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ONE-SIDED EP ELEMENTS IN RINGS WITH INVOLUTION

CANG WU, JIANLONG CHEN, AND YU CHEN

Abstract. This paper investigates the one-sided EP property of elements in
rings with involution. Let R be a ring with involution ∗. Then a ∈ R is said
to be left (resp. right) EP if a is Moore–Penrose invertible and aR ⊆ a∗R

(resp. a∗R ⊆ aR). Many properties of EP elements are extended to one-sided
versions. Some new characterizations of EP elements are presented in relation
to the absorption law for Moore–Penrose inverses.

1. Introduction

The EP property was first discussed in 1950 by H. Schwerdtfeger [25], who
defined a square complex matrix to be EP if it has the same range as its conjugate
transpose. In the literature [7, 13], the notion of EP matrices was extended to EP
elements in rings with involution by means of Moore–Penrose inverses: an element
a in a ring R with involution ∗ is called EP if the Moore–Penrose inverse a† of a
exists and aa† = a†a, or, equivalently, if a† exists and aR = a∗R [7, Proposition
25]. The class of EP elements has very nice properties and important relations
with some other classes of elements such as units and projections; it has been
investigated by many authors (see, for example, [4, 15, 16, 18, 19, 20, 21, 22, 27]).

It is well known that an n × n complex matrix A is EP if and only if

AMn(C) = A⋆Mn(C), (1.1)

where Mn(C) denotes the n×n complex matrix ring and A⋆ denotes the conjugate
transpose of A (see, for example, [2, p. 159, Exercise 17]). Since A and A⋆ have
the same rank, the condition (1.1) is also equivalent to

AMn(C) ⊆ A⋆Mn(C).

In [22], Patŕıcio and Puystjens extended this fact to Dedekind-finite rings (i.e.,
rings for which every one-sided invertible element is two-sided invertible; Mn(C) is
a typical example of such rings) by showing that an element a of a Dedekind-finite
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ring R with involution ∗ is EP if and only if a† exists and aR ⊆ a∗R. But in
general, this is not the case if the ring is not Dedekind-finite.

In this paper, for an arbitrary ring R with involution ∗, we investigate those
elements a ∈ R for which a† exists and aR ⊆ a∗R (resp. a∗R ⊆ aR), in which case
such an a is said to be left (resp. right) EP. Many properties of EP elements are
extended to one-sided versions. Various characterizations of one-sided EP elements
are derived by making use of generalized inverses.

To begin with, we recall that an involution ∗ of a ring R is an anti-isomorphism
with index two, that is, it satisfies (r∗)∗ = r, (rs)∗ = s∗r∗ and (r + s)∗ = r∗ + s∗

for each r, s ∈ R. An element a ∈ R is said to be Moore–Penrose invertible (with
respect to ∗) if there exists x ∈ R satisfying the following Penrose equations [23, 12]:

axa = a, xax = x, (ax)∗ = ax, (xa)∗ = xa.

Such an element x is unique when it exists, and is called the Moore–Penrose inverse
of a and denoted by a†.

Throughout the paper, unless otherwise stated, R denotes a unital ring with
involution ∗, and R† denotes the set of all Moore–Penrose invertible elements of R.

2. The notion and basic properties of one-sided EP elements

In this section, we shall present the notion, examples and basic properties of
one-sided EP elements. We begin with the following definition.

Definition 2.1. Let R be a ring with involution ∗. Then a ∈ R is said to be left
EP if a is Moore–Penrose invertible and aR ⊆ a∗R, and dually a is said to be right
EP if a is Moore–Penrose invertible and a∗R ⊆ aR.

From the definition it follows directly that an element is EP if and only if it is
both left and right EP. Moreover, since a ∈ R† implies that a∗ ∈ R†, we can see
that a is left EP if and only if a∗ is right EP. The following examples show that
one-sided EP elements are, in general, not EP.

Example 2.2. We employ the construction of Jacobson [9]. Let R be the ring of
all row and column finite matrices over a field, and let ∗ be the transpose map of

matrices. Let a =


0
1 0

1 0
. . . . . .

 ∈ R. A routine calculation shows that a∗a = 1R

and aa∗ =


0

1
1

. . .

 ̸= 1R, from which we can see that a ∈ R† and a† = a∗.

