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ON HYPONORMALITY AND A COMMUTING PROPERTY
OF TOEPLITZ OPERATORS

HOUCINE SADRAOUI AND BORHEN HALOUANI

Abstract. In this work we give sufficient conditions for hyponormality of
Toeplitz operators on a weighted Bergman space when the analytic part of
the symbol is a monomial and the conjugate part is a polynomial. We also
extend a known commuting property of Toeplitz operators with a harmonic
symbol on the Bergman space to weighted Bergman spaces.

1. Introduction

Let D denote the unit disk of radius in the complex plane, dνα(z) = α+1
π (1 −

|z|2)αdA(u), where dA(z) is the Lebesgue measure on D and α > −1. Denote by
L2(D, dνα) the Hilbert space of complex valued functions on D that are square
integrable with respect to να. We write ∥f∥2 =

∫
D

|f(z)|2 dνα(z). When f is
analytic on D, we have

f(u) =
∞∑
0
cmu

m, ∥f∥2 =
∞∑
0

m!Γ(α+ 1)
Γ(m+ α+ 2) |cm|2.

Denote by B2
a,α the space of analytic functions on D such that ∥f∥2

< ∞. It is
known that B2

a,α is a Hilbert space [7, 13] and an orthonormal basis is given by

em(z) =
√

Γ(m+α+2)√
m!Γ(α+1)

zm. The Toeplitz operator with symbol f on B2
a,α is defined

by Tf (k) = P (fk), where f is bounded and measurable on D, k is in B2
a,α and P is

the orthogonal projection of L2(D, dνα(z)) onto B2
a,α. Hankel operators are defined

by Hf (k) = (I − P )(fk), f and k as before. Recall that a bounded operator A on
a Hilbert space is hyponormal if A∗A−AA∗ is a positive operator. Hyponormality
on the Hardy space was studied by C. Cowen in [3, 4]. Hyponormality of Toeplitz
operators on the Bergman space of the unit disk (α = 0) was first considered
in [10]. An improvement of the necessary condition therein is due to P. Ahern
and Ž. Čučković [1]. A new necessary condition, due to Ž. Čučković and R. Curto
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in a special case is found in [5]. Sufficient conditions when the analytic part is a
monomial are given in [12]. Most results on hyponormality on weighted Bergman
spaces treat very special cases of the symbol. We cite for example [9] and [8]. Recent
results on hyponormality on weighted Bergman spaces with a general harmonic
symbol can be found in [11]. Some results on hyponormality of Toeplitz operators
with non-harmonic symbols are due to M. Fleeman and C. Liaw [6]. In this work
we first give sufficient conditions for the hyponormality of Toeplitz operators with
a symbol of the form f + g, where f is a monomial and g is a polynomial and
α = p. In the second part we give a generalization of a commuting property of
Toeplitz operators with a harmonic symbol on the Bergman space, due to S. Axler
and Ž. Čučković [2], to weighted Bergman spaces.

2. Some general results

We assume f , g are in L∞(D). Then we have:
(1) Tf+g = Tf + Tg;
(2) T ∗

f = Tf ;
(3) TfTg = Tfg if f or g are analytic on D.

The use of these properties leads to describing hyponormality in more than one
form. These are known properties on the unweighted Bergman space [9] and hold
also for weighted Bergman spaces.
Proposition 2.1. Let f , g be bounded and analytic on D. Then the following are
equivalent:

(i) Tf+g is hyponormal.
(ii) H∗

gHg ≤ H∗
f
Hf .

(iii) ∥(I − P )(gk)∥ ≤ ∥(I − P )(fk)∥ for any k in B2
a,α.

(iv) ∥gk∥2 − ∥P (gk)∥2 ≤ ∥fk∥2 − ∥P (fk)∥2 for any k in B2
a,α.

(v) Hg = KHf , where K is of norm less than or equal to one.

We also need the following lemmas.

