ON HYPONORMALITY AND A COMMUTING PROPERTY OF TOEPLITZ OPERATORS

HOUCINE SADRAOUI AND BORHEN HALOUANI

Abstract. In this work we give sufficient conditions for hyponormality of Toeplitz operators on a weighted Bergman space when the analytic part of the symbol is a monomial and the conjugate part is a polynomial. We also extend a known commuting property of Toeplitz operators with a harmonic symbol on the Bergman space to weighted Bergman spaces.

1. INTRODUCTION

Let *D* denote the unit disk of radius in the complex plane, $d\nu_{\alpha}(z) = \frac{\alpha+1}{\pi}(1 |z|^2$ ^{α} $dA(u)$, where $dA(z)$ is the Lebesgue measure on *D* and $\alpha > -1$. Denote by $L^2(D, d\nu_\alpha)$ the Hilbert space of complex valued functions on *D* that are square integrable with respect to ν_{α} . We write $||f||^2 = \int_D |f(z)|^2 d\nu_{\alpha}(z)$. When *f* is analytic on *D*, we have

$$
f(u)=\sum_0^\infty c_mu^m,\quad \|f\|^2=\sum_0^\infty\frac{m!\Gamma(\alpha+1)}{\Gamma(m+\alpha+2)}|c_m|^2.
$$

Denote by $B_{a,\alpha}^2$ the space of analytic functions on *D* such that $||f||^2 < \infty$. It is known that $B^2_{a,\alpha}$ is a Hilbert space [\[7,](#page-8-0) [13\]](#page-8-1) and an orthonormal basis is given by $e_m(z) =$ $\frac{\sqrt{\Gamma(m+\alpha+2)}}{\sqrt{m!\Gamma(\alpha+1)}} z^m$. The Toeplitz operator with symbol *f* on $B^2_{a,\alpha}$ is defined by $T_f(k) = P(fk)$, where *f* is bounded and measurable on *D*, *k* is in $B^2_{a,\alpha}$ and *P* is the orthogonal projection of $L^2(D, d\nu_\alpha(z))$ onto $B^2_{a,\alpha}$. Hankel operators are defined by $H_f(k) = (I - P)(fk)$, *f* and *k* as before. Recall that a bounded operator *A* on a Hilbert space is hyponormal if *A*[∗]*A*−*AA*[∗] is a positive operator. Hyponormality on the Hardy space was studied by C. Cowen in [\[3,](#page-8-2) [4\]](#page-8-3). Hyponormality of Toeplitz operators on the Bergman space of the unit disk $(\alpha = 0)$ was first considered in [\[10\]](#page-8-4). An improvement of the necessary condition therein is due to P. Ahern and \check{Z} . Čučković [\[1\]](#page-7-0). A new necessary condition, due to \check{Z} . Čučković and R. Curto

²⁰²⁰ *Mathematics Subject Classification.* Primary 47B35; Secondary 15B48, 31A10.

Key words and phrases. Hyponormal, weighted Bergman space, polynomial symbol, commuting property, harmonic symbols.

This work was funded through the Researchers Supporting Project number RSPD2024R1112, King Saud University, Riyadh, Saudi Arabia.

in a special case is found in [\[5\]](#page-8-5). Sufficient conditions when the analytic part is a monomial are given in [\[12\]](#page-8-6). Most results on hyponormality on weighted Bergman spaces treat very special cases of the symbol. We cite for example [\[9\]](#page-8-7) and [\[8\]](#page-8-8). Recent results on hyponormality on weighted Bergman spaces with a general harmonic symbol can be found in [\[11\]](#page-8-9). Some results on hyponormality of Toeplitz operators with non-harmonic symbols are due to M. Fleeman and C. Liaw [\[6\]](#page-8-10). In this work we first give sufficient conditions for the hyponormality of Toeplitz operators with a symbol of the form $f + \overline{g}$, where f is a monomial and g is a polynomial and $\alpha = p$. In the second part we give a generalization of a commuting property of Toeplitz operators with a harmonic symbol on the Bergman space, due to S. Axler and Z. Cučković $[2]$, to weighted Bergman spaces.

2. Some general results

We assume *f*, *g* are in $L^{\infty}(D)$. Then we have:

- (T) $T_{f+g} = T_f + T_g;$ $(T_f^* = T_{\overline{f}};$
- (3) $T_{\overline{f}}T_g = T_{\overline{f}g}$ if *f* or *g* are analytic on *D*.

