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PRIMITIVE DECOMPOSITIONS OF DOLBEAULT HARMONIC
FORMS ON COMPACT ALMOST-KÄHLER MANIFOLDS

ANDREA CATTANEO, NICOLETTA TARDINI, AND ADRIANO TOMASSINI

Abstract. Let (X, J, g, ω) be a compact 2n-dimensional almost-Kähler man-
ifold. We prove primitive decompositions of ∂-, ∂̄-harmonic forms on X in
bidegree (1, 1) and (n − 1, n − 1) (such bidegrees appear to be optimal). We
provide examples showing that in bidegree (1, 1) the ∂- and ∂̄-decompositions
differ.

1. Introduction

In complex geometry, the Dolbeault cohomology plays a fundamental role in the
study of complex manifolds, and a classical way to compute it on compact complex
manifolds is through the use of the associated spaces of harmonic forms. More
precisely, if X is a complex manifold, then the exterior derivative d splits as ∂+ ∂̄,
and such operators satisfy ∂̄2 = ∂2 = ∂∂̄ + ∂̄∂ = 0. Hence, one can define the
Dolbeault cohomology and its conjugate as

H•,•
∂̄

(X) := Ker ∂̄
Im ∂̄

, H•,•
∂ (X) := Ker ∂

Im ∂
.

If X is compact and we fix an Hermitian metric, then it turns out that these
spaces are isomorphic to the kernel of two suitable elliptic operators, ∆∂̄ and ∆∂ ,
respectively. More precisely, denoting with H •,•

∂̄
(X) and H •,•

∂ (X) the spaces of
harmonic forms, they have a cohomological meaning, namely

H•,•
∂̄

(X) ≃ H •,•
∂̄

(X), H•,•
∂ (X) ≃ H •,•

∂ (X),
and in particular their dimensions are holomorphic invariants.

Moreover, if the Hermitian metric is Kähler, then by the Kähler identities it
turns out that ∆∂̄ = ∆∂ and in particular

H •,•
∂̄

(X) = H •,•
∂ (X),
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therefore giving isomorphisms for the respective cohomologies, namely
H•,•

∂̄
(X) ≃ H•,•

∂ (X).
The integrability assumption on the complex structure is crucial in the proof of all
these results.

Furthermore, a remarkable feature of Kähler geometry is that the primitive
decomposition of differential forms passes to cohomology and leads to a primitive
decomposition of de Rham cohomology (see, e.g., [18]). Kähler geometry is at
the crossroad of complex and symplectic geometry. From the symplectic point
of view we recall that Tseng and Yau [17] introduced natural cohomologies on
(compact) symplectic manifolds, involving the symplectic co-differential and the
exterior derivative, proving a primitive decomposition for them.

If J is a non-integrable almost-complex structure on a 2n-dimensional smooth
manifold X, then the exterior derivative splits as µ+ ∂ + ∂̄ + µ̄, and in particular
∂̄2 ̸= 0. Hence, the standard Dolbeault cohomology and its conjugate are not
well-defined. Recently, Cirici and Wilson [6] gave a definition for the Dolbeault
cohomology in the non-integrable setting considering also the operator µ̄ together
with ∂̄. Such cohomology groups might be infinite-dimensional on compact almost-
complex manifolds as shown in [7].

On the other hand, fixing an almost-Hermitian metric g on (X,J) one can
develop a Hodge theory for harmonic forms on (X, J, g) without a cohomological
counterpart. More precisely, setting, similarly to the integrable case,

∆∂̄ := ∂̄∂̄∗ + ∂̄∗∂̄, ∆∂ := ∂∂∗ + ∂∗∂,

it turns out that they are elliptic selfadjoint differential operators. Therefore, if X
is compact, their kernels, denoted again with H •,•

∂̄
(X) and H •,•

∂ (X), are finite
dimensional complex vector spaces. Holt and Zhang [11] answered to a question
of Kodaira and Spencer [9] showing that, contrarily to the complex case, the di-
mensions of the spaces of ∂̄-harmonic (0, 1)-forms on a 4-dimensional manifold
depend on the metric. Indeed they construct on the Kodaira–Thurston manifold
an almost-complex structure that, with respect to different almost-Hermitian met-
rics, has varying dim H 0,1

∂̄
. With different techniques, in [16] it was shown that

also the dimension of the space of ∂̄-harmonic (1, 1)-forms depends on the metric
on 4-dimensional manifolds (for other results in this direction, see [13] and [10]).