Lemma 2.2. For s and t integers, we have P (ztzs) = s!Γ(s−t+α+2)
Γ(s+α+2)(s−t)!z

s−t if s ≥ t

and P (ztzs) = 0 if s < t.
Lemma 2.3. If α = p is an integer, then the matrix of H∗

zmHzm with respect to
the orthonormal basis {em}∞

m=0 is given by

di = (m+ i)!(i+ p+ 1)!
i!(m+ i+ p+ 1)! if i < m

and
di = (m+ i)!(i+ p+ 1)!

i!(m+ i+ p+ 1)! − i!(i−m+ p+ 1)!
(i−m)!(i+ p+ 1)! if i ≥ m.

For the sake of simplification set Qr = (r + 1)(r + 2) . . . (r + p+ 1) = Γ(r+p+2)
Γ(r+1)

for any nonnegative integer r. We have di = Qi

Qm+i
if i < m and di = Q2

i −Qm+iQi−m

QiQm+i

if i ≥ m. We then have the following results.
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3. The sufficient condition

Proposition 3.1. Let n and m be integers with n > m ≥ 1. Then there exists Nm

such that if n ≥ Nm, then Tzm+λzn is hyponormal on B2
a,α if and only if

|λ| ≤ inf
{√

Qn+i

Qm+i

Q2
i −Qm+iQi−m

Q2
i −Qn+iQi−n

, i ≥ n

}
.

Proof. Hyponormality is equivalent to |λ|2H∗
znHzn ≤ H∗

zmHzm , which is equivalent
to the three inequalities

|λ|2 Qi

Qn+i
≤ Qi

Qm+i
if i < m, (3.1)

|λ|2 Qi

Qn+i
≤ Q2

i −Qm+iQi−m

Qi+mQi
if m ≤ i < n, (3.2)

|λ|2Q
2
i −Qn+iQi−n

QiQn+i
≤ Q2

i −Qm+iQi−m

QiQm+i
if n ≤ i. (3.3)

Inequality (3.1) is equivalent to

|λ| ≤ min
{√

Qn+i

Qm+i
, i < m

}
= ∆1

m,n.

Inequality (3.2) is equivalent to

|λ| ≤ min
{√

Qn+i

Qm+i

(Q2
i −Qm+iQi−m)

Q2
i

, m ≤ i < n

}
= ∆2

m,n.

Inequality (3.3) is equivalent to

|λ| ≤ inf
{√

Qn+i

Qm+i

Q2
i −Qm+iQi−m

Q2
i −Qn+iQi−n

, i ≥ n

}
= ∆3

m,n.

For the first inequality (3.1), if we set

R(i) = Qn+i

Qm+i
= (n+ i+ 1)(n+ i+ 2) . . . (n+ i+ p+ 1)

(m+ i+ 1)(m+ i+ 2) . . . (m+ i+ p+ 1) ,

using logarithmic differentiation we can see that R(i) decreases with i, so (3.1) is
equivalent to

∆1
m,n =

√
Qn+m−1

Q2m−1
.

For the second inequality (3.2), since Qm+iQi−m

Q2
i

increases with i, we get that
Qn+i

Qm+i

(Q2
i −Qm+iQi−m)

Q2
i

decreases with i and that

∆2
m,n =

√
Q2n−1

Qm+n−1

(Q2
n−1 −Qm+n−1Qn−1−m)

Q2
n−1

.
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It is clear that ∆2
m,n ≤ ∆1

m,n. We also have

∆3
m,n ≤ lim

i→∞

√
Qn+i

Qm+i

Q2
i −Qm+iQi−m

Q2
i −Qn+iQi−n

= m

n
.

Set R1(i) = Qm+iQi−m

Qn+iQi−n
. Using logarithmic differentiation we verify that R1(i)

decreases with i. Since lim
i→∞

Qm+iQi−m

Qn+iQi−n
= 1, we get Qm+iQi−m ≥ Qn+iQi−n and

Q2
i −Qm+iQi−m

Q2
i
−Qn+iQi−n

≤ 1. Thus ∆3
m,n ≤ ∆1

m,n. Let us verify that ∆3
m,n ≤ ∆2

m,n for
large n. It is enough to verify that the following inequality holds for n large:

m2

n2 ≤ Q2n−1

Qm+n−1

(Q2
n−1 −Qm+n−1Qn−1−m)

Q2
n−1

.