The use of these properties leads to describing hyponormality in more than one form. These are known properties on the unweighted Bergman space [\[9\]](#page-8-7) and hold also for weighted Bergman spaces.

Proposition 2.1. *Let f, g be bounded and analytic on D. Then the following are equivalent:*

(i) $T_{f+\overline{q}}$ *is hyponormal.*

(ii)
$$
H_{\overline{g}}^* H_{\overline{g}} \leq H_{\overline{f}}^* H_{\overline{f}}.
$$

- (iii) $||(I P)(\overline{g}k)|| \leq ||(I P)(\overline{f}k)||$ *for any* k *in* $B^2_{a,\alpha}$ *.*
- $(|\nabla \psi|^{2} ||P(\overline{g}k)||^{2} \le ||\overline{f}k||^{2} ||P(\overline{f}k)||^{2}$ *for any k in* $B^{2}_{a,\alpha}$ *.*
- (v) $H_{\overline{g}} = KH_{\overline{f}}$, where K *is of norm less than or equal to one.*

We also need the following lemmas.

Lemma 2.2. For s and t integers, we have $P(\overline{z}^t z^s) = \frac{s!\Gamma(s-t+\alpha+2)}{\Gamma(s+\alpha+2)(s-t)!}z^{s-t}$ if $s \ge t$ *and* $P(\bar{z}^t z^s) = 0$ *if* $s < t$ *.*

Lemma 2.3. *If* $\alpha = p$ *is an integer, then the matrix of* $H_{\overline{z^m}}^*H_{\overline{z^m}}$ *with respect to the orthonormal basis* ${e_m}_{m=0}^{\infty}$ *is given by*

$$
d_i = \frac{(m+i)!(i+p+1)!}{i!(m+i+p+1)!} \quad \text{if } i < m
$$

and

$$
d_i = \frac{(m+i)!(i+p+1)!}{i!(m+i+p+1)!} - \frac{i!(i-m+p+1)!}{(i-m)!(i+p+1)!} \quad \text{if } i \geq m.
$$

For the sake of simplification set $Q_r = (r + 1)(r + 2) \dots (r + p + 1) = \frac{\Gamma(r + p + 2)}{\Gamma(r + 1)}$ for any nonnegative integer r. We have $d_i = \frac{Q_i}{Q_{m+i}}$ if $i < m$ and $d_i = \frac{Q_i^2 - Q_{m+i}Q_{i-m}}{Q_i Q_{m+i}}$ if $i \geq m$. We then have the following results.

3. The sufficient condition

Proposition 3.1. Let *n* and *m* be integers with $n > m \geq 1$. Then there exists N_m *such that if* $n \geq N_m$ *, then* $T_{z^m + \lambda \overline{z^n}}$ *is hyponormal on* $B^2_{a,\alpha}$ *if and only if*

$$
|\lambda| \le \inf \left\{ \sqrt{\frac{Q_{n+i}}{Q_{m+i}} \frac{Q_i^2 - Q_{m+i}Q_{i-m}}{Q_i^2 - Q_{n+i}Q_{i-n}}}, i \ge n \right\}.
$$

Proof. Hyponormality is equivalent to $|\lambda|^2 H_{\overline{z}^n}^* H_{\overline{z}^n} \leq H_{\overline{z}^m}^* H_{\overline{z}^m}$, which is equivalent to the three inequalities

$$
|\lambda|^2 \frac{Q_i}{Q_{n+i}} \le \frac{Q_i}{Q_{m+i}} \qquad \qquad \text{if } i < m,\tag{3.1}
$$

$$
|\lambda|^2 \frac{Q_i}{Q_{n+i}} \le \frac{Q_i^2 - Q_{m+i} Q_{i-m}}{Q_{i+m} Q_i} \qquad \text{if } m \le i < n,
$$
 (3.2)

$$
|\lambda|^2 \frac{Q_i^2 - Q_{n+i} Q_{i-n}}{Q_i Q_{n+i}} \le \frac{Q_i^2 - Q_{m+i} Q_{i-m}}{Q_i Q_{m+i}} \qquad \text{if } n \le i. \tag{3.3}
$$

Inequality [\(3.1\)](#page-2-0) is equivalent to

$$
|\lambda| \le \min\left\{\sqrt{\frac{Q_{n+i}}{Q_{m+i}}}, i < m\right\} = \Delta^1_{m,n}.
$$

