduction

There are many papers on assigning a graph to a ring R, see, for instance, [1. 3, 4]. Also, the intersection graph of some algebraic structures such as poset, group, ring and module have been studied by several authors, see [2, 7, 8, 9,10 and [11]. Let R be a commutative ring, and let $I(R)^{*}$ be the set of all non-zero proper ideals of R. In [5], the small intersection graph, $G(R)$ of R was introduced and studied. The vertex set of $G(R), V(G(R))$, is the set of all proper non-small ideals of R and two distinct vertices I and J in $V(G(R))$ are adjacent if and only if $I \cap J$ is not small in R. In this paper, we continue the study of $G(R)$ and introduce $P G(R)$, the induced subgraph of $G(R)$ on the set of all proper principal non-small ideals of R.

We first summarize the notations and concepts. Throughout the paper, all rings are commutative with non-zero identity and all modules are unitary. Let M be an R-module. A submodule N of M is called small in M (denoted by $N \ll M$) in case for every submodule L of $M, N+L=M$ implies that $L=M$. A module M is said to be a hollow module if every proper submodule of M is a small submodule. A cyclic module is a module that is generated by one element. We denote by $J(R)$ and $\operatorname{Max}(R)$ the Jacobson radical of R and the set of all maximal ideals of R, respectively. If R has a unique maximal ideal, then R is said to be a local ring.

[^0]Also, an ideal I of R is small (denoted by $I \ll R$) if $I+K=R$ for some ideal K of R implies $K=R$, or equivalently, $I \subseteq J(R)$. As usual, \mathbb{Z} and \mathbb{Z}_{n} will denote the set of integers and the set of integers modulo n, respectively.

Let G be a graph with vertex set $V(G)$. If a is adjacent to b, then we write $a-b$. If $|V(G)| \geq 2$, then a path from a to b is a series of adjacent vertices $a-x_{1}-x_{2}-\cdots-x_{n}-b$. A graph G is connected if for every pair of distinct vertices $a, b \in V(G)$, there exists a path between a and b. For $a, b \in V(G)$ with $a \neq b, d(a, b)$ denotes the length of a shortest path from a to b. If there is no such path, then we will make the convention $d(a, b)=\infty$. The diameter of G is defined as $\operatorname{diam}(G)=\sup \{d(a, b) \mid a$ and b are vertices of $G\}$. For any $a \in V(G)$, the degree of $a, d(a)$, is the number of edges incident with a. A regular graph is a graph where each vertex has the same degree. The complement of G, denoted by \bar{G}, is a graph on the same vertices such that two distinct vertices of \bar{G} are adjacent if and only if they are not adjacent in G. A graph G is complete if each pair of distinct vertices is joined by an edge. For a positive integer n, we use K_{n} to denote the complete graph with n vertices. Note that a graph whose edge-set is empty is totally disconnected. A cycle is a path that begins and ends at the same vertex in which no edge is repeated and all vertices other than the starting and ending vertex are distinct. We use C_{n} to denote the cycle with n vertices, where $n \geq 3$. If a graph G has a cycle, then the girth of G (denoted by $\operatorname{gr}(G))$ is defined as the length of a shortest cycle of G; otherwise $\operatorname{gr}(G)=\infty$. A forest is a graph with no cycle. Also, a unicyclic graph is a connected graph with a unique cycle. Suppose that H is a non-empty subset of $V(G)$. The subgraph of a graph G whose vertex set is H and whose edge set is the set of those edges of G with both ends in H is called the subgraph of G induced by H and is denoted by $\langle H\rangle$. A graph G may be expressed uniquely as a disjoint union of connected graphs. These graphs are called the connected components, or simply the components, of G. For a connected graph G, x is a cut vertex of G if $\langle V(G) \backslash\{x\}\rangle$ is not connected. For every positive integer r, an r-partite graph is one whose vertex set can be partitioned into r subsets, or parts, in such a way that no edge has both ends in the same part. An r-partite graph is complete r-partite if any two vertices in different parts are adjacent. We denote the complete bipartite graph with part sizes m and n by $K_{m, n}$.

A clique of a graph is a complete subgraph and the number of vertices in a largest clique of a graph G, denoted by $\omega(G)$, is called the clique number of G. An independent set is a subset of the vertices of a graph such that no vertices are adjacent. The number of vertices in a maximum independent set of G is called the independence number of G and is denoted by $\alpha(G)$. A dominating set is a subset S of $V(G)$ such that every vertex of $V(G) \backslash S$ is adjacent to at least one vertex in S. The number of vertices in a smallest dominating set, denoted by $\gamma(G)$, is called the domination number of G. By $\chi(G)$ we denote the chromatic number of G, i.e., the minimum number of colors which can be assigned to the vertices of G in such a way that every two adjacent vertices have different colors. A graph is weakly perfect if $\chi(G)=\omega(G)$.

Here is a brief summary of the paper. We introduce the principal small intersection graph of a commutative ring R, denoted by $P G(R)$. In Section 2, we prove that $\operatorname{diam}(P G(R)) \in\{1,2, \infty\}$ and $\operatorname{gr}(P G(R)) \in\{3, \infty\}$. Also, it is shown that $P G(R)$ is a forest if and only if $P G(R) \in\left\{\overline{K_{2}}, K_{2} \cup K_{2}\right\}$. Moreover, it is proved that if R is a commutative ring with finitely many maximal ideals, then $\gamma(P G(R))=2$ and $\alpha(P G(R))=|\operatorname{Max}(R)|$. In Section 3, we study the complement of the principal small intersection graph. It is proved that if $\operatorname{Max}(R)$ is finite, then $\operatorname{diam}(\overline{P G(R)}) \in\{1,2,3\}$ and $\operatorname{gr}(\overline{P G(R)}) \in\{3,4, \infty\}$. Among other results, we prove that $\chi(P G(R))=|\operatorname{Max}(R)|$, where $\operatorname{Max}(R)$ is finite.