We note that performing explicit computations of ∂̄-harmonic forms is a difficult
task and not much is known in higher dimensions (see [15], [3], [4] for some detailed
computations).

In the present paper we study the validity of primitive decompositions on com-
pact almost-Kähler manifolds in any dimension. More precisely, in Propositions
3.1 and 3.2, Theorem 3.4 and Corollary 3.5 we prove, on compact almost-Kähler
2n-dimensional manifolds, primitive decompositions for ∂̄- and ∂-harmonic forms
in bidegrees (p, 0), (0, q), (1, 1), (n, n−p), (n−q, n) and (n−1, n−1), with p, q ≤ n.
One cannot hope to have such decompositions for any bidegree as shown in Exam-
ple 5.3. For similar results in the case of Bott–Chern harmonic forms, we refer the
reader to [12].
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We notice that, even though the metric is almost-Kähler, the decompositions of
∂̄- and ∂-harmonic forms might differ. Indeed, in Section 4 we show explicitly that,
differently from the Kähler case, one can have ∆∂̄ ̸= ∆∂ , and also

H 1,1
∂̄

(X) ̸= H 1,1
∂ (X).

We observe that a key ingredient in the proof of the results in [16] (see also [11])
is indeed the primitive decomposition of ∂̄-harmonic (1, 1)-forms on 4-dimensional
manifolds. In fact, in this dimension in Proposition 4.1 we prove the general equal-
ity H 1,1

∂̄
(X) = H 1,1

∂ (X).
All the examples we present are nilmanifolds, of dimensions 6 and 8, endowed

with possibly non-left-invariant almost-Kähler structures.
We recall that if one wants to mimic and recover all the Kähler identities, the

proper operator to consider is δ̄ := ∂̄ + µ (see [5], [14]). However, considering
just the operator ∂̄ on almost-Kähler manifolds we are able to see how genuinely
almost-Kähler manifolds differ from Kähler ones. More precisely, the study of the
kernel of ∆∂̄ illuminates the purely almost-complex properties.

2. Preliminaries

In this section we recall some basic facts about almost-complex and almost-
Hermitian manifolds and fix some notations. Let X be a smooth manifold of
dimension 2n and let J be an almost-complex structure on X, namely a (1, 1)-
tensor on X such that J2 = − id. Then J induces on the space of forms A•(X) a
natural bigrading, namely

A•(X) =
⊕

p+q=•
Ap,q(X).

Accordingly, the exterior derivative d splits into four operators:

d : Ap,q(X) → Ap+2,q−1(X) ⊕Ap+1,q(X) ⊕Ap,q+1(X) ⊕Ap−1,q+2(X),
d = µ+ ∂ + ∂̄ + µ̄,

where µ and µ̄ are differential operators that are linear over functions. In particular,
they are related to the Nijenhuis tensor NJ by

(µα+ µ̄α) (u, v) = 1
4α (NJ(u, v)) ,

where α ∈ A1(X). Hence, J is integrable, that is, J induces a complex structure
on X if and only if µ = µ̄ = 0.
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In general, since d2 = 0, one has

µ2 = 0
µ∂ + ∂µ = 0

∂2 + µ∂̄ + ∂̄µ = 0
∂∂̄ + ∂̄∂ + µµ̄+ µ̄µ = 0

∂̄2 + µ̄∂ + ∂µ̄ = 0
µ̄∂̄ + ∂̄µ̄ = 0

µ̄2 = 0.

In particular, ∂̄2 ̸= 0, and so the Dolbeault cohomology of X

H•,•
∂̄

(X) := Ker ∂̄
Im ∂̄

is well defined if and only if J is integrable. The same holds for the operator ∂.
If g is an Hermitian metric on (X, J) with fundamental form ω and ∗ is the

associated C-linear Hodge-∗ operator, one can consider the adjoint operators

d∗ = − ∗ d∗, µ∗ = − ∗ µ̄∗, ∂∗ = − ∗ ∂̄∗, ∂̄∗ = − ∗ ∂∗, µ̄∗ = − ∗ µ∗,

and, for D ∈
{
d, ∂, ∂̄, µ, µ̄

}
, one defines the associated Laplacians

∆D := DD∗ +D∗D,

and we will denote the kernel by

H p,q
D (X) := Ker ∆D|Ap,q(X) .