Inequality [\(3.2\)](#page-2-1) is equivalent to

$$
|\lambda| \le \min\left\{\sqrt{\frac{Q_{n+i}}{Q_{m+i}}\frac{(Q_i^2 - Q_{m+i}Q_{i-m})}{Q_i^2}}, m \le i < n\right\} = \Delta_{m,n}^2.
$$

Inequality [\(3.3\)](#page-2-2) is equivalent to

$$
|\lambda| \le \inf \left\{ \sqrt{\frac{Q_{n+i}}{Q_{m+i}} \frac{Q_i^2 - Q_{m+i}Q_{i-m}}{Q_i^2 - Q_{n+i}Q_{i-n}}}, i \ge n \right\} = \Delta_{m,n}^3.
$$

For the first inequality [\(3.1\)](#page-2-0), if we set

$$
R(i) = \frac{Q_{n+i}}{Q_{m+i}} = \frac{(n+i+1)(n+i+2)\dots(n+i+p+1)}{(m+i+1)(m+i+2)\dots(m+i+p+1)},
$$

using logarithmic differentiation we can see that $R(i)$ decreases with *i*, so [\(3.1\)](#page-2-0) is equivalent to

$$
\Delta_{m,n}^1 = \sqrt{\frac{Q_{n+m-1}}{Q_{2m-1}}}.
$$

For the second inequality [\(3.2\)](#page-2-1), since $\frac{Q_{m+i}Q_{i-m}}{Q_i^2}$ increases with *i*, we get that Q_{n+i} $(Q_i^2 - Q_{m+i}Q_{i-m})$ degreeses with *i* and that *Qm*+*ⁱ* $\frac{(Q_i^2 - Q_{m+i}Q_{i-m})}{Q_i^2}$ decreases with *i* and that

$$
\Delta_{m,n}^2 = \sqrt{\frac{Q_{2n-1}}{Q_{m+n-1}} \frac{(Q_{n-1}^2 - Q_{m+n-1}Q_{n-1-m})}{Q_{n-1}^2}}.
$$

It is clear that $\Delta_{m,n}^2 \leq \Delta_{m,n}^1$. We also have

$$
\Delta_{m,n}^3 \le \lim_{i \to \infty} \sqrt{\frac{Q_{n+i}}{Q_{m+i}} \frac{Q_i^2 - Q_{m+i} Q_{i-m}}{Q_i^2 - Q_{n+i} Q_{i-n}}} = \frac{m}{n}.
$$

Set $R_1(i) = \frac{Q_{m+i}Q_i - m}{Q_{n+i}Q_i - n}$. Using logarithmic differentiation we verify that $R_1(i)$ decreases with *i*. Since $\lim_{i \to \infty}$ *Qm*+*iQi*−*^m* $\frac{Q_{n+i}Q_{i-n}}{Q_{n+i}Q_{i-n}} = 1$, we get $Q_{m+i}Q_{i-m} \geq Q_{n+i}Q_{i-n}$ and $\frac{Q_i^2 - Q_{m+i}Q_{i-m}}{Q_i^2 - Q_{n+i}Q_{i-m}} \leq 1$. Thus $\Delta_{m,n}^3 \leq \Delta_{m,n}^1$. Let us verify that $\Delta_{m,n}^3 \leq \Delta_{m,n}^2$ for large *n*. It is enough to verify that the following inequality holds for *n* large:

$$
\frac{m^2}{n^2} \le \frac{Q_{2n-1}}{Q_{m+n-1}} \frac{(Q_{n-1}^2 - Q_{m+n-1}Q_{n-1-m})}{Q_{n-1}^2}.
$$

Setting

(*Q*²

$$
S_{m,n} = \frac{n^2 Q_{2n-1} (Q_{n-1}^2 - Q_{m+n-1} Q_{n-1-m})}{m^2 Q_{m+n-1} Q_{n-1}^2},
$$

a computation shows that

$$
\frac{Q_{n-1}^2 - Q_{m+n-1}Q_{n-1-m}}{Q_{n-1}^2} = 1 - \frac{(n^2 - m^2) \dots ((n+p)^2 - m^2)}{n^2 \dots (n+p)^2}
$$

$$
= m^2 A_n^1 - m^4 A_n^2 + \dots + (-1)^p m^{2(p+1)} A_n^{p+1},
$$

where

$$
A_n^1 = \frac{1}{n^2} + \dots + \frac{1}{(n+p)^2}, \quad A_n^2 = \sum_{0 \le s \ne t}^p \frac{1}{(n+s)^2(n+t)^2}, \dots,
$$

$$
A_n^{p+1} = \frac{1}{n^2 \dots (n+p)^2}.
$$

We have

$$
m^{2} A_{n}^{1} - m^{4} A_{n}^{2} \ge \frac{m^{2}}{n^{2}} + \frac{pm^{2}}{(n+p)^{2}} - \frac{p(p+1)m^{4}}{2n^{2}(n+1)^{2}}.
$$