2. BASIC PROPERTIES OF $P G(R)$

We begin with the following definition.
Definition. Let R be a ring. The principal small intersection graph $P G(R)$ is the graph with the vertex set $V(P G(R))$, where $V(P G(R))$ is the set of all proper principal non-small ideals of R, and two distinct vertices $R x$ and $R y$ are adjacent if and only if $R x \cap R y$ is not small in R.

Remark 2.1. Clearly, $P G(R)$ is an induced subgraph of the intersection graph of ideals of R. This is an important result of the definition.

To prove the next results, we use the prime avoidance theorem (see [12, p. 56]). If $\left\{M_{i}\right\}_{i=1}^{n} \subseteq \operatorname{Max}(R)$, then $M_{i} \nsubseteq \bigcup_{j \neq i} M_{j}$ and $\bigcap_{j \neq i} M_{j} \nsubseteq M_{i}$ for every $i, 1 \leq i \leq n$.
Theorem 2.2. Let R be a ring. Then $V(P G(R))=\varnothing$ if and only if R is a local ring.

Proof. First, suppose that $V(P G(R))=\varnothing$. Assume to the contrary that R is a non-local ring and $M_{1}, M_{2} \in \operatorname{Max}(R)$. Since $M_{1}+M_{2}=R$, we have $R x_{1}+R x_{2}=R$ for some $x_{1} \in M_{1} \backslash M_{2}$ and $x_{2} \in M_{2} \backslash M_{1}$. Therefore, $R x_{1}, R x_{2} \in V(P G(R))$, a contradiction. Hence R is a local ring. Conversely, assume that R is a local ring. Then $R x$ is a small ideal of R for every non-unit element $x \in R$. Therefore, $V(P G(R))=\varnothing$ and the proof is complete.

Next, we study the case where $P G(R)$ is totally disconnected.
Theorem 2.3. Let R be a ring. Then $P G(R)$ is totally disconnected if and only if $R \cong F_{1} \times F_{2}$, where F_{1}, F_{2} are fields.

Proof. Assume that $P G(R)$ is totally disconnected. By the previous theorem, we have $|\operatorname{Max}(R)| \geq 2$. First, suppose that $|\operatorname{Max}(R)| \geq 3$. Let $M_{1}, M_{2}, M_{3} \in$ $\operatorname{Max}(R), x \in M_{1} \backslash\left(M_{2} \cup M_{3}\right)$, and let $y \in M_{2} \backslash\left(M_{1} \cup M_{3}\right)$. Then $R x \cap R y \nsubseteq M_{3}$ and so $R x \cap R y$ is not small in R. Hence $R x$ and $R y$ are adjacent, a contradiction. Therefore, $|\operatorname{Max}(R)|=2$. Let $\operatorname{Max}(R)=\left\{M_{1}, M_{2}\right\}$.

We claim that $M_{1}=R x_{1}$ and $M_{2}=R x_{2}$, where $x_{1} \in M_{1} \backslash M_{2}$ and $x_{2} \in M_{2} \backslash M_{1}$. If $x_{1}^{\prime} \in M_{1} \backslash M_{2}$ and $R x_{1} \neq R x_{1}^{\prime}$, then $R x_{1}$ and $R x_{1}^{\prime}$ are adjacent, which is impossible. Therefore, $M_{1}=J(R) \cup R x_{1}$. Similarly, $M_{2}=J(R) \cup R x_{2}$. Now, we show that $J(R) \subseteq R x_{1} \cap R x_{2}$. Let $a \in J(R)$. Clearly, $a+x_{i} \in M_{i} \backslash J(R)$
for $i=1,2$. Therefore, $a+x_{i} \in R x_{i}$ for $i=1,2$. Hence $a \in R x_{1} \cap R x_{2}$. So $J(R) \subseteq R x_{1} \cap R x_{2}$. This yields $M_{1}=R x_{1}$ and $M_{2}=R x_{2}$, and the claim is proved. Clearly, $M_{2}=R\left(1-x_{1}\right)$.

Now, we prove that $M_{1} M_{2}=0$. Since $x_{1}^{2} \in M_{1} \backslash M_{2}$, we have $R x_{1}=R x_{1}^{2}$. Hence $x_{1}=r x_{1}^{2}$ for some $r \in R$. This implies that $x_{1}\left(1-r x_{1}\right)=0 \in J(R)$ and so $1-r x_{1} \in M_{2}$. We note that $1-r x_{1} \notin M_{1}$. If not, $1-r x_{1}, r x_{1} \in M_{1}=R x_{1}$ which is impossible. Since $1-r x_{1} \in M_{2} \backslash M_{1}$, we have $M_{2}=R\left(1-x_{1}\right)=R\left(1-r x_{1}\right)$. On the other hand, we find that $R x_{1} R\left(1-r x_{1}\right)=M_{1} M_{2}=0$.

Next, we prove that $J(R)=0$. Let $0 \neq a \in J(R)$. Then $a+x_{1} \in M_{1} \backslash M_{2}$ and so $a+x_{1}=s x_{1}$ for some $s \in R$. This yields $a=(s-1) x_{1} \in M_{1} \cap M_{2}$, which implies that $s-1 \in M_{2}$. We have $a=(s-1) x_{1} \in M_{1} M_{2}$. Therefore, $J(R)=M_{1} M_{2}=0$. Now, by the Chinese remainder theorem [6, p. 7], $R \cong F_{1} \times F_{2}$, where $F_{1}=R / M_{1}$ and $F_{2}=R / M_{2}$ are fields.

Conversely, if $R \cong F_{1} \times F_{2}$, then $\operatorname{Max}(R)=\left\{F_{1} \times 0,0 \times F_{2}\right\}=V(P G(R))$ and $P G(R) \cong \overline{K_{2}}$. This completes the proof.

Now, we have an immediate corollary.
Corollary 2.4. Let R be a ring. Then $P G(R)$ is totally disconnected if and only if $G(R)$ is totally disconnected. Moreover, $P G(R)$ is totally disconnected if and only if $P G(R)=G(R) \cong \overline{K_{2}}$.