These spaces will be called the spaces of D-harmonic forms. The operators ∆∂̄

and ∆∂ are second-order, elliptic, differential operators; in particular, if X is com-
pact, the associated spaces of harmonic forms are finite-dimensional, and their
dimensions will be denoted by hp,q

∂̄
and hp,q

∂ .
If X is compact, then we easily deduce the following relations for a (p, q)-form α:{

∆∂ α = 0 ⇐⇒ ∂α = 0, ∂̄ ∗ α = 0,
∆∂̄ α = 0 ⇐⇒ ∂̄α = 0, ∂ ∗ α = 0,

which characterize the spaces of harmonic forms.

3. Primitive decompositions of Dolbeault harmonic forms

Let (X,J, g, ω) be a 2n-dimensional almost-Hermitian manifold. We denote with

L : ΛkX → Λk+2X, α 7→ ω ∧ α

the Lefschetz operator and with

Λ : ΛkX → Λk−2X, Λ = − ∗ L∗
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its dual. A k-form αk on X, for k ≤ n, is said to be primitive if Λαk = 0, or
equivalently, Ln−k+1αk = 0. Then, the following vector bundle decomposition
holds (see, e.g., [18]):

ΛkX =
⊕

r≥max(k−n,0)

Lr(P k−2rX),

where
P sX := ker

(
Λ : ΛsX → Λs−2X

)
is the bundle of s-primitive forms. Accordingly, given any k-form αk on X, we can
write

αk =
∑

r≥max(k−n,0)

1
r!L

rβk−2r, (3.1)

where βk−2r ∈ Γ(P k−2rX), that is,

Λβk−2r = 0,

or equivalently
Ln−k+2r+1βk−2r = 0.

Furthermore, the decomposition above is compatible with the bidegree decompo-
sition on the bundle of complex k-forms Λk

CX induced by J , that is,

P k
CX =

⊕
p+q=k

P p,qX,

where
P p,qX = P k

CX ∩ Λp,qX.

For any given βk ∈ P kX, we have the following formula (cf. [18, p. 23, Théorème 2]):

∗Lrβk = (−1)
k(k+1)

2
r!

(n− k − r)!L
n−k−rJβk. (3.2)

In what follows we will write P • = P •X and so on.
We recall that by [5, Corollary 5.4] such decompositions in primitive forms pass

to the spaces of d-harmonic forms whenever there exists an almost-Kähler metric.
More precisely, if (X,J, ω) is a compact 2n-dimensional almost-Kähler manifold,
then, for every p, q,

H p,q
d (X) =

⊕
r≥max(k−n,0)

Lr
(
H p−r,q−r

d (X) ∩ P p−r,q−r
)
.

In fact, this holds also for the spaces of δ̄- and δ-harmonic forms introduced in [14],
where δ̄ := ∂̄ + µ and δ := ∂ + µ̄. Indeed, by [14, Proposition 6.2 and Theorem
6.7], one has

H p,q
d (X) = H p,q

δ̄
(X) = H p,q

δ (X).

Next, we are going to study such decompositions for ∂̄-harmonic forms. First, notice
that, since (p, 0)-forms and (0, q)-forms are trivially primitive, we immediately
derive the following results.
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Proposition 3.1. Let (X, J, g, ω) be a compact 2n-dimensional almost-Hermitian
manifold (with n ≥ 2). Then the following decompositions hold for every p, q ≤ n:

H p,0
∂̄

= H p,0
∂̄

∩ P p,0, H 0,q

∂̄
= H 0,q

∂̄
∩ P 0,q,

H p,0
∂ = H p,0

∂ ∩ P p,0, H 0,q
∂ = H 0,q

∂ ∩ P 0,q.

By applying to such decompositions the Hodge-∗ operator and formula (3.2), we
obtain the following result.

Proposition 3.2. Let (X, J, g, ω) be a compact 2n-dimensional almost-Hermitian
manifold (with n ≥ 2). Then the following decompositions hold for every p, q ≤ n:

H n,n−p

∂̄
= Ln−p

(
H p,0

∂ ∩ P p,0)
, H n−q,n

∂̄
= Ln−q

(
H 0,q

∂ ∩ P 0,q
)
,

H n,n−p
∂ = Ln−p

(
H p,0

∂̄
∩ P p,0)

, H n−q,n
∂ = Ln−q

(
H 0,q

∂̄
∩ P 0,q

)
.

As a consequence, we derive the following corollary.

Corollary 3.3. Let (X, J, g, ω) be a compact 2n-dimensional almost-Hermitian
manifold (with n ≥ 2). Then,

H n,0
∂̄

= H n,0
∂ and H 0,n

∂̄
= H 0,n

∂ .