Moreover, since a∗a = 1, it follows that a∗R = R; and since a is not right invertible,
it follows that aR ⊊ R. Therefore, we have aR ⊊ a∗R, which, together with a ∈ R†,
imply that a is left EP but not (right) EP.
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Example 2.3. Let K be a field, and let

R = K⟨x, y : x2y = x, xy2 = y, xyx = x, yxy = y⟩

be the free algebra over K in the noncommuting variables x, y satisfying x2y =
x = xyx and xy2 = y = yxy. Observe that the set B = {xy, ymxn : m, n ≥ 0}
forms a basis of R, and so any element r ∈ R can be uniquely written in the form
r = k0xy +

∑p
i=1 kiy

mixni for some k0, ki ∈ K, mi, ni, p ≥ 0. Define

∗ : R → R, r 7−→ r∗ = k0xy +
p∑

i=1
kiy

nixmi .

Then, by [26, Example 4.2], ∗ is an involution of R. Now we claim that
(i) x is a partial isometry (i.e., xx∗x = x, or, equivalently, x ∈ R† and x† =

x∗);
(ii) x is right EP but not (left) EP.

Indeed, since x∗ = (x1y0)∗ = x0y1 = y and xyx = x, it follows that x is a partial
isometry. Since x∗R = yR = (xy2)R ⊆ xR, it follows that x is right EP. Moreover,
if xR ⊆ x∗R, then x = x∗s = ys for some s ∈ R, and so x = (yxy)s = yx2,
contradicting the assumption on x, y; thus, x is not (left) EP.

By [18], if a is a partial isometry (or, more generally, a is star-dagger, i.e.,
a†a∗ = a∗a†) and is EP, then it is normal (i.e., aa∗ = a∗a). Here, we notice from
the above two examples that, in general, a partial isometry being left or right EP
does not imply that it is normal.

The next result characterizes the one-sided EP property by making use of Moore–
Penrose inverses.

Proposition 2.4. Let a ∈ R†. Then the following statements are equivalent:
(1) a is left EP.
(2) a†a2 = a.
(3) (a†)2a = a†.

Proof. (1)⇒(2). By (1), there exists r ∈ R such that a = a∗r, so

a†a2 = a†a(a∗r) = [(a†a)∗a∗]r = (aa†a)∗r = a∗r = a.

(2)⇒(3). Since

(a†)2a = (a†aa†)a†a = a†(aa†)∗(a†a)∗

= a†[(a†a)(aa†)]∗ = a†[(a†a2)a†]∗,

it follows from (2) that (a†)2a = a†[(a†a2)a†]∗ = a†(aa†)∗ = a†.
(3)⇒(1). If (a†)2a = a†, then

a = (a†)∗a∗a = [(a†)2a]∗a∗a = a∗[(a†)2]∗a∗a ∈ a∗R,

which implies that a is left EP. □
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Proposition 2.5. Let a ∈ R†. Then the following statements are equivalent:
(1) a is right EP.
(2) a2a† = a.
(3) a(a†)2 = a†.

Proof. The proof is similar to that of Proposition 2.4. □

Corollary 2.6. Let a ∈ R†. Then a is left EP if and only if a† is right EP.

Corollary 2.7. For a ∈ R, the following statements are equivalent:
(1) a is EP.
(2) a is left EP and aR = a2R.
(3) a is right EP and Ra = Ra2.

Proof. (1)⇒(2). If a is EP, then it is automatically left and right EP, and by
Proposition 2.5 we obtain a = a2a†, which implies that aR = a2R.

(2)⇒(1). Suppose that a is left EP and aR = a2R. Then we have a = a†a2 and
a† = (a†)2a by Proposition 2.4, and a = a2r for some r ∈ R. Therefore, we can get

aa† = a[(a†)2a] = a[(a†)2a2r]
= a[a†(a†a2)r] = aa†ar

= ar = (a†a2)r = a†(a2r) = a†a,

as desired.
(1)⇔(3). It can be proved similarly. □

Recall that an element r is called Hermitian (or self-adjoint) if r∗ = r, and that
an Hermitian idempotent is called a projection. As is well known, an element a ∈ R
is Moore–Penrose invertible if and only if there exist two projections p, q ∈ R such
that aR = pR and Ra = Rq, in which case p and q are uniquely determined by p =
aa† and q = a†a (see, for example, [24, Theorem 2.12]). Following Kaplansky [11],
such projections p and q are called the left and right projections of a, respectively.
Clearly, a is EP if and only if, in addition, p = q. Now, for one-sided EP elements,
we have the following.