Clearly, there exists N_m^1 such that, for $n \ge N_m^1$, $m^2 A_n^1 - m^4 A_n^2 \ge \frac{m^2}{n^2}$. A similar argument shows that, for *k* odd, there exists N_m^k such that for $n \geq N_m^k$, $m^{2k}A_n^k - m^{2(k+1)}A_n^{k+1} \ge 0$ for $3 \le k \le p \ (3 \le k \le p-1$ if *p* is even). If we put $\max\{N_m^k, k \text{ odd}, 1 \leq k \leq p\} = N_m$, and noticing that $\frac{Q_{2n-1}}{Q_{m+n-1}} \geq 1$, we get, for $n \geq N_m$,

$$
\frac{n^2 Q_{2n-1} (Q_{n-1}^2 - Q_{m+n-1} Q_{n-1-m})}{m^2 Q_{m+n-1} Q_{n-1}^2} \ge 1.
$$

For $n \geq N_m$, we get that $T_{u^m + \lambda \overline{u^n}}$ is hyponormal if and only if $|\lambda| \leq \Delta_{m,n}^3$. \Box

Note that when $m = n$, hyponormality is equivalent to $|\lambda| \leq 1$. We now consider the case $m > n$.

Proposition 3.2. Let *n* and *m* be integers with $m > n \geq 1$. Then $T_{z^m + \lambda \overline{z^n}}$ is *hyponormal on* $B^2_{a,2}$ *if and only if* $|\lambda| \leq \sqrt{\frac{Q_{2n-1}}{Q_{m+n-1}}}$.

Proof. Hyponormality is equivalent to $|\lambda|^2 H_{\overline{z}^n}^* H_{\overline{z}^n} \leq H_{\overline{z}^m}^* H_{\overline{z}^m}$, which is equivalent to the three inequalities

$$
|\lambda|^2 \frac{Q_i}{Q_{n+i}} \le \frac{Q_i}{Q_{m+i}} \qquad \text{if } i < n,\tag{3.4}
$$

$$
|\lambda|^2 \frac{Q_i^2 - Q_{n+i} Q_{i-n}}{Q_i Q_{n+i}} \le \frac{Q_i}{Q_{m+i}} \qquad \text{if } n \le i \le m-1, \quad (3.5)
$$

$$
|\lambda|^2 \frac{Q_i^2 - Q_{n+i} Q_{i-n}}{Q_i Q_{n+i}} \le \frac{Q_i^2 - Q_{m+i} Q_{i-m}}{Q_i Q_{m+i}} \qquad \text{if } m \le i.
$$
 (3.6)

Inequality [\(3.4\)](#page-4-0) is equivalent to

$$
|\lambda| \le \min\left\{\sqrt{\frac{Q_{n+i}}{Q_{m+i}}}, \ i < n\right\}.
$$

The ratio $\frac{Q_{n+i}}{Q_{m+i}}$ increases with *i*, so the inequality [\(3.4\)](#page-4-0) is equivalent to

$$
|\lambda| \le \sqrt{\frac{Q_{2n-1}}{Q_{m+n-1}}} = \Gamma^1_{m,n}.
$$

Inequality [\(3.5\)](#page-4-1) is equivalent to

$$
|\lambda|\leq \min\left\{\sqrt{\frac{Q_{n+i}}{Q_{m+i}}\frac{Q_i^2}{(Q_i^2-Q_{n+i}Q_{i-n})}},\;n\leq i
$$

Again both $\frac{Q_{n+i}}{Q_{m+i}}$ and $\frac{Q_{i+n}Q_{i-n}}{Q_i^2}$ increase with *i*, so we get that $\frac{Q_{n+i}}{Q_{m+i}}$ $\frac{Q_i^2}{(Q_i^2 - Q_{n+i}Q_{i-n})}$ increases with *i*, which leads to

$$
|\lambda| \le \sqrt{\frac{Q_{2n}}{Q_{m+n}} \frac{Q_n^2}{(Q_n^2 - (p+1)!Q_{2n})}} = \Gamma_{m,n}^2.
$$