Proof. This follows taking p = n and q = n in Proposition 3.2. Otherwise, it can
be proved directly. Indeed, let α be an (n, 0)-form (the case (0, n) is similar); then
α is primitive, and by Formula (3.2), ∗α = cn α, with cn ̸= 0 a constant depending
only on the dimension of X. Therefore, for bidegree reasons,

α ∈ H n,0
∂̄

⇐⇒ ∂̄α = 0 ⇐⇒ ∂̄ ∗ α = 0 ⇐⇒ α ∈ H n,0
∂ . □

We show now that primitive decompositions hold also in other suitable degrees
as soon as we assume the existence of an almost-Kähler metric.

Theorem 3.4. Let (X, J, g, ω) be a compact 2n-dimensional almost-Kähler mani-
fold (with n ≥ 2). Then the following decomposition holds:

H 1,1
∂̄

= C · ω ⊕
(
H 1,1

∂̄
∩ P 1,1)

.

Proof. Let α1,1 ∈ A1,1(X). Then the primitive decomposition (3.1) reads as

α1,1 = β1,1 + βω, (3.3)

where
β1,1 ∈ A1,1(X), β1,1 ∧ ωn−1 = 0, β ∈ C ∞(X;C).

The form α1,1 belongs to H 1,1
∂̄

if and only if α1,1 satisfies the equations

∂̄α1,1 = 0, ∂ ∗ α1,1 = 0. (3.4)

By (3.2) we compute

∗α1,1 = − 1
(n− 2)!β1,1 ∧ ωn−2 + β

1
(n− 1)!ω

n−1. (3.5)
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Therefore, by (3.3), (3.5), taking into account that g is almost-Kähler, equations
(3.4) are equivalent to

∂̄β1,1 + ∂̄β ∧ ω = 0

− 1
(n− 2)!∂β1,1 ∧ ωn−2 + ∂β ∧ 1

(n− 1)!ω
n−1 = 0.

(3.6)

After multiplying the first equation by ωn−2 and the second by (n− 2)!, we obtain
∂̄β1,1 ∧ ωn−2 + ∂̄β ∧ ωn−1 = 0

−∂β1,1 ∧ ωn−2 + 1
n− 1∂β ∧ ωn−1 = 0,

and taking the sum of the last two equations we obtain

(∂̄β1,1 − ∂β1,1) ∧ ωn−2 +
(
∂̄β + 1

n− 1∂β
)

∧ ωn−1 = 0.

By definition, we have
dc = i(∂̄ − ∂ + µ− µ),

where |µ| = (2,−1), |µ| = (−1, 2). Consequently, the last equation can be written
as (

∂̄β + 1
n− 1∂β

)
∧ ωn−1 = idcβ1,1 ∧ ωn−2.

Applying −idc to both sides of the above equation, we obtain[
(∂̄ − ∂ + µ− µ̄)

(
∂̄β + 1

n− 1∂β
)]

∧ ωn−1 = 0,

which yields (
1

n− 1 + 1
)
∂∂̄β ∧ ωn−1 = 0,

since ∂∂̄ + ∂̄∂ = 0 on functions and the other contributions vanish by bidegree
reasons when we take the wedge product with ωn−1. Therefore,

∂∂̄
(
β · ωn−1)

= 0,
from which we derive that β ≡ β0 ∈ C is constant (see, for instance [8], [1, Theorem
10] or [16, Proposition 3.4] for the 4-dimensional case). Hence

α1,1 = β1,1 + β0ω,

so from (3.6) or from
∂̄β1,1 = ∂̄α1,1 − ∂̄(β0ω) = 0

∂ ∗ β1,1 = ∂ ∗ α1,1 − ∂ ∗ (β0ω) = 0,

we have that β ∈ H 1,1
∂̄

and β1,1 is primitive. This proves that

H 1,1
∂̄

⊂ C · ω ⊕
(
H 1,1

∂̄
∩ P 1,1)

.

Conversely, if α1,1 = β0ω + β1,1, with β0 ∈ C and β1,1 ∈ H 1,1
∂̄

∩ P 1,1, we easily
conclude that ∂ ∗ α1,1 = 0 and ∂̄α1,1 = 0. The decomposition is thus proved. □
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As a consequence we obtain the following primitive decompositions.