Theorem 2.8. Let a ∈ R†, and let p and q be the left and right projections of a,
respectively. Then the following statements are equivalent:

(1) a is left EP.
(2) a = uq for some left invertible element u commuting with q.
(3) qa = aq.
(4) qp = p.
(5) pq = p.

Proof. (1)⇒(2). Suppose that a is left EP. Let u = a+1−a†a. A direct calculation
shows that

uq = (a + 1 − a†a)(a†a) = aa†a = a and qu = a†a2,
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so we have uq = a = qu by Proposition 2.4. Moreover, letting u−1
l = a† + 1 − a†a,

we see that u is left invertible as

u−1
l u = (a† + 1 − a†a)(a + 1 − a†a)

= a†a + [a† − (a†)2a] + (a − a†a2) + (1 − a†a)
= a†a + (1 − a†a) (by Proposition 2.4)
= 1.

(2)⇒(3). It is clear.
(3)⇒(4). Right multiplying qa = aq by a† and applying qa† = a†, we can get

qp = qaa† = aa† = p.

(4)⇒(5). Involuting the equation qp = p gives p∗q∗ = p∗. Since p, q are Hermit-
ian, it follows that pq = p.

(5)⇒(1). Left multiplying pq = p by a† and applying a†p = a†, we can get
a†(a†a) = a†. Thus, a is left EP by Proposition 2.4. □

Remark 2.9.
(i) By interchanging p and q in (2), (3), (4), (5), and replacing left invertibility

of u in (2) with right invertibility, we are led to characterizations of the
right EP property.

(ii) Recall from [8] that an element a ∈ R† is called bi-EP if a(a†)2a = a†a2a†,
i.e., if the two projections of a commute. From the equivalence of (1), (4)
and (5) in Theorem 2.8 and from (i) it follows that every left or right EP
element is bi-EP.

(iii) Given any a ∈ R†, consider the multiplicative semigroup S generated by a,
p and q, where p and q are the left and right projections of a, respectively.
If a is left EP, then by Theorem 2.8, we have qa = aq = a and qp =
pq = p, whence it follows that S becomes a monoid with q as the identity.
Conversely, if S has q as the identity, then qa = aq, and so by Theorem 2.8
again, a is left EP. From a similar argument, it follows that a is right EP
if and only if S becomes a monoid with p as the identity.

According to [27, Theorem 4.4], an element a ∈ R† is EP if and only if a† = ua
for some unit u (see [3] for the operator version). Now for left EP elements we have
the following result.

Theorem 2.10. If a ∈ R is left EP, then a = a†v for some left invertible element
v ∈ R and a† = wa for some right invertible element w ∈ R. Conversely, if a ∈ R†,
and it satisfies a ∈ a†R or a† ∈ Ra, then a is left EP.

Proof. If a is left EP, then by Proposition 2.4, a†a2 = a and (a†)2a = a†. Write

v = a2 + 1 − a†a, w = (a†)2 + 1 − a†a.

Then we see that

a†v = a†a2 + [a† − (a†)2a] = a, wa = (a†)2a + (a − a†a2) = a†,
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and v is left invertible and w right invertible since
wv = wa2 + w(1 − a†a)

= a†a + [(a†)2 − (a†)3a + (1 − a†a)2] (by wa = a†)
= a†a + 1 − a†a = 1.

Conversely, let a ∈ R†. Since a† = a∗(a†)∗a†, it follows from a ∈ a†R that
aR ⊆ a∗R, so a is left EP. Similarly, since a = (a†)∗a∗a, and a† ∈ Ra implies
(a†)∗ ∈ a∗R, it follows from a† ∈ Ra that a ∈ (a†)∗R ⊆ a∗R, and thus a is left
EP. □

In [22], it was proved that if R is a Dedekind-finite ring, then a ∈ R† and
aR ⊆ a∗R imply that aR = a∗R (i.e., left EP elements in a Dedekind-finite ring
are EP). Here, we use Theorem 2.10 to give another proof.

Corollary 2.11 (cf. [22]). Let R be a Dedekind-finite ring. Then a ∈ R is EP if
and only if it is left or right EP.