Setting

Sm,n =
n2Q2n−1(Q2

n−1 −Qm+n−1Qn−1−m)
m2Qm+n−1Q2

n−1
,

a computation shows that
(Q2

n−1 −Qm+n−1Qn−1−m)
Q2

n−1
= 1 − (n2 −m2) . . . ((n+ p)2 −m2)

n2 . . . (n+ p)2

= m2A1
n −m4A2

n + . . . + (−1)pm2(p+1)Ap+1
n ,

where

A1
n = 1

n2 + . . . + 1
(n+ p)2 , A2

n =
p∑

0≤s ̸=t

1
(n+ s)2(n+ t)2 , . . . ,

Ap+1
n = 1

n2 . . . (n+ p)2 .

We have
m2A1

n −m4A2
n ≥ m2

n2 + pm2

(n+ p)2 − p(p+ 1)m4

2n2(n+ 1)2 .

Clearly, there exists N1
m such that, for n ≥ N1

m, m2A1
n − m4A2

n ≥ m2

n2 . A sim-
ilar argument shows that, for k odd, there exists Nk

m such that for n ≥ Nk
m,

m2kAk
n − m2(k+1)Ak+1

n ≥ 0 for 3 ≤ k ≤ p (3 ≤ k ≤ p − 1 if p is even). If we put
max{Nk

m, k odd, 1 ≤ k ≤ p} = Nm, and noticing that Q2n−1
Qm+n−1

≥ 1, we get, for
n ≥ Nm,

n2Q2n−1(Q2
n−1 −Qm+n−1Qn−1−m)

m2Qm+n−1Q2
n−1

≥ 1.

For n ≥ Nm, we get that Tum+λun is hyponormal if and only if |λ| ≤ ∆3
m,n. □

Note that when m = n, hyponormality is equivalent to |λ| ≤ 1. We now consider
the case m > n.

Proposition 3.2. Let n and m be integers with m > n ≥ 1. Then Tzm+λzn is
hyponormal on B2

a,2 if and only if |λ| ≤
√

Q2n−1
Qm+n−1

.
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Proof. Hyponormality is equivalent to |λ|2H∗
znHzn ≤ H∗

zmHzm , which is equivalent
to the three inequalities

|λ|2 Qi

Qn+i
≤ Qi

Qm+i
if i < n, (3.4)

|λ|2Q
2
i −Qn+iQi−n

QiQn+i
≤ Qi

Qm+i
if n ≤ i ≤ m− 1, (3.5)

|λ|2Q
2
i −Qn+iQi−n

QiQn+i
≤ Q2

i −Qm+iQi−m

QiQm+i
if m ≤ i. (3.6)

Inequality (3.4) is equivalent to

|λ| ≤ min
{√

Qn+i

Qm+i
, i < n

}
.

The ratio Qn+i

Qm+i
increases with i, so the inequality (3.4) is equivalent to

|λ| ≤

√
Q2n−1

Qm+n−1
= Γ1

m,n.

Inequality (3.5) is equivalent to

|λ| ≤ min
{√

Qn+i

Qm+i

Q2
i

(Q2
i −Qn+iQi−n) , n ≤ i < m

}
.

Again both Qn+i

Qm+i
and Qi+nQi−n

Q2
i

increase with i, so we get that Qn+i

Qm+i

Q2
i

(Q2
i
−Qn+iQi−n)

increases with i, which leads to

|λ| ≤

√
Q2n

Qm+n

Q2
n

(Q2
n − (p+ 1)!Q2n) = Γ2

m,n.

Since Qn+i

Qm+i
increases with i and Q2

i

Q2
i
−Qn+iQi−n

≥ 1, we have Γ1
m,n ≤ Γ2

m,n. Inequal-
ity (3.6) is equivalent to

|γ| ≤ min
{√

Qn+i

Qm+i

Q2
i −Qm+iQi−m

Q2
i −Qn+iQi−n

, i ≥ m

}
= Γ3

m,n.

Using logarithmic differentiation we can verify that Qm+iQi−m

Qn+iQi−n
increases with i.