Proof. If $P G(R)$ is totally disconnected, then by the above theorem $R \cong F_{1} \times F_{2}$, where F_{1}, F_{2} are fields. Hence $\operatorname{Max}(R)=\left\{F_{1} \times 0,0 \times F_{2}\right\}$ and $F_{1} \times 0,0 \times F_{2}$ are distinct cyclic hollow R-modules (see [13, p. 352]). Then by [5] Theorem 2.4], $G(R)$ is totally disconnected. The proof of the converse is clear.

Also, we have the following result for the case where $G(R)$ is totally disconnected.
Corollary 2.5. Let R be a ring. Then $G(R)$ is totally disconnected if and only if $R \cong F_{1} \times F_{2}$, where F_{1}, F_{2} are fields.

Theorem 2.6. Let R be a ring. Then the following statements are equivalent:
(i) $P G(R)$ is disconnected;
(ii) $|\operatorname{Max}(R)|=2$;
(iii) $P G(R)=G_{1} \cup G_{2}$, where G_{1}, G_{2} are two disjoint complete subgraphs of $P G(R)$.

Proof. (i) \Rightarrow (ii) Assume that $P G(R)$ is disconnected, G_{1} and G_{2} are two components of $P G(R)$ and $R x, R y$ are two vertices such that $R x \in G_{1}$ and $R y \in G_{2}$. Let $\operatorname{Max}(R)=\left\{M_{i}\right\}_{i \in I}$ and let $A=\left\{i \in I \mid R x \nsubseteq M_{i}\right\}, B=\left\{i \in I \mid R y \nsubseteq M_{i}\right\}$. Since $R x \cap R y \ll R$, we have $R x \cap R y \subseteq J(R)$. This implies that $A \cap B=\varnothing$. Let $a \in A$ and $b \in B$. If $|\operatorname{Max}(R)| \geq 3$, then $\operatorname{Max}(R) \backslash\left\{M_{a}, M_{b}\right\} \neq \varnothing$. Suppose that $M_{c} \in \operatorname{Max}(R) \backslash\left\{M_{a}, M_{b}\right\}$ and $z \in M_{c} \backslash\left(M_{a} \cup M_{b}\right)$. Clearly, $R x \cap R z \nsubseteq M_{a}$ and $R y \cap R z \nsubseteq M_{b}$. Hence we have a path $R x-R z-R y$, a contradiction. Therefore, $|\operatorname{Max}(R)| \leq 2$. If $|\operatorname{Max}(R)|=1$, then by Theorem 2.2, we conclude that $V(P G(R))=\varnothing$, a contradiction. Therefore, $|\operatorname{Max}(R)|=2$.
(ii) \Rightarrow (iii) Let $\operatorname{Max}(R)=\left\{M_{1}, M_{2}\right\}$ and let $G_{i}=\left\{0 \neq R x \mid R x \subseteq M_{i}, R x\right.$ is not small in $R\}$ for $i=1,2$. If $R x, R y \in G_{1}$ and $R x$ and $R y$ are not adjacent then $R x \cap R y \ll R$, which implies $R x \cap R y \subseteq M_{2}$. Hence $R x \subseteq M_{2}$ or $R y \subseteq M_{2}$, which gives $R x \ll R$ or $R y \ll R$, a contradiction. So G_{1} is a complete subgraph of $P G(R)$. Similarly, G_{2} is a complete subgraph of $P G(R)$. Clearly, there is no path between G_{1} and G_{2}. Therefore, $P G(R)=G_{1} \cup G_{2}$, where G_{1} and G_{2} are disjoint complete subgraphs.
(iii) \Rightarrow (i) It is clear.

From the above theorem and [5] Theorem 2.6], we can deduce the next result.
Corollary 2.7. Let R be a ring. Then $P G(R)$ is connected if and only if $G(R)$ is connected.

Now, we study the diameter of $P G(R)$.
Theorem 2.8. Let R be a ring. If $P G(R)$ is connected, then $\operatorname{diam}(P G(R)) \leq 2$.
Proof. Let $R x$ and $R y$ be two non-adjacent vertices of $P G(R)$. So $R x \cap R y \ll R$. Let $\operatorname{Max}(R)=\left\{M_{i}\right\}_{i \in I}, A=\left\{i \in I \mid R x \nsubseteq M_{i}\right\}$ and $B=\left\{i \in I \mid R y \nsubseteq M_{i}\right\}$. Since $R x \cap R y \ll R$, we have $R x \cap R y \subseteq J(R)$. This implies that $A \cap B=\varnothing$. Assume that $a \in A$ and $b \in B$. By Theorem $2.6|\operatorname{Max}(R)| \geq 3$ which implies that $\operatorname{Max}(R) \backslash\left\{M_{a}, M_{b}\right\} \neq \varnothing$. Suppose that $M_{c} \in \operatorname{Max}(R) \backslash\left\{M_{a}, M_{b}\right\}$ and $z \in$ $M_{c} \backslash\left(M_{a} \cup M_{b}\right)$. Clearly, $R x \cap R z \nsubseteq M_{a}$ and $R y \cap R z \nsubseteq M_{b}$. Hence $R x — R z-R y$ is a path in $P G(R)$. Therefore, $\operatorname{diam}(P G(R)) \leq 2$.

In [5, Theorem 2.8], it was proved that if $G(R)$ is connected, then $\operatorname{diam}(G(R)) \leq$ 2. In the above theorem, we deduce the same result for $P G(R)$. The following theorem shows that the girth of $P G(R)$ has two possible values.

Theorem 2.9. Let R be a ring. Then $\operatorname{gr}(P G(R)) \in\{3, \infty\}$.
Proof. If $|\operatorname{Max}(R)|=2$, then $P G(R)$ is a union of two disjoint complete graphs by Theorem 2.6 Hence $\operatorname{gr}(P G(R)) \in\{3, \infty\}$. If $|\operatorname{Max}(R)| \geq 3$, then suppose that $M_{1}, M_{2}, M_{3} \in \operatorname{Max}(R)$. Let $x \in M_{1} \backslash\left(M_{2} \cup M_{3}\right), y \in M_{2} \backslash\left(M_{1} \cup M_{3}\right)$ and $z \in M_{3} \backslash\left(M_{1} \cup M_{2}\right)$. Clearly, $R x-R y-R z-R x$ is a cycle in $P G(R)$. Therefore, $\operatorname{gr}(G(R))=3$.