Proof. It suffices to prove the “if” part. If a is left EP, then by Theorem 2.10
there exists a left invertible element v such that a = a†v. Since R is a Dedekind-
finite ring, it follows that v is invertible, and so a† = av−1. Thus, a∗ = a†aa∗ =
(av−1)aa∗ ∈ aR, which implies that a is also right EP. So a is EP. If a is right
EP, then a† is left EP by Corollary 2.6. So it can be seen from the previous steps
that a† is EP. Again by Corollary 2.6, a is EP. □

3. Further characterizations of one-sided EP elements

Given any a ∈ R†, consider elements of the four types
aa∗ · · · aa∗, a∗a · · · a∗a, (aa∗ · · · aa∗)a, (a∗a · · · a∗a)a∗.

For them, write the following two sets:
∆a = {(aa∗)m, (a∗a)m : m > 0},

Γa = {(aa∗)na, (a∗a)na∗ : n ≥ 0}.

Lemma 3.1. If a ∈ R†, then ∆a ∪ Γa ⊆ R†; moreover,
[(aa∗)m]† = [(a†)∗a†]m, (3.1)
[(a∗a)m]† = [a†(a†)∗]m,

[(aa∗)na]† = a†[(a†)∗a†]n, (3.2)
[(a∗a)na∗]† = (a†)∗[a†(a†)∗]n, (3.3)

and
p(aa∗)m = q(aa∗)m = p(aa∗)na = q(a∗a)na∗ = aa†, (3.4)
p(a∗a)m = q(a∗a)m = p(a∗a)na∗ = q(aa∗)na = a†a, (3.5)

where p(·) and q(·) denote the left and right projections of (·), respectively.

Proof. It can be checked directly. □
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It is clear that every element in ∆a is Hermitian, and hence EP. But elements
in Γa need not be EP. The next two results reveal the relationship between EP
properties of a and elements in Γa.

Proposition 3.2. Let a ∈ R† and n ≥ 0. Then the following statements are
equivalent:

(1) a is left EP.
(2) (aa∗)na is left EP.
(3) (a∗a)na∗ is right EP.

Proof. (1)⇔(2). Write b = (aa∗)na. By (3.4) and (3.5), we obtain bb† = aa† and
b†b = a†a. Therefore, by Theorem 2.8,

(1) ⇔ (aa†)(a†a) = aa† ⇔ (bb†)(b†b) = bb† ⇔ (2).

(2)⇔(3). Since (a∗a)na∗ = [(aa∗)na]∗, the result follows directly. □

Proposition 3.3. Let a ∈ R† and n ≥ 0. Then the following statements are
equivalent:

(1) a is right EP.
(2) (aa∗)na is right EP.
(3) (a∗a)na∗ is left EP.

Proof. It is dual to Proposition 3.2. □

Given two invertible elements a, b ∈ R, one can easily verify that

a−1(a + b)b−1 = a−1 + b−1.

This fact is usually known as the absorption law for ordinary inverses [1, 10, 14].
For Moore–Penrose inverses, we first see

Proposition 3.4. Let a ∈ R†, n ≥ 0 and d = (aa∗)na. Then a†(a+d)d† = a† +d†

and d†(d + a)a† = d† + a†.

Proof. By (3.2), (3.4) and (3.5), we first get d† = a†[(a†)∗a†]n, dd† = aa† and
d†d = a†a. Since a†ad† = d†, it follows that

a†(a + d)d† = a†ad† + a†dd† = d† + a†aa† = d† + a†.

Since d†aa† = d†, it follows that

d†(d + a)a† = d†da† + d†aa† = a†aa† + d† = a† + d†. □

However, in general, for two elements a, b ∈ R†, a†(a + b)b† and a† + b† are not
equal. We next consider the relations between one-sided EP properties and the
absorption law for Moore–Penrose inverses.