Since lim
i→∞

Qm+iQi−m

Qn+iQi−n
= 1, we deduce that Qm+iQi−m ≤ Qn+iQi−n and Q2

i −

Qm+iQi−m ≥ Q2
i −Qn+iQi−n. From the fact that Qn+i

Qm+i
increases with i, it follows

that Γ3
m,n ≥ Γ1

m,n. This proves the result. □

Note that the result holds also when m = n.
Denote by U1 the unit ball of B2⊥

a,α, the orthogonal of B2
a,α in L2 (D, dνα(z)).
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Definition 3.3. For f ∈ B2
a,α, define the set Ωf by

Ωf =
{
g ∈ B2

a,α : sup
l∈U1

|⟨g, kl⟩| ≤ sup
l∈U1

|⟨f, kl⟩| for any k ∈ H∞
}
.

We see, from the density of H∞ in B2
a,α and Proposition 3.2, that when g and

f are in H∞, g ∈ Γf is equivalent to Tf+g being hyponormal. The following
proposition lists some properties of Ωf .

Proposition 3.4. For f ∈ B2
a,α, the following holds:

(1) Ωf is convex and balanced.
(2) If g ∈ Ωf , then g + λ is in Ωf for any complex number λ.
(3) f ∈ Ωf .
(4) Ωf is closed in the weak topology of L2 (D, dνα(w)).

The proof of these properties is similar to the case α = 0 in [3] and is therefore
omitted. Using this proposition we get our first main result when α = p.

Theorem 3.5. Let (γi)i≥1 be complex numbers such that
∑
i≥1

|γi| ≤ 1, and let m ≥ 1

be an integer. Then T
zm +

∑
1≤n≤m

γnΓ1
m,nz

n +
∑

Nm≤n

γn∆3
m,nz

n
is hyponormal.

4. The commuting property

We continue to use the notations of the previous sections: D denotes the unit
disk in the complex plane and α > −1 a real number. B2

a,α is the Hilbert space of
analytic functions f on D such that ∥f∥2 =

∫
D

|f(z)|2 dνα(z) < ∞, where dνα(z) =
(α+1)

π (1 − |z|2)αdA(z) and dA(z) = rdrdθ is the Lebesgue measure on D. For h
bounded measurable on D, the Toeplitz operator Th is defined on B2

a,α by Th(f) =
P (hf), where P is the orthogonal projection of L2 (D, dνα) on B2

a,α. When α = 0,
S. Axler and Ž. Čučković [2] showed the following theorem:

Theorem 4.1. Suppose g and h are bounded harmonic functions on D. Then
TgTh = ThTg if and only if one of the following holds:

(i) g and h are both analytic on D.
(ii) g and h are both analytic on D.
(iii) There exist constants a and b, not both zero, such that ag + bh is constant

on D.

In what follows we will show that the above result holds on B2
a,α for any α > −1.

4.1. The second main result. We begin by recalling some definitions from [2].

Definition 4.2. A function u ∈ C(D)∩L1 (D, dνα) is said to have the area version
of the invariant mean value property if

∫
D

u ◦ φdνα = u(φ(0)) for any φ ∈ Aut(D).
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Definition 4.3. If u ∈ C(D), the radialization of u is given by R(u)(w) =
1

2π

2π∫
0
u(weiθ) dθ.

We can state the result that is used in the generalization as follows.
Lemma 4.4. Suppose u ∈ C(D) ∩ L1 (D, dνα). Then u is harmonic on D if and
only if

∫
D

u ◦ φdνα = u(φ(0)) and R(u ◦ φ) ∈ C(D) for all φ ∈ Aut(D).

Proof. If u is harmonic, then u ◦ φ is also harmonic, and it is easy to see that∫
D

u ◦ φdνα = u(φ(0)). Since R(u ◦ φ) is constant by the mean value property,

we have that R(u ◦ φ) ∈ C(D). Assume now that
∫
D

u ◦ φdνα = u(φ(0)) and

R(u ◦ φ) ∈ C(D). Let ψ be an automorphism of the disk. We have∫
D

R(u ◦ φ)(ψ(w)) dνα(w) =
∫
D

∫ 2π

0
u

(
φ(ψ(w)eiθ)

) dθ
2π dνα(w).

