THE WEAKLY ZERO-DIVISOR GRAPH OF A COMMUTATIVE RING

MOHAMMAD JAVAD NIKMEHR, ABDOLREZA AZADI, AND REZA NIKANDISH

Abstract

Let R be a commutative ring with identity, and let $Z(R)$ be the set of zero-divisors of R. The weakly zero-divisor graph of R is the undirected (simple) graph $W \Gamma(R)$ with vertex set $Z(R)^{*}$, and two distinct vertices x and y are adjacent if and only if there exist $r \in \operatorname{ann}(x)$ and $s \in \operatorname{ann}(y)$ such that $r s=0$. It follows that $W \Gamma(R)$ contains the zero-divisor graph $\Gamma(R)$ as a subgraph. In this paper, the connectedness, diameter, and girth of $W \Gamma(R)$ are investigated. Moreover, we determine all rings whose weakly zero-divisor graphs are star. We also give conditions under which weakly zero-divisor and zero-divisor graphs are identical. Finally, the chromatic number of $W \Gamma(R)$ is studied.

1. Introduction

The theory of graphs associated with rings was started by Beck [9] in 1981 and has grown a lot since then. Anderson and Livingston [2] modified Beck's definition and introduced the notion of zero-divisor graph. Surely, this is the most important graph associated with a ring, and not only zero-divisor graphs but also various generalizations of it have attracted many researchers; see for instance [1, 7, 13, 8, (5), 4, 10, 16, 17. Therefore, this paper is devoted to introducing and studying a super graph of zero-divisor graphs. First let us recall some necessary notation and terminology from ring theory and graph theory.

Throughout this paper, all rings are assumed to be commutative with identity and they are not fields. We denote by $\operatorname{Min}(R)$ and $\operatorname{Nil}(R)$ the set of all minimal prime ideals of R and the set of all nilpotent elements of R, respectively. For a subset A of a ring R, we let $A^{*}=A \backslash\{0\}$. For every subset I of R, we denote the annihilator of I by $\operatorname{ann}_{R}(I)$. The ring R is called local if it has a unique maximal ideal. Also, the ring R is said to be reduced if it has no non-zero nilpotent element. For any undefined notation or terminology in ring theory, we refer the reader to [6].

Let $G=(V, E)$ be a graph, where $V=V(G)$ is the set of vertices and $E=E(G)$ is the set of edges. By $\operatorname{diam}(G)$ and $\operatorname{girth}(G)$ we mean the diameter and the girth of G, respectively. We write $u-v$ to denote an edge with ends u, v. A graph

[^0]$H=\left(V_{0}, E_{0}\right)$ is called a subgraph of G if $V_{0} \subseteq V$ and $E_{0} \subseteq E$. Moreover, H is called an induced subgraph by V_{0}, denoted by $G\left[V_{0}\right]$, if $V_{0} \subseteq V$ and $E_{0}=\{\{u, v\} \in$ $\left.E \mid u, v \in V_{0}\right\}$. Let G_{1} and G_{2} be two disjoint graphs. The join of G_{1} and G_{2}, denoted by $G_{1} \vee G_{2}$, is a graph with the vertex set $V\left(G_{1} \vee G_{2}\right)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set $E\left(G_{1} \vee G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup\left\{u v \mid u \in V\left(G_{1}\right), v \in V\left(G_{2}\right)\right\}$. Also G is called a null graph if it has no edge. A complete bipartite graph with part sizes m, n is denoted by $K_{m, n}$. If $m=1$, then the complete bipartite graph is called star graph. Also, a complete graph of n vertices is denoted by K_{n}. A clique of G is a maximal complete subgraph of G and the number of vertices in the largest clique of G, denoted by $\omega(G)$, is called the clique number of G. For a graph G, let $\chi(G)$ denote the vertex chromatic number of G, i.e., the minimal number of colors which can be assigned to the vertices of G in such a way that every two adjacent vertices have different colors. For any undefined notation or terminology in graph theory, we refer the reader to [18].