Proposition 3.5. Let a ∈ R†. Then the following statements are equivalent:
(1) a is left EP.
(2) a†(a + b)b† = a† + b† for every b ∈ ∆a ∪ Γa.
(3) a†(a + b)b† = a† + b† for some b ∈ ∆a ∪ Γa − {(aa∗)na : n ≥ 0}.
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Proof. (1)⇒(2). Assume (1). In view of Proposition 3.4, it is enough to show that
a†(a + b)b† = a† + b† holds for every b ∈ ∆a ∪ Γa − {(aa∗)na : n ≥ 0}. For such a b,
we claim that

a†ab† = b† and a†bb† = a†. (3.6)
If this is the case, then a†(a + b)b† = a†ab† + a†bb† = a† + b†. To verify (3.6), we
see:

Case (i): When b = (aa∗)m, we have b† = [(a†)∗a†]m and bb† = aa† by (3.1),
(3.4); so a†bb† = a†aa† = a†, a†ab† = a†a[(a†)∗a†]m. Since a being left EP gives

a†a(a†)∗ = (a†a)∗(a†)∗ = [(a†)2a]∗ = (a†)∗,

we can get a†ab† = [a†a(a†)∗]a†[(a†)∗a†]m−1 = [(a†)∗a†]m = b†, as desired.
Case (ii): When b = (a∗a)m, we have a†ab† = a†a[a†(a†)∗]m = [a†(a†)∗]m = b†

immediately. Moreover, by (3.5), bb† = a†a; since a is left EP, it follows that
a†bb† = (a†)2a = a†.

Case (iii): When b = (a∗a)na∗, we have b† = (a†)∗[a†(a†)∗]n and bb† = a†a by
(3.3), (3.5). Hence, a†ab† = (a†a)∗b† = [(a†)2a]∗[a†(a†)∗]n, a†bb† = (a†)2a. Since a
is left EP, we have (a†)2a = a†, and so a†ab† = (a†)∗[a†(a†)∗]n = b†, a†bb† = a†.

Therefore, (1)⇒(2) is completed.
(2)⇒(3) is clear.
(3)⇒(1). If a†(a + b)b† = a† + b† for some b = (aa∗)m, left multiplying this

equation by 1 − a†a, we get 0 = (1 − a†a)b†, and so a†ab† = b†. Right multiplying
a†ab† = b† by b and using b†b = aa†, we get (a†a)(aa†) = aa†. Therefore, a is left
EP by Theorem 2.8. Or else, if a†(a + b)b† = a† + b† for some b = (a∗a)m or b =
(a∗a)na∗, right multiplying this equation by 1−bb†, we then obtain 0 = a†(1−bb†),
and so a† = a†bb†. Since bb† = a†a, it follows that a† = (a†)2a. Therefore, a is left
EP by Proposition 2.4. □

Proposition 3.6. Let a ∈ R†. Then the following statements are equivalent:
(1) a is right EP.
(2) b†(b + a)a† = b† + a† for every b ∈ ∆a ∪ Γa.
(3) b†(b + a)a† = b† + a† for some b ∈ ∆a ∪ Γa − {(aa∗)na : n ≥ 0}.

Proof. It is dual to Proposition 3.5. □

In addition to the Moore–Penrose inverse, there exist also some other generalized
inverses that are closely related to EP properties. Recall that a ∈ R is group
invertible if there exists x ∈ R such that

axa = a, xax = x, ax = xa,

in which case such an x is unique, denoted by a#, and called the group inverse
of a; a is core invertible if there exists x ∈ R such that

axa = a, xax = x, (ax)∗ = ax, xa2 = a, ax2 = x,

in which case such an x is unique, denoted by a#⃝, and called the core inverse of a;
a is dual core invertible if there exists x ∈ R such that

axa = a, xax = x, (xa)∗ = xa, a2x = a, x2a = x,
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in which case such an x is unique, denoted by a#⃝, and called the dual core inverse
of a.

It was proved in [24, Theorem 3.1] that if a is EP then the four generalized
inverses a†, a#, a#⃝, a#⃝ exist and are equal; and conversely if any two of a†, a#,
a#⃝, a#⃝ exist and are equal then a is EP. However, when a is merely left or right
EP, it can be seen from Example 2.2 that in general, the three generalized inverses
a#, a#⃝ and a#⃝ do not exist while a† is always assumed to exist.

In the rest of this paper, we shall derive the corresponding one-sided version of
[24, Theorem 3.1] by taking advantage of some one-sided generalized inverses. For
our purpose, first recall from [5, 6] that, given two elements b, c ∈ R, a ∈ R is said
to be (b, c)-invertible if there exists x ∈ R such that

x ∈ bR ∩ Rc, xab = b, cax = c,

in which case such an x is unique and called the (b, c)-inverse of a. Moreover, a is
said to be left (b, c)-invertible if there exists x ∈ Rc satisfying xab = b, in which
case any such x is called a left (b, c)-inverse of a; dually, a is said to be right (b, c)-
invertible if there exists x ∈ bR satisfying cax = c, in which case any such x is
called a right (b, c)-inverse of a.