Since $\frac{Q_{n+i}}{Q_{m+i}}$ increases with i and $\frac{Q_i^2}{Q_i^2 - Q_{n+i}Q_{i-n}} \ge 1$, we have $\Gamma^1_{m,n} \le \Gamma^2_{m,n}$. Inequality [\(3.6\)](#page-4-2) is equivalent to

$$
|\gamma| \le \min \left\{ \sqrt{\frac{Q_{n+i}}{Q_{m+i}} \frac{Q_i^2 - Q_{m+i} Q_{i-m}}{Q_i^2 - Q_{n+i} Q_{i-n}}}, i \ge m \right\} = \Gamma_{m,n}^3.
$$

Using logarithmic differentiation we can verify that $\frac{Q_{m+i}Q_{i-m}}{Q_{n+i}Q_{i-n}}$ increases with *i*.

Since lim *i*→∞ *Q^m*+*ⁱQi*−*^m* $\frac{Q^{i}m+iQ^{i}-m}{Q_{n+i}Q_{i-n}} = 1$, we deduce that $Q_{m+i}Q_{i-m} \leq Q_{n+i}Q_{i-n}$ and $Q_i^2 - Q_{n+i}Q_{i-n}$ $Q_{m+i}Q_{i-m} \geq Q_i^2 - Q_{n+i}Q_{i-n}$. From the fact that $\frac{Q_{n+i}}{Q_{m+i}}$ increases with i, it follows that $\Gamma_{m,n}^3 \geq \Gamma_{m,n}^1$. This proves the result. \Box

Note that the result holds also when $m = n$.

Denote by U_1 the unit ball of $B_{a,\alpha}^{2\perp}$, the orthogonal of $B_{a,\alpha}^2$ in $L^2(D, d\nu_{\alpha}(z))$.

Definition 3.3. For $f \in B^2_{a,\alpha}$, define the set Ω_f by

$$
\Omega_f = \left\{ g \in B^2_{a,\alpha} : \sup_{l \in U_1} |\langle \overline{g}, \overline{k}l \rangle| \leq \sup_{l \in U_1} |\langle \overline{f}, \overline{k}l \rangle| \text{ for any } k \in H^{\infty} \right\}.
$$

We see, from the density of H^{∞} in $B^2_{a,\alpha}$ and Proposition [3.2,](#page-3-0) that when *g* and *f* are in H^{∞} , $g \in \Gamma_f$ is equivalent to $\widetilde{T}_{f+\overline{g}}$ being hyponormal. The following proposition lists some properties of Ω_f .

Proposition 3.4. *For* $f \in B^2_{a,\alpha}$ *, the following holds:*

- (1) Ω_f *is convex and balanced.*
- (2) *If* $g \in \Omega_f$, then $g + \lambda$ *is in* Ω_f *for any complex number* λ *.*
- (3) $f \in \Omega_f$.
- (4) Ω_f *is closed in the weak topology of* $L^2(D, d\nu_\alpha(w))$.

The proof of these properties is similar to the case $\alpha = 0$ in [\[3\]](#page-8-2) and is therefore omitted. Using this proposition we get our first main result when $\alpha = p$.

Theorem 3.5. Let $(\gamma_i)_{i\geq 1}$ be complex numbers such that \sum *i*≥1 $|\gamma_i| \leq 1$ *, and let* $m \geq 1$ *be an integer.* Then T_{z^m} + \sum 1≤*n*≤*m* $\gamma_n \Gamma^1_{m,n} \overline{z^n} + \sum$ *Nm*≤*n* $\gamma_n \Delta_{m,n}^3 \overline{z^n}$ *is hyponormal.*

4. THE COMMUTING PROPERTY

We continue to use the notations of the previous sections: *D* denotes the unit disk in the complex plane and $\alpha > -1$ a real number. $B_{a,\alpha}^2$ is the Hilbert space of analytic functions *f* on *D* such that $||f||^2 = \int$ *D* $|f(z)|^2 d\nu_\alpha(z) < \infty$, where $d\nu_\alpha(z) =$

(*α*+1) $\frac{1}{\pi}$ $(1 - |z|^2)^\alpha dA(z)$ and $dA(z) = rdr d\theta$ is the Lebesgue measure on *D*. For *h* bounded measurable on *D*, the Toeplitz operator T_h is defined on $B^2_{a,\alpha}$ by $T_h(f)$ = $P(hf)$, where *P* is the orthogonal projection of $L^2(D, d\nu_\alpha)$ on $B^2_{a,\alpha}$. When $\alpha = 0$, S. Axler and \check{Z} . Čučković [\[2\]](#page-7-1) showed the following theorem:

Theorem 4.1. *Suppose g and h are bounded harmonic functions on D. Then* $T_qT_h = T_hT_q$ *if and only if one of the following holds:*

- (i) *g and h are both analytic on D.*
- (ii) \overline{g} and \overline{h} are both analytic on D .
- (iii) *There exist constants a and b, not both zero, such that ag* + *bh is constant on D.*

In what follows we will show that the above result holds on $B^2_{a,\alpha}$ for any $\alpha > -1$.