Theorem 2.10. Let R be a ring such that $\operatorname{Max}(R)$ is finite. Then the following hold:
(i) there is no vertex in $P G(R)$ that is adjacent to every other vertex;
(ii) $P G(R)$ can not be a complete graph.

Proof. (i) Suppose, to the contrary, that $R x$ is a vertex of $P G(R)$ adjacent to every other vertex. Let $\operatorname{Max}(R)=\left\{M_{1}, M_{2}, \ldots, M_{n}\right\}$. By Theorem 2.6, we know that $n \geq 3$. Since $R x$ is a vertex of $P G(R)$, we have $x \in M_{i}$ for some $M_{i} \in \operatorname{Max}(R)$. Let $y \in \bigcap_{j \neq i} M_{j} \backslash M_{i}$. We note that $R x$ and $R y$ are distinct vertices of $P G(R)$. But $R x$ is not adjacent to $R y$, a contradiction.
(ii) If the edge-set is empty, then $P G(R)$ is totally disconnected with one vertex. Corollary 2.4 shows that $P G(R) \cong \overline{K_{2}}$ and $P G(R)$ has two vertices, a contradiction. Hence $P G(R)$ has at least one edge, which is a contradiction by (i). Thus $P G(R)$ can not be a complete graph.

Theorem 2.11. If R is a ring, then $P G(R)$ contains a pendant vertex if and only if $|\operatorname{Max}(R)|=2$ and $P G(R) \cong K_{2} \cup K_{2}$.
Proof. Let $\operatorname{Max}(R)=\left\{M_{i}\right\}_{i \in I}$. First, suppose that there exists $R x \in V(P G(R))$ such that $d(R x)=1$. Since $R x \in V(P G(R))$, we have $x \notin M_{j}$ for some $M_{j} \in$ $\operatorname{Max}(R)$. Suppose, for contradiction, that $|\operatorname{Max}(R)| \geq 3$. Let $M_{1}, M_{2} \in \operatorname{Max}(R) \backslash$ $\left\{M_{j}\right\}$. It is not hard to see that $R x$ is adjacent to both $R y$ and $R z$ for every $y \in$ $M_{1} \backslash\left(M_{j} \cup M_{2}\right)$ and $z \in M_{2} \backslash\left(M_{j} \cup M_{1}\right)$, a contradiction. Therefore, $|\operatorname{Max}(R)|=2$. Also, by Theorem 2.6 we conclude that $P G(R) \cong K_{2} \cup K_{2}$. The proof of the converse is obvious.

In the following result, we determine that all forests can occur as the principal small intersection graph of a commutative ring.
Corollary 2.12. Let R be a ring. Then $P G(R)$ is a forest if and only if $P G(R) \in$ $\left\{\overline{K_{2}}, K_{2} \cup K_{2}\right\}$.

Example 2.13. There are some rings R for which $P G(R) \cong K_{2} \cup K_{2}$. For instance, suppose that $R=\mathbb{Z}_{p^{2} q^{2}}$ for some distinct prime numbers p, q. Then $\operatorname{Max}(R)=\left\{p \mathbb{Z}_{p^{2} q^{2}}, q \mathbb{Z}_{p^{2} q^{2}}\right\}$ and $V(P G(R))=\left\{p \mathbb{Z}_{p^{2} q^{2}}, q \mathbb{Z}_{p^{2} q^{2}}, p^{2} \mathbb{Z}_{p^{2} q^{2}}, q^{2} \mathbb{Z}_{p^{2} q^{2}}\right\}$. Also, $p \mathbb{Z}_{p^{2} q^{2}}-p^{2} \mathbb{Z}_{p^{2} q^{2}}$ and $q \mathbb{Z}_{p^{2} q^{2}}-q^{2} \mathbb{Z}_{p^{2} q^{2}}$ are two paths. Hence $P G(R) \cong$ $K_{2} \cup K_{2}$.

Corollary 2.14. Let R be a ring. Then $P G(R)$ is not a unicyclic graph.
Proof. Suppose, for contradiction, that $P G(R)$ is a unicyclic graph. Since $P G(R)$ is a connected graph, $|\operatorname{Max}(R)| \geq 3$. Then by Theorem 2.11, $P G(R)$ does not have a pendant vertex. Hence by Theorem $2.9, P G(R)$ is a 3 -cycle. On the other hand, Theorem 2.10 shows that $P G(R)$ can not be a complete graph. In particular, $P G(R)$ can not be a 3 -cycle, a contradiction. This completes the proof.

Now, we provide a lower bound for the clique number of $P G(R)$.
Theorem 2.15. Let R be a ring. Then the following hold:
(i) $\omega(P G(R))=1$ if and only if $R \cong F_{1} \times F_{2}$, where F_{1}, F_{2} are fields;
(ii) if $\omega(P G(R)) \geq 2$, then $|\operatorname{Max}(R)| \leq \omega(P G(R))$;
(iii) if $\omega(P G(R))<\infty$, then $|\operatorname{Max}(R)|<\infty$;
(iv) if $\operatorname{Max}(R)$ is finite, then $\omega(P G(R)) \geq 2^{|\operatorname{Max}(R)|-1}-1$.