The zero-divisor graph of a ring R, denoted by $\Gamma(R)$, is a graph with the vertex set $Z(R)^{*}$, and two distinct vertices x and y are adjacent if and only if $x y=0$. The weakly zero-divisor graph of R is defined as the graph $W \Gamma(R)$ with the vertex set $Z(R)^{*}=Z(R) \backslash\{0\}$, and two distinct vertices x and y are adjacent if and only if there exist $r \in \operatorname{ann}(x)$ and $s \in \operatorname{ann}(y)$ such that $r s=0$. In this paper, we study some connections between the graph-theoretic properties of $W \Gamma(R)$ and some algebraic properties of rings. Moreover, we investigate the affinity between weakly zero-divisor graph and zero-divisor graph associated with a ring. We focus especially on the conditions under which these two graphs are identical. Finally, the coloring of weakly zero-divisor graphs is studied.

2. Basic properties of weakly zero-divisor graphs

In this section, we study fundamental properties of $W \Gamma(R)$. It is shown that $W \Gamma(R)$ is always a connected graph and $\operatorname{diam}(W \Gamma(R)) \leq 2$. Moreover, we prove that if $W \Gamma(R)$ contains a cycle, then $\operatorname{girth}(W \Gamma(R)) \leq 4$. We begin with a lemma containing several useful properties of $W \Gamma(R)$.
Lemma 2.1. Let R be a ring. Then the following statements hold:
(1) If $x-y$ is an edge of $\Gamma(R)$, for some distinct elements $x, y \in Z(R)^{*}$, then $x-y$ is an edge of $W \Gamma(R)$.
(2) If $x \in \operatorname{Nil}(R)^{*}$, then x is adjacent to all other vertices.
(3) $\operatorname{Nil}(R)^{*}$ is a complete subgraph of $W \Gamma(R)$.

Proof. (1) Suppose that $x-y$ is an edge of $\Gamma(R)$, for some distinct elements $x, y \in Z(R)^{*}$. Thus $x y=0$ and clearly $x \in \operatorname{ann}(y)$ and $y \in \operatorname{ann}(x)$. Hence $x-y$ is an edge of $W \Gamma(R)$.
(2) Assume that $x \in \operatorname{Nil}(R)^{*}$, for some $x \in Z(R)^{*}$, and let $y \in V(W \Gamma(R))$ and $r \in \operatorname{ann}(y)$. Since $x \in \operatorname{Nil}(R)^{*}$, we deduce that there exists a positive integer $n \in \mathbb{N}$ such that $x^{n}=0$ and $x^{i} \neq 0$, for all $1 \leq i \leq n-1$. It is clear that $x^{n-1} \in \operatorname{ann}(x)$. If $x^{n-1} r=0$, then $x-y$ is an edge of $W \Gamma(R)$. If $x^{n-1} r \neq 0$, then $x^{n-1} r \in \operatorname{ann}(x) \cap \operatorname{ann}(y)$ and $x^{n-1} r x^{n-1} r=0$. Thus $x-y$ is an edge of $W \Gamma(R)$.
(3) It is clear, by part (2).

By using Lemma 2.1 we give upper bounds for $\operatorname{diam}(W \Gamma(R))$ and $\operatorname{girth}(W \Gamma(R))$ (if $W \Gamma(R)$ contains a cycle).

Theorem 2.2. Let R be a ring. Then $W \Gamma(R)$ is connected and $\operatorname{diam}(W \Gamma(R)) \leq 2$. Moreover, if $W \Gamma(R)$ contains a cycle, then $\operatorname{girth}(W \Gamma(R)) \leq 4$.

Proof. By Lemma 2.1, every edge (path) of $\Gamma(R)$ is an edge (path) of $W \Gamma(R)$. Hence [2, Theorem 2.3] implies that $W \Gamma(R)$ is connected. Moreover, it follows from [15] p. 3541] that $\operatorname{girth}(W \Gamma(R)) \leq 4$. To complete the proof, we show that $\operatorname{diam}(W \Gamma(R)) \leq 2$. Suppose that $x-y$ is not an edge of $W \Gamma(R)$, for some distinct elements $x, y \in Z(R)^{*}$. Then $r s \neq 0$, for every $r \in \operatorname{ann}(x)$ and $s \in \operatorname{ann}(y)$. Since $r s x=0$ and $r s y=0$, we find the path $x-r s-y$ is in $W \Gamma(R)$. This completes the proof.