4.1. **The second main result.** We begin by recalling some definitions from [\[2\]](#page-7-1).

Definition 4.2. A function $u \in C(D) \cap L^1(D, d\nu_\alpha)$ is said to have *the area version of the invariant mean value property* if \int $\int_D u \circ \varphi \, d\nu_\alpha = u(\varphi(0))$ for any $\varphi \in \text{Aut}(D)$. **Definition 4.3.** If $u \in C(D)$, the *radialization* of *u* is given by $R(u)(w) =$ 1 2*π* 2 R*π* 0 $u(we^{i\theta}) d\theta.$

We can state the result that is used in the generalization as follows.

Lemma 4.4. *Suppose* $u \in C(D) \cap L^1(D, d\nu_\alpha)$ *. Then u is harmonic on D if and only if* \int $\int_D u \circ \varphi \, d\nu_\alpha = u(\varphi(0))$ *and* $R(u \circ \varphi) \in C(D)$ *for all* $\varphi \in \text{Aut}(D)$ *.*

Proof. If *u* is harmonic, then $u \circ \varphi$ is also harmonic, and it is easy to see that R $\int\limits_{D} u \circ \varphi \, d\nu_{\alpha} = u(\varphi(0))$. Since $R(u \circ \varphi)$ is constant by the mean value property, we have that $R(u \circ \varphi) \in C(\overline{D})$. Assume now that \int $\int_D u \circ \varphi \, d\nu_\alpha = u(\varphi(0))$ and $R(u \circ \varphi) \in C(\overline{D})$. Let ψ be an automorphism of the disk. We have

$$
\int\limits_{D} R(u \circ \varphi)(\psi(w)) d\nu_{\alpha}(w) = \int\limits_{D} \int_{0}^{2\pi} u(\varphi(\psi(w)e^{i\theta})) \frac{d\theta}{2\pi} d\nu_{\alpha}(w).
$$

Set $\varphi(\psi(w)e^{i\theta}) = f_{\theta}(w)$ as in [\[2\]](#page-7-1). Then f_{θ} is an automorphism of the disk, and we can easily verify (see [\[2\]](#page-7-1)) that $|(f_{\theta}^{-1})'(z)| \leq C$ for all $z \in D$ and $\theta \in [0, 2\pi]$. If we write $f_{\theta}(z) = \zeta \frac{\lambda - z}{\lambda - \overline{\lambda}}$ $\frac{\lambda - z}{1 - \overline{\lambda}z}$ with $|\zeta| = 1$ and $|\lambda| < 1$, then we have $1 - |f_{\theta}^{-1}(z)|^2 =$ $(1-|z|^2)(1-|\lambda|^2)$ $\frac{|z|^2}{|1-\overline{\gamma}z|^2}$, where $\gamma = e^{i\mu}\lambda$ for some real μ . Thus, noting that $1 - |f_{\theta}^{-1}(z)|^2 \le$ $C_1(1-|z|^2)$ and changing variables, we get

$$
\int_0^{2\pi} \int_D |u(\varphi(\psi(w)e^{i\theta}))| d\nu_\alpha(w) \frac{d\theta}{2\pi}
$$

= $\frac{\alpha+1}{\pi} \int_0^{2\pi} \int_D |u(z)| |(f_\theta^{-1})'(z)|^2 (1-|f_\theta^{-1}(z)|^2)^\alpha dA(z) \frac{d\theta}{2\pi}$
 $\leq C_2 \int_D |u(z)| d\nu_\alpha(z).$