Proof. (i) It is clear by Theorem 2.6
(ii) Suppose, for contradiction, that $\omega(P G(R))=n \geq 2$ and $|\operatorname{Max}(R)| \geq n+1 \geq$
3. Let $M_{1}, \ldots, M_{n+1} \in \operatorname{Max}(R)$ and let $x_{i} \in M_{i} \backslash \bigcup_{j \neq i} M_{j}$ for $i=1, \ldots, n+1$. It is not hard to see that $\left\{R x_{1}, \ldots, R x_{n+1}\right\}$ is a clique of $P G(R)$, a contradiction. Therefore, $|\operatorname{Max}(R)| \leq \omega(P G(R))$.
(iii) It is clear by (ii).
(iv) If $|\operatorname{Max}(R)|=1$, then by Theorem $2.2, V(P G(R))=\varnothing$. So, consider $|\operatorname{Max}(R)| \geq 2$. Let $\operatorname{Max}(R)=\left\{M_{1}, \ldots, M_{n}\right\}, A=\left\{M_{2}, \ldots, M_{n}\right\}$ and let $P(A)$ be the power set of A. For each $\varnothing \neq X \in P(A)$, set $x_{X} \in \bigcap_{M_{i} \in X} M_{i} \backslash M_{1}$. It is not hard to see that if $\varnothing \neq X, Y \in P(A)$ and $X \neq Y$, then $R x_{X} \neq R x_{Y}$. Also, $R x_{X} \cap R x_{Y} \nsubseteq M_{1}$. This implies that the subgraph of $P G(R)$ with the vertex set $\left\{R x_{X} \mid \varnothing \neq X \in P(A)\right\}$ is a clique of $P G(R)$. We note that $|P(A) \backslash\{\varnothing\}|=2^{n-1}-1$, so $\left|\left\{R x_{X} \mid \varnothing \neq X \in P(A)\right\}\right|=2^{|\operatorname{Max}(R)|-1}-1$. This completes the proof.

Example 2.16. (i) The lower bound in part (iv) of the previous theorem is sharp. To see this, consider $R=F_{1} \times F_{2}$, where F_{1}, F_{2} are fields. Then we have $\omega(P G(R))=2^{|\operatorname{Max}(R)|-1}-1=1$.
(ii) There are some rings R for which $\omega(P G(R))>2^{|\operatorname{Max}(R)|-1}-1$. For instance, suppose that $R=\mathbb{Z}_{p^{n} q^{m}}$ for some distinct prime numbers p, q and positive integers n, m with $\max \{n, m\} \geq 2$. Then $\operatorname{Max}(R)=\left\{p \mathbb{Z}_{p^{n} q^{m}}, q \mathbb{Z}_{p^{n} q^{m}}\right\}$. It is not hard to see that $P G(R) \cong K_{n} \cup K_{m}$. We have $\omega(P G(R))=\max \{n, m\}$ and $2^{|\operatorname{Max}(R)|-1}-1=1$. Clearly, $\omega(P G(R))>2^{|\operatorname{Max}(R)|-1}-1$.

To prove Theorem 2.18 we need the following simple lemma.
Lemma 2.17. Let R be a ring. If $R x, R y \in V(P G(R))$ and $R x \subset R y$, then the following hold:
(i) $d(R x) \leq d(R y)$.
(ii) If $R z$ is adjacent to $R x$, then $R z$ is adjacent to $R y$.

Proof. Apply the proof of [5] Theorem 2.15].
Theorem 2.18. If R is a ring and $P G(R)$ is an r-regular graph, then $|\operatorname{Max}(R)|=$ 2 and $P G(R) \cong K_{r+1} \cup K_{r+1}$.

Proof. Let $P G(R)$ be an r-regular graph. By Theorem 2.15, $\operatorname{Max}(R)$ is finite. First, assume that $|\operatorname{Max}(R)|=n \geq 3, x \in M_{1} \backslash \bigcup_{i=2}^{n} M_{i}$ and $y \in\left(M_{1} \cap M_{2}\right) \backslash \bigcup_{i=3}^{n} M_{i}$. By Lemma 2.17 $d(R x y) \leq d(R x)$. We claim that $d(R x y)<d(R x)$. Let $z \in$ $\bigcap_{i=3}^{n} M_{i} \backslash\left(M_{1} \cup M_{2}\right)$. It is clear that $R z$ is adjacent to $R x$, but $R z$ is not adjacent to Rxy. Therefore, $d(R x y)<d(R x)$ and the claim is proved. This is a contradiction because $P G(R)$ is a regular graph and $d(R x y)=d(R x)$. Hence $|\operatorname{Max}(R)|=2$ and by Theorem 2.6. $P G(R) \cong K_{r+1} \cup K_{r+1}$.

Now, we are in a position to state one of the main results of this section.
Theorem 2.19. Let R be a ring. Then $P G(R)$ can not be a complete r-partite graph.

Proof. Suppose, for contradiction, that $P G(R)$ is a complete r-partite graph with r parts V_{1}, \ldots, V_{r}. Then by Theorem $2.15,|\operatorname{Max}(R)| \leq r$. In view of the proof of Theorem 2.15, we find that $\left\{R x_{1}, \ldots, R x_{n}\right\}$ is a clique of $P G(R)$, where $\operatorname{Max}(R)=$ $\left\{M_{1}, \ldots, M_{n}\right\}$ and $x_{i} \in M_{i} \backslash \bigcup_{j \neq i} M_{j}$ for $i=1, \ldots, n$. With no loss of generality, assume that $R x_{i} \in V_{i}$ for $i=1, \ldots, n$. Suppose that $y_{i} \in \bigcap_{j \neq i} M_{j} \backslash M_{i}$ for every i, $1 \leq i \leq n$. Then $R x_{i}$ and $R y_{i}$ are not adjacent. This implies that $\left\{R x_{i}, R y_{i}\right\} \subseteq V_{i}$
for every $i, 1 \leq i \leq n$. Let $R x \in V(P G(R))$. Hence $R x \nsubseteq M_{t}$ for some $t, 1 \leq t \leq n$. Therefore, $R x$ and $R y_{t}$ are adjacent. Since $R x_{t} \in V_{t}, R x$ and $R x_{t}$ are adjacent, a contradiction.
Theorem 2.20. Let R be a ring such that $P G(R)$ is connected. Then $P G(R)$ has no cut vertex.