The next result shows that girth $(W \Gamma(R))=4$ may occur.
Theorem 2.3. Let R be a ring and let $W \Gamma(R)$ contain a cycle. Then $\operatorname{girth}(W \Gamma(R))=4$ if and only if R is reduced with $|\operatorname{Min}(R)|=2$.
Proof. First suppose that $\operatorname{girth}(W \Gamma(R))=4$. If $\operatorname{Nil}(R) \neq(0)$, then by part (2) of Lemma 2.1, $\operatorname{girth}(W \Gamma(R))=3$, a contradiction. Hence $\operatorname{Nil}(R)=(0)$. We claim that $W \Gamma(R)=\Gamma(R)$. Assume, to the contrary, that $W \Gamma(R) \neq \Gamma(R)$. Then there are distinct elements $x, y \in Z(R)^{*}$ such that $x-y$ is an edge of $W \Gamma(R)$ which is not an edge of $\Gamma(R)$. Hence there are $r \in \operatorname{ann}(x)$ and $s \in \operatorname{ann}(y)$ such that $r s=0$, $r \neq s, x \neq r \neq y$, and $y \neq s \neq x$.

We consider the following cases.
Case 1. $0 \neq b \in \operatorname{ann}(x) \cap \operatorname{ann}(y)$. Thus $b-x-y-b$ is a cycle in $W \Gamma(R)$ of length three. Hence girth $(W \Gamma(R))=3$, a contradiction.

Case 2. $\operatorname{ann}(x) \cap \operatorname{ann}(y)=0$. Then it is not hard to check that $y, x y, x$ are pairwise distinct. Since $r \in \operatorname{ann}(x) \subseteq \operatorname{ann}(x y)$ and $r s=0$, we deduce that $x y-y$ is an edge of $W \Gamma(R)$. Also $x y-x$ is an edge of $W \Gamma(R)$, as $s \in \operatorname{ann}(y) \subseteq \operatorname{ann}(x y)$ and $r s=0$. Therefore, $x y-x-y-x y$ is a cycle in $W \Gamma(R)$ of length three, a contradiction, and so the claim is proved. This fact, together with girth $(W \Gamma(R))=$ 4 and the fact that R is reduced, implies that $|\operatorname{Min}(R)|=2$, by [3, Theorem 2.2]. Conversely, suppose that R is reduced and $\operatorname{Min}(R)=\left\{P_{1}, P_{2}\right\}$. Since R is reduced, $Z(R)=P_{1} \cup P_{2}$ and $P_{1} \cap P_{2}=(0)$, by [12, Corollary 2.4]. It is enough to show that P_{1}, P_{2} are independent sets of $W \Gamma(R)$. Let $x, y \in P_{1}, 0 \neq r \in \operatorname{ann}(x)$, and $0 \neq s \in \operatorname{ann}(y)$. Then $r, s \in P_{2}$, as $P_{1} \cap P_{2}=0$. If $r s=0$, then either $r=0$ or $s=0$, a contradiction. Similarly, P_{2} is independent. Then $W \Gamma(R)=K_{\left|P_{1}^{*}\right|,\left|P_{2}^{*}\right|}$. By hypothesis $W \Gamma(R)$ contains a cycle and so $\operatorname{girth}(\Gamma(R))=4$.

The next result provides conditions under which $W \Gamma(R)$ contains a triangle.
Theorem 2.4. Let R be a reduced ring and assume that $Z(R)^{*}$ is an ideal of R. Then $W \Gamma(R) \neq \Gamma(R)$ and $\operatorname{girth}(W \Gamma(R))=3$.

Proof. Let $a \in Z(R)^{*}$ and $b \in \operatorname{ann}(a) \backslash\{0\}$. Then $a+b \in Z(R)^{*}$, as $Z(R)$ is an ideal. Since $a(b+a) \neq 0$, we deduce that $a-a+b$ is not an edge of $\Gamma(R)$. A simple check yields $\operatorname{ann}(a+b) \subseteq \operatorname{ann}((b+a) a)=\operatorname{ann}\left(a^{2}\right)$, and so $\operatorname{ann}(a+b) \subseteq \operatorname{ann}\left(a^{2}\right)$. Then there exists $m \in R$ such that $m \in \operatorname{ann}(a+b)$ and $m \in \operatorname{ann}\left(a^{2}\right)$. Thus $m a=0$, since R is reduced. Hence $m b=0$. This fact, together with $m \in \operatorname{ann}(a+b)$ and $b \in \operatorname{ann}(a)$, implies that $a+b-a$ is an edge of $W \Gamma(R)$. Since $a+b-a$ is an edge of $W \Gamma(R)$ that is not an edge of $\Gamma(R)$, we conclude that $W \Gamma(R) \neq \Gamma(R)$. To complete the proof, we show that $\operatorname{girth}(\Gamma(R))=3$. We claim that $a+b \neq(a+b) a \neq a$. If $(a+b) a=a$, then $a^{2}=a$ and so R is decomposable. Hence $Z(R)$ is not an ideal, a contradiction. Thus $(a+b) a \neq a$. Also if $a+b=(a+b) a$, then $a+b=a^{2}$ and $a^{2} \neq a$. These imply that $a^{2}=(a+b) a=a^{2} \cdot a=a^{3}$ and so a^{2} is idempotent. Again we get a contradiction. By the above assumptions, $m \in \operatorname{ann}(a+b) \subseteq \operatorname{ann}(a)$, $b \in \operatorname{ann}(a)=\operatorname{ann}\left(a^{2}\right)=\operatorname{ann}((a+b) a)$, and $m b=0$. Thus $a+b-a-(a+b) a-a+b$ is a triangle in $W \Gamma(R)$, as desired.