Corollary 3.5. Let (X, J, g, ω) be a compact 2n-dimensional almost-Kähler man-
ifold (with n ≥ 2). Then the following decompositions hold:

(i) H 1,1
∂ = C · ω ⊕

(
H 1,1

∂ ∩ P 1,1)
,

(ii) H n−1,n−1
∂̄

= Cωn−1 ⊕ Ln−2(
H 1,1

∂ ∩ P 1,1)
,

(iii) H n−1,n−1
∂ = Cωn−1 ⊕ Ln−2(

H 1,1
∂̄

∩ P 1,1)
.

Proof. The first decomposition follows from the one proved in Theorem 3.4 by
conjugation.

To prove the second, observe that the Hodge-∗ operator induces an isomorphism
H 1,1

∂ ≃ H n−1,n−1
∂̄

. Via this isomorphism, ω corresponds to ωn−1, while by (3.2)
on primitive (1, 1)-forms we have ∗ = − 1

(n−2)!L
n−2. So we just have to apply ∗ to

the decomposition of the previous point.
Finally, the last point follows from the second by conjugation. □

Recall that by [5] (see also [14]) on compact almost-Kähler manifolds we have

∆∂̄ + ∆µ = ∆∂ + ∆µ̄,

and so, for every p, q,

H p,q

∂̄
∩ H p,q

µ = H p,q
∂ ∩ H p,q

µ̄ .

In particular, if J is integrable, namely (X,J, g, ω) is a compact Kähler manifold,
one recovers the well-known identities

∆∂̄ = ∆∂

and
H p,q

∂̄
= H p,q

∂ .

Therefore, one could wonder if this last identity holds true also in the non-integrable
case for some special bidegrees. More precisely, we want to show that the two
primitive decompositions we obtained in Theorem 3.4 and Corollary 3.5 for H 1,1

∂̄

and H 1,1
∂ are not the same.

4. Relations between ∆∂̄ and ∆∂

Let us start by considering the 4-dimensional case. Let α1,1 be a primitive
(1, 1)-form on an almost-Kähler 4-dimensional manifold X. It follows from (3.2)
that ∗α1,1 = −α1,1. As a consequence we have the following result.

Proposition 4.1. Let X be an almost-Kähler 4-dimensional manifold. Then, on
(1, 1)-forms we have

∆∂̄|A1,1
= ∆∂|A1,1 ,

and in particular their kernels coincide:

H 1,1
∂̄

= H 1,1
∂ .
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Notice that this follows also from [5], since on almost-Kähler manifolds we have
∆∂̄ +∆µ = ∆∂ +∆µ̄, and on (1, 1)-forms on 4-dimensional almost-Kähler manifolds,
∆µ = ∆µ̄ = 0.

We show now that in higher dimension the equality

∆∂̄|A1,1
= ∆∂|A1,1

does not hold in general.

Example 4.2. Let T6 = Z6\R6 be the 6-dimensional torus with coordinates
(x1, x2, x3, y1, y2, y3) on R6. Let f = f(x2) be a non-constant Z-periodic func-
tion, and we define the following non-left-invariant almost-complex structure J on
T6:

J∂x1 := e−f∂y1 , J∂x2 := ∂y2 , J∂x3 := ∂y3 .

A global co-frame of (1, 0)-forms is given by

Φ1 := dx1 + i efdy1, Φ2 := dx2 + i dy2, Φ3 := dx3 + i dy3.

The structure equations are

dΦ1 = −1
4f

′(x2)Φ12 − 1
4f

′(x2)Φ21̄ − 1
4f

′(x2)Φ12̄ + 1
4f

′(x2)Φ1̄2̄

and dΦ2 = dΦ3 = 0. Then, the (1, 1)-form

ω := i

2e
−f Φ11̄ + i

2Φ22̄ + i

2Φ33̄

is a compatible symplectic structure, namely (J, ω) is an almost-Kähler structure
on T6.

Notice now that by a direct computation

µ̄Φ13̄ = 1
4f

′(x2)Φ1̄2̄3̄ ̸= 0

and
µΦ13̄ = 0.

Therefore, from [5], we have

(∆∂̄ − ∆∂)Φ13̄ = −µ̄∗µ̄Φ13̄ ̸= 0.

The last point follows either by direct computation or by noticing that

µ̄∗µ̄Φ13̄ ̸= 0 ⇐⇒ ∥µ̄Φ13̄∥2 ̸= 0 ⇐⇒ µ̄Φ13̄ ̸= 0.

Another example is provided by the following 8-dimensional nilmanifold with a
left-invariant almost-Kähler structure.

Example 4.3. We recall the following construction contained in [2]. Set

H(1, 2) :=




1 0 x1 z1
0 1 x2 z2
0 0 1 y
0 0 0 1

 | x1, x2, y, z1, z2 ∈ R

 .
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Let Γ be the subgroup of matrices with integral entries. Let X := Γ\H(1, 2) and
define

M := X × T3.