Proof. Suppose, for contradiction, that $R x$ is a cut vertex of $P G(R)$. Then the induced subgraph $\langle V(P G(R)) \backslash\{R x\}\rangle$ is disconnected. Hence there exist vertices $R y$ and $R z$ such that $R x$ lies on every path from $R y$ to $R z$. Theorem 2.6 shows that $|\operatorname{Max}(R)| \geq 3$. Let $M_{1}, M_{2}, M_{3} \in \operatorname{Max}(R)$. Obviously, $R y$ and $R z$ are proper non-small ideals of R. With no loss of generality, we may assume that $R y \nsubseteq M_{1}, R z \nsubseteq M_{2}$, because $R y \cap R z \ll R$. Since $R y \cap R z \ll R$, we have $R y \subseteq M_{2}$ and $R z \subseteq M_{1}$. If there exists $w \in M_{3} \backslash\left(M_{1} \cup M_{2}\right)$ such that $R w \neq R x$, then we have a path between $R y$ and $R z$ in $P G(R)$, a contradiction. Therefore, $R w=R x$ for every $w \in M_{3} \backslash\left(M_{1} \cup M_{2}\right)$. If $|\operatorname{Max}(R)| \geq 4$, then by a similar argument as above, we conclude that $R w=R x$ for every $w \in M \backslash\left(M_{1} \cup M_{2}\right)$ and for every $M \in \operatorname{Max}(R) \backslash\left\{M_{1}, M_{2}, M_{3}\right\}$, which is impossible. Therefore, $|\operatorname{Max}(R)|=3$. Let $x_{1} \in M_{1} \backslash\left(M_{2} \cup M_{3}\right)$ and $x_{2} \in M_{2} \backslash\left(M_{1} \cup M_{3}\right)$. It is clear that $R y-R x_{2}-R x_{1}$ $R z$ is a path in $\langle V(P G(R)) \backslash\{R x\}\rangle$, a contradiction.

In the rest of this section, we study the domination number and the independence number of the principal small intersection graph of R.
Theorem 2.21. Let R be a ring. If $\operatorname{Max}(R)$ is finite, then $\gamma(P G(R))=2$.
Proof. Since $V(P G(R)) \neq \varnothing,|\operatorname{Max}(R)| \geq 2$. We divide the proof into two cases:
Case 1. $|\operatorname{Max}(R)|=2$. Then by Theorem 2.6. we deduce that $\gamma(P G(R))=2$.
Case 2. $|\operatorname{Max}(R)| \geq 3$. Let $\operatorname{Max}(R)=\left\{M_{1}, \ldots, M_{n}\right\}, x_{i} \in M_{i} \backslash \bigcup_{j \neq i} M_{j}$ for $i=$ 1,2 , and let $S=\left\{R x_{1}, R x_{2}\right\}$. If $R x$ is a vertex of $P G(R)$ and $R x \notin S$, then $R x$ is adjacent to $R x_{1}$ or $R x_{2}$. Otherwise, $R x \cap R x_{1} \subseteq J(R)$ and $R x \cap R x_{2} \subseteq J(R)$. Hence $R x \subseteq \bigcap_{j \neq 1} M_{j}$ and $R x \subseteq \bigcap_{j \neq 2} M_{j}$. Therefore, $R x \subseteq \bigcap_{j=1}^{n} M_{j}$, a contradiction. This implies that S is a dominating set of $P G(R)$ and so $\gamma(P G(R)) \leq 2$. Now, Theorem 2.10 shows that $\gamma(P G(R))=2$.

In [5], it was proved that $\alpha(G(R))=|\operatorname{Max}(R)|$, where $\operatorname{Max}(R)$ is finite. Next, we prove that if $\operatorname{Max}(R)$ is finite, then $\alpha(P G(R))=\alpha(G(R))$.
Theorem 2.22. Let R be a ring such that $\operatorname{Max}(R)$ is finite. Then $\alpha(P G(R))=$ $|\operatorname{Max}(R)|$.
Proof. Let $\operatorname{Max}(R)=\left\{M_{1}, \ldots, M_{n}\right\}$ and let $S_{1}=\left\{R x_{i} \mid x \in \bigcap_{j \neq i} M_{j} \backslash M_{i}\right.$ for $i=$ $1, \ldots, n\}$. Clearly, S_{1} is an independent set for $P G(R)$. Therefore, $n \leq \alpha(P G(R))$. Suppose that $S_{2}=\left\{R y_{1}, \ldots, R y_{m}\right\}$ is an independent set of $P G(R)$. If $m>n$, then by the pigeonhole principle, we find that there exist $i, j, 1 \leq i<j \leq m$, and $M_{t} \in \operatorname{Max}(R)$ such that $R y_{i} \nsubseteq M_{t}$ and $R y_{j} \nsubseteq M_{t}$. This yields $R y_{i} \cap R y_{j} \nsubseteq M_{t}$. On the other hand, we have $R y_{i}, R y_{j} \in S_{2}$ and S_{2} is an independent set of $P G(R)$. This shows that $R y_{i} \cap R y_{j} \ll R$, a contradiction. Therefore, $\alpha(P G(R))=|\operatorname{Max}(R)|$.

Corollary 2.23. If R is an Artinian ring, then $\alpha(P G(R))=|\operatorname{Max}(R)|$.
Proof. By the structure theorem of Artinian rings [6, Theorem 8.7], there exists a positive integer n such that $R \cong R_{1} \times R_{2} \times \cdots \times R_{n}$ and (R_{i}, \mathfrak{m}_{i}) is a local ring for all $1 \leq i \leq n$. The above theorem shows that $\alpha(P G(R))=|\operatorname{Max}(R)|=n$.

The following example approves the equality $\alpha(P G(R))=|\operatorname{Max}(R)|$.
Example 2.24. Let F_{1}, F_{2}, F_{3} be fields and let $R=F_{1} \times F_{2} \times F_{3}$. In view of the proof of Corollary 2.23, we find that $\alpha(P G(R))=3$. We draw the graph $P G(R)$ in Fig. 1. One can easily see that $\left\{F_{1} \times 0 \times 0,0 \times F_{2} \times 0,0 \times 0 \times F_{3}\right\}$ is an independent set of $P G(R)$.