In the following theorem we classify all rings with star weakly zero-divisor graphs.

Theorem 2.5. Let R be a ring. Then $W \Gamma(R)$ is a star graph if and only if one of the following statements holds:
(1) $R \cong \mathbb{Z}_{2} \times D$, where D is an integral domain.
(2) $|\operatorname{Nil}(R)|=|Z(R)|=3$.

Proof. One side is clear. To prove the other side, suppose that $W \Gamma(R)$ is a star graph. By Lemma $2.1(3),|\operatorname{Nil}(R)| \leq 3$. We consider the following cases.

Case 1. $|\operatorname{Nil}(R)|=1$ (i.e., R is reduced). Suppose that $a \in V(W \Gamma(R))$ is adjacent to all the other vertices. We claim that a is idempotent. For, if not, $\operatorname{ann}(a)=\operatorname{ann}\left(a^{2}\right)$, as R is reduced. This implies that a and a^{2} are adjacent to all the other vertices. Then $Z(R)=\left\{0, a, a^{2}\right\}$, since $W \Gamma(R)$ is star. But it is clear that $a^{2} \neq 0, a \cdot a^{2} \neq 0$, and $\left(a^{2}\right)^{2} \neq 0$ (since R is reduced), a contradiction, and so the claim is proved. Therefore, $R \cong R_{1} \times R_{2}$, where R_{1}, R_{2} are two rings. We show that $R_{1} \cong \mathbb{Z}_{2}$ and $R_{2} \cong D$, where D is an integral domain. If $R_{1} \cong \mathbb{Z}_{2}$ and $R_{2} \cong \mathbb{Z}_{2}$, then there is nothing to prove. Without loss of generality, suppose that $\left|R_{2}^{*}\right| \geq 2$ (i.e., $1 \neq b \in R_{2}^{*}$). For any $1 \neq r \in R_{1},(r, 0)$ is a zero-divisor and so $(r, 0)-(0,1)-(1,0)-(0, b)-(r, 0)$ is a cycle in $W \Gamma(R)$, a contradiction unless $r=0$. Hence, $R_{1} \cong \mathbb{Z}_{2}$. If $x \in Z\left(R_{2}\right)^{*}$ and $a \in \operatorname{ann}(x)$, then it is easily seen that the induced subgraph on the vertices $(1,0),(0, x)$, and $(0, a)$ forms a triangle in $W \Gamma(R)$, a contradiction. Thus $Z\left(R_{2}\right)=(0)$ and so $R \cong \mathbb{Z}_{2} \times D$, where D is an integral domain.

Case 2. We show that $|\operatorname{Nil}(R)|=2$ does not happen. Suppose, to the contrary, that $|\operatorname{Nil}(R)|=2$. Since $\Gamma(R)$ is a star graph, [2] Theorem 2.5] implies that $\operatorname{ann}(x)=Z(R)$, for some $x \in Z(R)^{*}$. We show that $W \Gamma(R)$ is complete. Suppose that z and y are two vertices of $W \Gamma(R)$ such that $y \neq x \neq z$. Since $x \in \operatorname{ann}(y) \cap$ $\operatorname{ann}(z)$ and $x^{2}=0, y-z$ is an edge of $W \Gamma(R)$, i.e., $W \Gamma(R)$ is complete. This fact, together with $W \Gamma(R)$ being a star graph, implies that $W \Gamma(R) \cong K_{2}$. So
$Z(R)=\{0, x, b\}$. This yields $b^{2}=b$ and hence $R \cong R b \times R(1-b)$, i.e., $Z(R)$ is not an ideal, a contradiction. Therefore $|\operatorname{Nil}(R)| \neq 2$.