Denoting with u, v, w coordinates on T3 we consider the following left-invariant
1-forms:

e1 := dx2, e2 := dx1, e3 := dy, e4 := du,

e5 := dz1 − x1dy, e6 := dz2 − x2dy, e7 := dv, e8 := dw,

and the structure equations become

de1 = de2 = de3 = de4 = de7 = de8 = 0, de5 = −e23, de6 = −e13.

We define the symplectic structure

ω := e15 + e26 + e37 + e48,

and we take the compatible almost-complex structure defined by the following co-
frame of (1, 0)-forms:

ψ1 := e1 + i e5, ψ2 := e2 + i e6, ψ3 := e3 + i e7, ψ4 := e4 + i e8.

By direct computation we get

dψ14̄ = − i

4ψ
234̄ − i

4ψ
23̄4̄ + i

4ψ
32̄4̄ − i

4ψ
2̄3̄4̄;

hence

µψ14̄ = 0, µ̄ψ14̄ = − i

4ψ
2̄3̄4̄.

Therefore,

(∆∂̄ − ∆∂)ψ14̄ = (∆µ̄ − ∆µ)ψ14̄ = µ̄∗µ̄ψ14̄ ̸= 0,

proving that
∆∂̄ ̸= ∆∂

on (1, 1)-forms. However, one can show that their kernels coincide, namely H 1,1
∂̄

=
H 1,1

∂ .

Remark 4.4. We want to point out that finding explicit examples of almost-Kähler
manifolds with ∆∂̄ ̸= ∆∂ seems to be not so obvious. In fact, we couldn’t find any
left-invariant example in dimension 6.

Even though ∆∂̄|A1,1
̸= ∆∂|A1,1 in general, we wonder whether their kernels

coincide. Before showing that this is not the case we notice that the equality
H 1,1

∂̄
= H 1,1

∂ is equivalent to H 1,1
∂̄

∩ P 1,1 = H 1,1
∂ ∩ P 1,1.
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Lemma 4.5. Let (X, J, g, ω) be an almost-Kähler manifold. Then H 1,1
∂̄

= H 1,1
∂

if and only if H 1,1
∂̄

∩ P 1,1 = H 1,1
∂ ∩ P 1,1.

Proof. We prove only the non-trivial implication. Let α1,1 ∈ H 1,1
∂̄

; then we can
decompose it as α1,1 = c ω + β1,1 with c ∈ C and β1,1 ∈ H 1,1

∂̄
∩ P 1,1. Now,

∆∂α1,1 = c · ∆∂ω + ∆∂β1,1 = 0 + 0 = 0,

so α1,1 ∈ H 1,1
∂ . The other inclusion is similar. □

We observe the following:

Lemma 4.6. Let (X2n, J, g, ω) be a 2n-dimensional almost-Kähler manifold. Let
k := p+ q ≤ n and let α ∈ P p,q. Then,

∂̄α = 0 =⇒ ∂∗α = 0.

Similarly,
∂α = 0 =⇒ ∂̄∗α = 0.

Proof. By (3.2) we have

∗α = (−1)
k(k+1)

2
ip−q

(n− k)!α ∧ ωn−k.

Since ω is closed, this readily implies that ∂̄ ∗ α = 0. The same holds switching ∂̄
and ∂. □

Lemma 4.7. Let (X, J, g, ω) be an almost-Kähler manifold. Let α1,1 ∈ H 1,1
∂̄

∩P 1,1.
Then d∗α1,1 = 0.

Proof. Since ∗α1,1 is an (n− 1, n− 1)-form, by the previous lemma we have

d ∗ α1,1 = (∂ + ∂̄) ∗ α1,1 = ∂ ∗ α1,1 + ∂̄ ∗ α1,1 = 0. □

Lemma 4.8. Let (X,J, g, ω) be an almost-Kähler manifold. Let α1,1 ∈ H 1,1
∂̄

∩P 1,1.
Then dα1,1, µα1,1, ∂α1,1, ∂̄α1,1 and µ̄α1,1 are primitive.

Proof. From the previous lemma and (3.2) we deduce that

0 = d ∗ α1,1 = − 1
(n− 2)!d(α ∧ ωn−2) = − 1

(n− 2)!dα ∧ ωn−2.