Set φ
(
ψ(w)eiθ

)
= fθ(w) as in [2]. Then fθ is an automorphism of the disk, and

we can easily verify (see [2]) that |(f−1
θ )′(z)| ≤ C for all z ∈ D and θ ∈ [0, 2π]. If

we write fθ(z) = ζ λ−z

1−λz
with |ζ| = 1 and |λ| < 1, then we have 1 − |f−1

θ (z)|2 =
(1−|z|2)(1−|λ|2)

|1−γz|2 , where γ = eiµλ for some real µ. Thus, noting that 1 − |f−1
θ (z)|2 ≤

C1(1 − |z|2) and changing variables, we get∫ 2π

0

∫
D

|u
(
φ(ψ(w)eiθ)

)
| dνα(w) dθ2π

= α+ 1
π

∫ 2π

0

∫
D

|u(z)∥(f−1
θ )′(z)|2

(
1 − |f−1

θ (z)|2
)α

dA(z) dθ2π

≤ C2

∫
D

|u(z)| dνα(z).

So Fubini’s theorem leads to∫
D

∫ 2π

0
u

(
φ(ψ(w)eiθ)

) dθ
2π dνα(w) =

∫ 2π

0

∫
D

u
(
φ(ψ(w)eiθ)

)
dνα(w)

=
∫ 2π

0

∫
D

u ◦ fθ(w) dνα(w) dθ2π

=
∫ 2π

0
u (fθ(0)) dθ2π ,

i.e., ∫
D

R(u ◦ φ)(ψ(w)) dµα(w) =
∫ 2π

0
u

(
φ(ψ(0)eiθ)

) dθ
2π = R(u ◦ φ)(ψ(0)).

Thus R(u ◦ φ) is continuous and has the area version of the invariant mean value
theorem. By [2] it is harmonic on D. Since R(u ◦ φ) is radial, we deduce that it
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is constant and equal to R(u ◦ φ)(0). So
∫ 2π

0 u ◦ φ(reiθ) dθ
2π = u ◦ φ(0). This holds

for any φ automorphism of the unit disk. As in [2], we deduce that u is harmonic
on D. □

For φ an automorphism of the unit disk, define the operator on B2
a,α given by

Vφf = f ◦ φ.(φ′)1+ α
2 .

Lemma 4.5. The operator Vφ is unitary.

Proof.

(α+ 1)
∫

D

|f ◦ φ(w)|2|φ′(w)|2|φ′(w)|α
(
1 − |w|2

)α dA(w)
π

= (α+ 1)
∫

D

|f(z)|2|φ′ (
φ−1(z)

)
|α

(
1 − |φ−1(z)|2

)α dA(z)
π

.

Since
(
1 − |φ−1(z)|2

)α =
(
1 − |z|2

)α |(φ−1)′(z)|α and (φ−1)′(z) = 1
φ′(φ−1(z)) , the

result follows. □

Since Vφ = T(φ′)1+α/2Cφ and V ∗
φ = V −1

φ , the adjoint is given by

V ∗
φ f =

(
φ′ ◦ φ−1)−1−α/2

f ◦ φ−1.

The proof of the following lemma is straightforward and is therefore omitted.

Lemma 4.6. For φ an automorphism of the unit disk and h bounded measurable
on D, we have VφThV

∗
φ = Th◦φ.

We can now state the main result, which is a generalization of Theorem 1 in [2].
The proof is similar and thus omitted.

Theorem 4.7. Let g and h be bounded and harmonic on the unit disk D. Then
TgTh = ThTg on B2

a,α if and only if one of the following holds:
(i) g and h are analytic on D.
(ii) g and h are analytic on D.
(iii) There exist constants a and b in C, not both zero, such that ag + bh is

constant on D.

As in [2], we obtain a characterization of normality of Toeplitz operators, with
a harmonic symbol, on B2

a,α.

Corollary 4.8. Let f be bounded harmonic on D. Then Tf is normal if and only
if f(D) lies on some line in C.
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