So Fubini's theorem leads to

$$
\int_{D} \int_{0}^{2\pi} u \left(\varphi(\psi(w)e^{i\theta}) \right) \frac{d\theta}{2\pi} d\nu_{\alpha}(w) = \int_{0}^{2\pi} \int_{D} u \left(\varphi(\psi(w)e^{i\theta}) \right) d\nu_{\alpha}(w)
$$

$$
= \int_{0}^{2\pi} \int_{D} u \circ f_{\theta}(w) d\nu_{\alpha}(w) \frac{d\theta}{2\pi}
$$

$$
= \int_{0}^{2\pi} u \left(f_{\theta}(0) \right) \frac{d\theta}{2\pi},
$$

i.e.,

$$
\int_{D} R(u \circ \varphi)(\psi(w)) d\mu_{\alpha}(w) = \int_{0}^{2\pi} u(\varphi(\psi(0)e^{i\theta})) \frac{d\theta}{2\pi} = R(u \circ \varphi)(\psi(0)).
$$

Thus $R(u \circ \varphi)$ is continuous and has the area version of the invariant mean value theorem. By [\[2\]](#page-7-1) it is harmonic on *D*. Since $R(u \circ \varphi)$ is radial, we deduce that it

is constant and equal to $R(u \circ \varphi)(0)$. So $\int_0^{2\pi} u \circ \varphi(re^{i\theta}) \frac{d\theta}{2\pi} = u \circ \varphi(0)$. This holds for any φ automorphism of the unit disk. As in [\[2\]](#page-7-1), we deduce that *u* is harmonic on *D*.

For φ an automorphism of the unit disk, define the operator on $B^2_{a,\alpha}$ given by $V_{\varphi} f = f \circ \varphi . (\varphi')^{1+\frac{\alpha}{2}}.$

Lemma 4.5. *The operator* V_φ *is unitary.*

Proof.

$$
(\alpha + 1) \int_D |f \circ \varphi(w)|^2 |\varphi'(w)|^2 |\varphi'(w)|^\alpha (1 - |w|^2)^\alpha \frac{dA(w)}{\pi}
$$

= $(\alpha + 1) \int_D |f(z)|^2 |\varphi'(\varphi^{-1}(z))|^\alpha (1 - |\varphi^{-1}(z)|^2)^\alpha \frac{dA(z)}{\pi}.$

Since $(1 - |\varphi^{-1}(z)|^2)^\alpha = (1 - |z|^2)^\alpha |(\varphi^{-1})'(z)|^\alpha$ and $(\varphi^{-1})'(z) = \frac{1}{\varphi'(\varphi^{-1}(z))}$, the result follows. \square

Since $V_{\varphi} = T_{(\varphi')^{1+\alpha/2}}C_{\varphi}$ and $V_{\varphi}^* = V_{\varphi}^{-1}$, the adjoint is given by

$$
V_{\varphi}^* f = (\varphi' \circ \varphi^{-1})^{-1-\alpha/2} f \circ \varphi^{-1}.
$$

The proof of the following lemma is straightforward and is therefore omitted.

Lemma 4.6. For φ an automorphism of the unit disk and h bounded measurable *on D*, we have $V_{\varphi}T_hV_{\varphi}^* = T_{h\circ\varphi}$.

We can now state the main result, which is a generalization of Theorem 1 in [\[2\]](#page-7-1). The proof is similar and thus omitted.

Theorem 4.7. *Let g and h be bounded and harmonic on the unit disk D. Then* $T_gT_h = T_hT_g$ *on* $B^2_{a,\alpha}$ *if and only if one of the following holds:*

- (i) *g and h are analytic on D.*
- (ii) \overline{q} *and* \overline{h} *are analytic on D*.
- (iii) *There exist constants a and b in* \mathbb{C} *, not both zero, such that* $ag + bh$ *is constant on D.*

As in [\[2\]](#page-7-1), we obtain a characterization of normality of Toeplitz operators, with a harmonic symbol, on $B^2_{a,\alpha}$.

Corollary 4.8. *Let f be bounded harmonic on D. Then T^f is normal if and only if* $f(D)$ *lies on some line in* \mathbb{C} *.*