So dα1,1 is primitive, and by decomposition in types we deduce that also µα1,1,
∂α1,1, ∂̄α1,1 and µ̄α1,1 are primitive. □

We finally show that, in general, on compact almost-Kähler manifolds we have

H 1,1
∂̄

̸= H 1,1
∂ .

By Lemma (4.5) this will be done using primitive forms.
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Example 4.9. Using the same notations as in Example 4.2 we consider T6 =
Z6\R6. Let g = g(x3, y3) be a function on T6. We define an almost-complex
structure J setting as global co-frame of (1, 0)-forms

φ1 := egdx1 + i e−gdy1, φ2 := dx2 + i dy2, φ3 := dx3 + i dy3.

The structure equations are

dφ1 = V3(g)φ31̄ − V̄3(g)φ1̄3̄,

where {V1, V2, V3} is the global frame of vector fields dual to
{
φ1, φ2, φ3}

, and
dφ2 = dφ3 = 0. Assume finally that g satisfies V3(g) ̸= 0.

Then, the (1, 1)-form

ω := i

2φ
11̄ + i

2φ
22̄ + i

2φ
33̄

is a compatible symplectic structure, namely (J, ω) is an almost-Kähler structure
on T6.

Notice now that
∂̄φ12̄ = V3(g)φ31̄2̄ ̸= 0,

namely, φ12̄ /∈ H 1,1
∂̄

but φ12̄ ∈ H 1,1
∂ . Indeed, ∂φ12̄ = 0, and since φ12̄ is primitive

and ω is closed,

∂̄ ∗ φ12̄ = ∂̄(−ω ∧ φ12̄) = −ω ∧ ∂̄φ12̄ = −ω ∧
(
V3(g)φ31̄2̄

)
= 0.

Hence, ∂∗φ12̄ = − ∗ ∂̄ ∗ φ12̄ = 0.

5. Primitive decompositions in dimension 6

Notice that in view of Propositions 3.1, 3.2, Theorem 3.4 and Corollary 3.5 we
have a full primitive description of all ∂̄-harmonic forms on compact 4-dimensional
almost-Kähler manifolds. It is therefore natural to ask what happens for bidegrees
different from (p, 0), (0, q), (n, q), (p, n), (1, 1) and (n−1, n−1) in higher dimension.
The first interesting dimension to consider is 6, and in this case the only bidegrees
left are (2, 1) and (1, 2). Let us focus, for instance, on bidegree (2, 1). The primitive
decomposition of forms is

A2,1(X) = P 2,1 ⊕ L
(
A1,0(X)

)
.

Passing to ∂̄-harmonic forms, it follows that

H 2,1
∂̄

⊇
(
H 2,1

∂̄
∩ P 2,1)

⊕ L
(
H 1,0

∂̄

)
;

indeed, on compact almost-Kähler manifolds, for bidegree reasons and [5] one has

H 1,0
∂̄

= H 1,0
∂̄

∩ H 1,0
µ = H 1,0

∂ ∩ H 1,0
µ̄ .

Therefore, it is natural to wonder whether such inclusion is indeed an identity. In
fact, this is not the case in general, as shown by the following proposition.
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Proposition 5.1. There exists a compact almost-Kähler 6-dimensional manifold
(X,J, ω) such that

H 2,1
∂̄

̸=
(
H 2,1

∂̄
∩ P 2,1)

⊕ L
(
H 1,0

∂̄

)
.

Proof. We refer the reader to Example 5.3 for the proof. □

First we need the following lemma, which will allow us to work only with left-
invariant forms.

Lemma 5.2. Let X6 = Γ\G be the compact quotient of a 6-dimensional, connected,
simply-connected Lie group by a lattice and let (J, ω) be a left-invariant almost-
Kähler structure on X. Let η ∈ A2,1(X) be a left-invariant (2, 1)-form on X with
primitive decomposition

η = α+ Lβ.

Then, α and β are left-invariant.

Proof. Let η ∈ A2,1(X) be a left-invariant (2, 1)-form on X. Its primitive decom-
position is

η = α+ Lβ,

with α ∈ A2,1(X) primitive, i.e., Lα = 0 and β ∈ A1,0(X). Notice that β is indeed
primitive for bidegree reasons. We apply L to the decomposition and obtain

Lη = L2β.