Figure 1. $P G\left(F_{1} \times F_{2} \times F_{3}\right)=G\left(F_{1} \times F_{2} \times F_{3}\right)$.

3. The complement of $P G(R)$

In this section, we determine the diameter, the girth and the chromatic number of the complement of the principal small intersection graph of R. As we mentioned in the introduction, the complement of the principal small intersection graph of R, $\overline{P G(R)}$, is the graph with the vertex set $V(\overline{P G(R)})=V(P G(R))$, and two distinct vertices $R x$ and $R y$ are adjacent if and only if $R x \cap R y \ll R$.

First, we determine the diameter of $\overline{P G(R)}$.
Theorem 3.1. Let R be a ring such that $\operatorname{Max}(R)$ is finite. Then $\overline{P G(R)}$ is connected and $\operatorname{diam}(\overline{P G(R)}) \in\{1,2,3\}$.

Proof. If R is a local ring, then by Theorem 2.2 we have $V(\overline{P G(R)})=\varnothing$. Also, if $|\operatorname{Max}(R)|=2$, then by Theorem $2.6, \overline{P G(R)}$ is a complete bipartite graph and so $\operatorname{diam}(\overline{P G(R)}) \in\{1,2\}$. Now, suppose that $|\operatorname{Max}(R)| \geq 3$ and $R x, R y \in$ $V(\overline{P G(R)})$. Let $\operatorname{Max}(R)=\left\{M_{1}, \ldots, M_{n}\right\}$, with $n \geq 3$. If $R x$ and $R y$ are not adjacent in $\overline{P G(R)}$, then assume that $A=\left\{M_{i} \mid 1 \leq i \leq n, R x \subseteq M_{i}\right\}, B=\left\{M_{i} \mid\right.$ $\left.1 \leq i \leq n, R y \subseteq M_{i}\right\}, \operatorname{Max}(R) \backslash A=A^{\prime}$ and $\operatorname{Max}(R) \backslash B=B^{\prime}$. We have the following two cases:

Case 1. $A \cap B \in\{A, B\}$. With no loss of generality, we may assume that $A \cap B=A$. Then $B^{\prime} \subseteq A^{\prime}$. Let $z \in\left(\bigcap_{M_{i} \in A^{\prime}} M_{i}\right) \backslash J(R)$. It is clear that $R z$ is adjacent to both $R x$ and $R y$. Therefore, $d(R x, R y)=2$.
Case 2. $A \cap B \notin\{A, B\}$. Then $A^{\prime} \cup B \neq \operatorname{Max}(R)$ and $B^{\prime} \cup A \neq \operatorname{Max}(R)$. Let $z_{1} \in\left(\bigcap_{M_{i} \in\left(A^{\prime} \cup B\right)} M_{i}\right) \backslash J(R)$ and $z_{2} \in\left(\bigcap_{M_{i} \in\left(B^{\prime} \cup A\right)} M_{i}\right) \backslash J(R)$. Clearly, $R x$ $R z_{1}-R z_{2}-R y$ is a path between $R x$ and $R y$ in $\overline{P G(R)}$. Hence $d(R x, R y) \leq 3$. This completes the proof.

As an immediate consequence of the previous theorem, we have the next result.
Corollary 3.2. Let R be a ring such that $\operatorname{Max}(R)$ is finite. Then the following hold:
(i) $\operatorname{diam}(\overline{P G(R)})=1$ if and only if $|\operatorname{Max}(R)|=2$ and $\overline{P G(R)} \cong K_{2}$.
(ii) $\operatorname{diam}(\overline{P G(R)})=2$ if and only if $|\operatorname{Max}(R)|=2, \overline{P G(R)}$ is a complete bipartite graph and $\overline{P G(R)} \nexists K_{2}$.
(iii) $\operatorname{diam}(\overline{P G(R)})=3$ if and only if $|\operatorname{Max}(R)| \geq 3$.

Proof. Parts (i) and (ii) are clear.
(iii) Let $\operatorname{Max}(R)=\left\{M_{1}, \ldots, M_{n}\right\}, x \in M_{1} \backslash \bigcup_{i \neq 1} M_{i}$ and $y \in M_{2} \backslash \bigcup_{i \neq 2} M_{i}$. Clearly, $R x \cap R y \nsubseteq M_{3}$. This implies that $R x$ and $R y$ are not adjacent. We claim that $d(R x, R y)=3$. Otherwise, the previous theorem shows that there exists a vertex, say $R z$, such that $R z$ is adjacent to both $R x$ and $R y$. Since $R z$ is adjacent to $R x, z \in \bigcap_{i \neq 1} M_{i}$. On the other hand, since $R z$ is adjacent to $R y, z \in \bigcap_{i \neq 2} M_{i}$. This implies that $z \in \bigcap_{i=1}^{n} M_{i}$, which is impossible. Therefore, the claim is proved. Now, by Theorem 3.1 $\operatorname{diam}(\overline{P G(R)})=3$.

Example 3.3. By Theorem 3.1 if R is a ring with finitely many maximal ideals, then $\overline{P G(R)}$ is connected. But there are some rings R with infinite maximal ideals whose $\overline{P G(R)}$ is not connected. Let $R=\mathbb{Z}$. It is clear that $\operatorname{Max}(\mathbb{Z})$ is infinite and the only small ideal of \mathbb{Z} is 0 . Also, $\operatorname{diam}(\overline{P G(\mathbb{Z})})=\infty$ and $\overline{P G(\mathbb{Z})}$ is totally disconnected because $I \cap J \neq 0$ for every two non-zero ideals I and J.

By Theorem 2.6, we have the next corollary.
Corollary 3.4. Let R be a ring. Then the following statements are equivalent:
(i) $|\operatorname{Max}(R)|=2$;
(ii) $\overline{P G(R)}$ is a complete bipartite graph.