REFERENCES

- [1] P. AHERN and \ddot{Z} . CUČKOVIĆ, A mean value inequality with applications to Bergman space operators, *Pacific J. Math.* **173** no. 2 (1996), 295–305. [DOI](https://doi.org/10.2140/pjm.1996.173.295) [MR](http://www.ams.org/mathscinet-getitem?mr=1394391) [Zbl](https://zbmath.org/?q=an:0962.47015)
- [2] S. Axler and \check{Z} . ČUČKOVIĆ, Commuting Toeplitz operators with harmonic symbols, *Integral Equations Operator Theory* **14** no. 1 (1991), 1–12. [DOI](https://doi.org/10.1007/BF01194925) [MR](http://www.ams.org/mathscinet-getitem?mr=1079815) [Zbl](https://zbmath.org/?q=an:0733.47027)
- [3] C. C. Cowen, Hyponormal and subnormal Toeplitz operators, in *Surveys of some recent results in operator theory, Vol. I*, Pitman Res. Notes Math. Ser. 171, Longman Sci. Tech., Harlow, 1988, pp. 155–167. [MR](http://www.ams.org/mathscinet-getitem?mr=958573) [Zbl](https://zbmath.org/?q=an:0677.47017)
- [4] C. C. Cowen, Hyponormality of Toeplitz operators, *Proc. Amer. Math. Soc.* **103** no. 3 (1988), 809–812. [DOI](https://doi.org/10.2307/2046858) [MR](http://www.ams.org/mathscinet-getitem?mr=947663) [Zbl](https://zbmath.org/?q=an:0668.47021)
- [5] \dot{Z} . CUČKOVIĆ and R. E. CURTO, A new necessary condition for the hyponormality of Toeplitz operators on the Bergman space, *J. Operator Theory* **79** no. 2 (2018), 287–300. [DOI](https://doi.org/10.7900/jot) [MR](http://www.ams.org/mathscinet-getitem?mr=3803558) [Zbl](https://zbmath.org/?q=an:1424.47066)
- [6] M. Fleeman and C. Liaw, Hyponormal Toeplitz operators with non-harmonic symbol acting on the Bergman space, *Oper. Matrices* **13** no. 1 (2019), 61–83. [DOI](https://doi.org/10.7153/oam-2019-13-04) [MR](http://www.ams.org/mathscinet-getitem?mr=3924372) [Zbl](https://zbmath.org/?q=an:1448.47039)
- [7] H. Hedenmalm, B. Korenblum, and K. Zhu, *Theory of Bergman spaces*, Graduate Texts in Mathematics 199, Springer-Verlag, New York, 2000. [DOI](https://doi.org/10.1007/978-1-4612-0497-8) [MR](http://www.ams.org/mathscinet-getitem?mr=1758653) [Zbl](https://zbmath.org/?q=an:0955.32003)
- [8] I. S. Hwang, J. Lee, and S. W. Park, Hyponormal Toeplitz operators with polynomial symbols on weighted Bergman spaces, *J. Inequal. Appl.* **2014** (2014), Article no. 335, 8 pp. [DOI](https://doi.org/10.1186/1029-242X-2014-335) [MR](http://www.ams.org/mathscinet-getitem?mr=3374726) [Zbl](https://zbmath.org/?q=an:1447.47032)
- [9] A. Phukon, Hyponormality of Toeplitz operators with polynomial symbols on the weighted Bergman space, *Arab. J. Math.* **6** no. 2 (2017), 87–94. [DOI](https://doi.org/10.1007/s40065-017-0170-8) [MR](http://www.ams.org/mathscinet-getitem?mr=3661168) [Zbl](https://zbmath.org/?q=an:06767420)
- [10] H. Sadraoui, *Hyponormality of Toeplitz operators and composition operators*, Ph.D. thesis, Purdue University, 1992.
- [11] H. Sadraoui, Hyponormality on general Bergman spaces, *Filomat* **33** no. 17 (2019), 5737– 5741. [DOI](https://doi.org/10.2298/FIL1917737S) [MR](http://www.ams.org/mathscinet-getitem?mr=4055632) [Zbl](https://zbmath.org/?q=an:1498.47056)
- [12] H. SADRAOUI and M. GUEDIRI, Hyponormal Toeplitz operators on the Bergman space, *Oper. Matrices* **11** no. 3 (2017), 669–677. [DOI](https://doi.org/10.7153/oam-11-44) [MR](http://www.ams.org/mathscinet-getitem?mr=3655674) [Zbl](https://zbmath.org/?q=an:06787247)
- [13] K. H. Zhu, *Operator theory in function spaces*, Monographs and Textbooks in Pure and Applied Mathematics 139, Marcel Dekker, New York, 1990. [MR](http://www.ams.org/mathscinet-getitem?mr=1074007) [Zbl](https://zbmath.org/?q=an:0706.47019)

Houcine Sadraoui

Department of Mathematics, College of Sciences, King Saud University, P. O. Box 2455 Riyadh 11451, Saudi Arabia sadrawi@ksu.edu.sa

Borhen Halouani [■] Department of Mathematics, College of Sciences, King Saud University, P. O. Box 2455 Riyadh 11451, Saudi Arabia halouani@ksu.edu.sa

Received: September 2, 2022 Accepted: December 27, 2022 Early view: August 22, 2024