According to [17, 5, 24], by choosing specific elements b and c, the Moore–Penrose
inverse, group inverse, core inverse and dual core inverse can all be expressed in
terms of (b, c)-inverses:

• a is Moore–Penrose invertible if and only if a is (a∗, a∗)-invertible, in which
case a† coincides with the (a∗, a∗)-inverse of a;

• a is group invertible if and only if a is (a, a)-invertible, in which case a#

coincides with the (a, a)-inverse of a;
• a is core invertible if and only if a is (a, a∗)-invertible, in which case a#⃝

coincides with the (a, a∗)-inverse of a;
• a is dual core invertible if and only if a is (a∗, a)-invertible, in which case

a#⃝ coincides with the (a∗, a)-inverse of a.
Meanwhile, left (a, a)-inverses, left (a, a∗)-inverses and left (a∗, a)-inverses can be
regarded as left versions of group inverses, core inverses and dual core inverses,
respectively. By using the language of these one-sided generalized inverses, the
next two results generalize [24, Theorem 3.1] to one-sided versions.
Proposition 3.7. For a ∈ R, the following statements are equivalent:

(1) a is left EP.
(2) a† exists and a† is a left (a, a)-inverse of a.
(3) a† exists and a† is a left (a, a∗)-inverse of a.
(4) a† exists and a† is a left (a∗, a)-inverse of a.

Proof. (1)⇒(2). If a is left EP, then a† exists, and by Proposition 2.4 we have
a† = (a†)2a ∈ Ra and a†a2 = a. So by the definition, a† is a left (a, a)-inverse of a.

(2)⇒(3). Assume (2). For (3), it is enough to show a† ∈ Ra∗. This follows
naturally by a† = a†(aa†)∗ = a†(a†)∗a∗ ∈ Ra∗.

(3)⇒(1). Assume (3). Since a† is a left (a, a∗)-inverse of a, it follows that
a†a2 = a. Thus, a is left EP by Proposition 2.4.
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(1)⇔(4). If a is left EP, then a† exists and satisfies a†aa∗ = a∗; moreover,
by Proposition 2.4, a† = (a†)2a ∈ Ra. Thus, a† is a left (a∗, a)-inverse of a.
Conversely, assume (4). Then there exists r ∈ R such that a† = ra, and so
a† = r(aa†a) = (ra)a†a = (a†)2a. Thus, a is left EP by Proposition 2.4. □

Proposition 3.8. For a ∈ R, the following statements are equivalent:
(1) a is left EP.
(2) There exists x ∈ R which is both a left (a, a∗)-inverse and a left (a∗, a)-

inverse of a.
(3) There exists x ∈ R which is both a left (a∗, a∗)-inverse and a left (a, a)-

inverse of a.
(4) There exists x ∈ R which is both a left (a∗, a∗)-inverse and a left (a, a∗)-

inverse of a.
(5) There exists x ∈ R which is both a left (a∗, a∗)-inverse and a left (a∗, a)-

inverse of a.

Proof. (1)⇔(2). Assume that a is left EP. Then a† exists, and by Proposition 3.7,
x = a† is both a left (a, a∗)-inverse and a left (a∗, a)-inverse of a. Conversely,
assume that such an x exists. Since x is a left (a∗, a)-inverse of a, we have xaa∗ =
a∗, so (xa)∗ = a∗x∗ = xaa∗x∗ = xa(xa)∗. It follows that

(i) (xa)∗ = xa, (ii) a = (xaa∗)∗ = axa.

Since x is also a left (a, a∗)-inverse of a, we have x = ra∗ for some r ∈ R and
xa2 = a. Now, by x = ra∗ and axa = a, we obtain

x = r(axa)∗ = ra∗(ax)∗ = x(ax)∗ and ax = ax(ax)∗,

which implies that
(iii) (ax)∗ = ax, (iv) x = x(ax)∗ = xax.

Therefore, by the definition, x = a†. Since xa2 = a, it follows by Proposition 2.4
that a is left EP.

(1)⇔(3)⇔(4)⇔(5). According to [28, Theorem 2.16], x being a left (a∗, a∗)-
inverse of a amounts to x = a†. Therefore, the equivalence of (1), (3), (4), and (5)
follows by Proposition 3.7. □
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