Since ω is left-invariant, we have that Lη, and so L2β, are left-invariant. Now,
since L2 : Λ1 → Λ5 is an isomorphism at the level of the exterior algebra, it follows
that also β is left-invariant. As a consequence, since Lβ and η are left-invariant,
we get that also α is left-invariant. □

Example 5.3. Let X be the Iwasawa manifold defined as the quotient X := Γ\H3,
where

H3 :=


1 z1 z3

0 1 z2
0 0 1

 | z1, z2, z3 ∈ C


and

Γ :=


1 γ1 γ3

0 1 γ2
0 0 1

 | γ1, γ2, γ3 ∈ Z[ i ]

 .

Then, setting zj = xj + iyj , there exists a basis of left-invariant 1-forms {ei} on X
given by 

e1 = dx1

e2 = dy1

e3 = dx2

e4 = dy2

e5 = dx3 − x1dx2 + y1dy2

e6 = dy3 − x1dy2 − y1dx2.
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The following structure equations hold:

de1 = 0
de2 = 0
de3 = 0
de4 = 0
de5 = −e13 + e24

de6 = −e14 − e23.

Let us consider the non integrable left-invariant almost-complex structure J given
by

ϕ1 = e1 + ie6, ϕ2 = e2 + ie5, ϕ3 = e3 + ie4

being a global coframe of (1, 0)-forms. By a direct computation the structure
equations become (see also [15])

4 dϕ1 = −ϕ13 − iϕ23 + ϕ13̄ + ϕ31̄ − iϕ23̄ + iϕ32̄ + ϕ1̄3̄ − iϕ2̄3̄,

4 dϕ2 = −iϕ13 + ϕ23 − iϕ13̄ + iϕ31̄ − ϕ23̄ − ϕ32̄ − iϕ1̄3̄ − ϕ2̄3̄,

dϕ3 = 0.

Endow (X, J) with the left-invariant almost-Kähler structure given by

ω = 2(e16 + e25 + e34) = i(ϕ11̄ + ϕ22̄ + ϕ33̄).

We want to find an element η ∈ A2,1(X) which is contained in H 2,1
∂̄

but is not
contained in (

H 2,1
∂̄

∩ P 2,1)
⊕ L

(
H 1,0

∂̄

)
.

Thanks to Lemma 5.2 it is sufficient to work with left-invariant forms. Indeed if
we find η ∈ H 2,1

∂̄
left-invariant that cannot be decomposed as η = α + Lβ, with

α ∈ H 2,1
∂̄

∩P 2,1 and β ∈ H 1,0
∂̄

, both left-invariant forms, then η /∈
(
H 2,1

∂̄
∩P 2,1)

⊕
L

(
H 1,0

∂̄

)
.

A long but direct and straightforward computation shows that the space of
left-invariant ∂̄-harmonic (2, 1)-forms is

C⟨ϕ131̄ + ϕ232̄, ϕ132̄ + ϕ231̄ − 2iϕ232̄, ϕ133̄ + ϕ233̄⟩,

while it is immediate to see that the space of left-invariant forms which are con-
tained in L

(
H 1,0

∂̄

)
is

C⟨ϕ131̄ + ϕ232̄⟩.

Since, for instance, L(ϕ132̄ + ϕ231̄ − 2iϕ232̄) = −2iL(ϕ232̄) ̸= 0, it means that
ϕ132̄ + ϕ231̄ − 2iϕ232̄ is not primitive. Therefore, ϕ132̄ + ϕ231̄ − 2iϕ232̄ is a left-
invariant, ∂̄-harmonic (2, 1)-form, but it is not contained in(

H 2,1
∂̄

∩ P 2,1)
⊕ L

(
H 1,0

∂̄

)
.
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Mathématique de l’Université de Nancago, VI. Actualités Sci. Ind., no. 1267, Hermann,
Paris, 1958. MR Zbl

Andrea Cattaneo
Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Unità di Matematica e
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Informatica, Università degli Studi di Parma, Parco Area delle Scienze 53/A, 43124 Parma, Italy
adriano.tomassini@unipr.it

Received: September 5, 2022
Accepted: October 25, 2022

Rev. Un. Mat. Argentina, Vol. 67, No. 1 (2024)

http://www.ams.org/mathscinet-getitem?mr=2981843
https://zbmath.org/?q=an:1275.53079
http://projecteuclid.org/euclid.jdg/1349292670
http://projecteuclid.org/euclid.jdg/1349292670
http://www.ams.org/mathscinet-getitem?mr=111056
https://zbmath.org/?q=an:0137.41103

	1. Introduction
	2. Preliminaries
	3. Primitive decompositions of Dolbeault harmonic forms
	4. Relations between Delta bar partial and Delta partial
	5. Primitive decompositions in dimension 6
	Acknowledgments
	References