Theorem 3.5. Let R be a ring such that $\operatorname{Max}(R)$ is finite. Then $\operatorname{gr}(\overline{P G(R)}) \in$ $\{3,4, \infty\}$.
Proof. If $|\operatorname{Max}(R)|=2$, then $\overline{P G(R)}$ is a complete bipartite graph by Corollary 3.4 Hence $\operatorname{gr}(\overline{P G(R)}) \in\{4, \infty\}$. If $|\operatorname{Max}(R)| \geq 3$, then suppose that $\operatorname{Max}(R)=$ $\left\{M_{1}, \ldots, M_{n}\right\}$, with $n \geq 3$. Let $x_{i} \in \bigcap_{j \neq i} M_{j} \backslash M_{i}$ for $i=1,2,3$. Clearly, $R x_{1}-$ $R x_{2}-R x_{3}-R x_{1}$ is a 3 -cycle in $\overline{P G(R)}$. Therefore, $\operatorname{gr}(\overline{P G(R)})=3$.

In view of the proof of Theorem 3.5 and by Corollary 3.4 we deduce the following result.

Corollary 3.6. Let R be a ring. Then the following statements are equivalent:
(i) $|\operatorname{Max}(R)|=2$;
(ii) $\overline{P G(R)}$ is a complete bipartite graph;
(iii) $\overline{P G(R)}$ is a bipartite graph.

Theorem 2.22 shows that if $\operatorname{Max}(R)$ is finite, then $\alpha(P G(R))=\omega(\overline{P G(R)})=$ $|\operatorname{Max}(R)|$. We close this paper with the following main result, which implies that the complement of the principal small intersection graph is weakly perfect.

Theorem 3.7. Let R be a ring such that $\operatorname{Max}(R)$ is finite. Then $\chi(\overline{P G(R)})=$ $|\operatorname{Max}(R)|=\omega(\overline{P G(R)})$.
Proof. Let $\operatorname{Max}(R)=\left\{M_{1}, \ldots, M_{n}\right\}$. We define the map $c: V(\overline{P G(R)}) \longrightarrow$ $\{1, \ldots, n\}$ by $c(R x)=\min \left\{i \mid 1 \leq i \leq n, R x \nsubseteq M_{i}\right\}$. It suffices to show that c is a proper vertex coloring of $\overline{P G(R)}$. If $c(R x)=c(R y)=t$ for some $R x, R y \in V(\overline{P G(R)})$ and for some $t \in\{1, \ldots, n\}$, then we have $R x \nsubseteq M_{t}$ and $R y \nsubseteq M_{t}$. This implies that $R x \cap R y$ is non-small and so $R x$ and $R y$ are not adjacent in $\overline{P G(R)}$. Therefore, c is a proper vertex coloring. Thus $\chi(\overline{P G(R)}) \leq|\operatorname{Max}(R)|$. Now, the result follows from Theorem 2.22

Acknowledgments

I would like to thank the referee(s) for valuable and fruitful comments.

References

[1] S. Akbari and S. Khojasteh, Commutative rings whose cozero-divisor graphs are unicyclic or of bounded degree, Comm. Algebra 42 no. 4 (2014), 1594-1605. DOI MR Zbl
[2] S. Akbari, H. A. Tavallaee, and S. Khalashi Ghezelahmad, Intersection graph of submodules of a module, J. Algebra Appl. 11 no. 1 (2012), Paper no. 1250019, 8 pp. DOI MR Zbl
[3] D. F. Anderson and A. Badawi, The total graph of a commutative ring, J. Algebra 320 no. 7 (2008), 2706-2719. DOI MR Zbl
[4] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 no. 2 (1999), 434-447. DOI MR Zbl
[5] S. E. Atani, S. D. Pish Hesari, and M. Khoramdel, A graph associated to proper nonsmall ideals of a commutative ring, Comment. Math. Univ. Carolin. 58 no. 1 (2017), 1-12. DOI MR Zbl
[6] M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley, Reading, Mass.-London-Don Mills, Ont., 1969. MR
[7] I. Chakrabarty, S. Ghosh, T. K. Mukherjee, and M. K. Sen, Intersection graphs of ideals of rings, Discrete Math. 309 no. 17 (2009), 5381-5392. DOI MR Zbl
[8] B. CsÁkÁny and G. Pollák, The graph of subgroups of a finite group (Russian), Czechoslovak Math. J. 19 (94) no. 2 (1969), 241-247. DOI MR Zbl
[9] F. Heydari, The M-intersection graph of ideals of a commutative ring, Discrete Math. Algorithms Appl. 10 no. 3 (2018), Paper no. $1850038,11 \mathrm{pp} . \mathrm{DOI}$ MR Zbl
[10] S. KhOJasteh, The intersection graph of ideals of \mathbb{Z}_{m}, Discrete Math. Algorithms Appl. 11 no. 4 (2019), Paper no. 1950037, $12 \mathrm{pp} . \mathrm{DOI} \mathrm{MR} \mathrm{Zbl}$
[11] S. Khojasteh, The complement of the intersection graph of ideals of a poset, J. Algebra Appl. 22 no. 11 (2023), Paper no. 2350236, 13 pp. DOI MR Zbl
[12] R. Y. Sharp, Steps in commutative algebra, London Mathematical Society Student Texts 19, Cambridge University Press, Cambridge, 1990. MR Zbl
[13] R. Wisbauer, Foundations of module and ring theory, Algebra, Logic and Applications 3, Gordon and Breach Science Publishers, Philadelphia, PA, 1991. MR Zbl

Soheila Khojasteh

Department of Mathematics, Lahijan Branch, Islamic Azad University, Lahijan, Iran
s_khojasteh@liau.ac.ir, khojaste.soheila@gmail.com

Received: July 15, 2022
Accepted: March 17, 2023

[^0]: 2020 Mathematics Subject Classification. 05C12, 05C25, 05C40, 05C69, 13 A 15.
 Key words and phrases. Small ideal, small intersection graph, clique number, independence number, domination number, chromatic number.