Case 3. $|\operatorname{Nil}(R)|=3$. By Lemma 2.1(2), we conclude that $W \Gamma(R) \cong K_{2}$ and so $|\operatorname{Nil}(R)|=|Z(R)|=3$.

The last result of this section is devoted to studying complete weakly zero divisor graphs. First, we fix a notation. Let $R \cong R_{1} \times R_{2} \times \cdots \times R_{m}$, where every R_{i} is a ring, for $1 \leq i \leq m$. By e_{i} we mean the i-th standard basis vector, for every $i=1, \ldots, m$. Indeed, $e_{i}=\left(0, \ldots, 0,1_{R_{i}}, 0, \ldots, 0\right)$.

Theorem 2.6. Let R be an Artinian ring. Then $W \Gamma(R)$ is a complete graph if and only if one of the following statements holds:
(1) $R \cong \mathbb{Z}_{2} \times \cdots \times \mathbb{Z}_{2}$.
(2) $R \cong R_{1} \times \cdots \times R_{m}$, where R_{i} is a non-reduced Artinian local ring, for every $1 \leq i \leq m$.

Proof. First suppose that $W \Gamma(R)$ is a complete graph. By [6, Theorem 8.7], $R \cong$ $R_{1} \times \cdots \times R_{m}$, where R_{i} is an Artinian local ring, for every $1 \leq i \leq m$. If every $R_{i}, 1 \leq i \leq m$, is non-reduced, then there is nothing to prove. So suppose that at least one of the R_{i} 's is a field, say R_{1} (obviously, every reduced local Artinian ring is a field). Consider the following two cases.

Case 1. $R_{i} \cong \mathbb{Z}_{2}$, for every $i \neq 1$. We show that $R \cong \mathbb{Z}_{2} \times \cdots \times \mathbb{Z}_{2}$. Suppose, to the contrary, that $R_{1} \neq \mathbb{Z}_{2}$. Let $1 \neq u \in R_{1}^{*}$. Then $x=(u, 1, \ldots, 1,0)$, $y=(1,1, \ldots, 1,0) \in V(W \Gamma(R))$ and $\operatorname{ann}(x)=\operatorname{ann}(y)=(0, \ldots, 0,1)$. Therefore, x, y are not adjacent, a contradiction.

Case 2. $R_{i} \not \not \mathbb{Z}_{2}$, for some $i \neq 1$. We show that this case does not occur. Without loss of generality, suppose that $R_{m} \not \neq \mathbb{Z}_{2}$. Let $x=(0,1, \ldots, 1, u), y=$ $(0,1, \ldots, 1,1) \in V(W \Gamma(R))$, and $1 \neq u \in R_{m} \backslash Z(R)$. Then $\operatorname{ann}(x)=\operatorname{ann}(y)=$ $\left\{(r, 0, \ldots, 0) \mid r \in R^{*}{ }_{1}\right\}$. This implies that x is not adjacent to y, a contradiction.

To prove the other side, first suppose that $R \cong \mathbb{Z}_{2} \times \cdots \times \mathbb{Z}_{2}$. One may easily check that $V(W \Gamma(R))=\left\{\left(x_{1}, \ldots, x_{m}\right) \in R \mid x_{i}=0\right.$ for some $\left.1 \leq i \leq m\right\}$. We show that $W \Gamma(R)$ is complete. To see this, suppose that $x=\left(x_{1}, \ldots, x_{m}\right)$ and $y=\left(y_{1}, \ldots, y_{m}\right)$ are two distinct arbitrary elements of $V(W \Gamma(R))$. Then there exist $1 \leq i, j \leq m$ such that $i \neq j, x_{i}=0$, and $x_{j}=0$. Since $e_{i} \in \operatorname{ann}(X)$, $e_{j} \in \operatorname{ann}(Y)$, and $e_{i} e_{j}=0$, we conclude that x is adjacent to y, as desired.

Now suppose that $R \cong R_{1} \times \cdots \times R_{m}$, where R_{i} is an non-reduced Artinian local ring, for every $1 \leq i \leq m$. We put $A=\left\{\left(x_{1}, \ldots, x_{m}\right) \in R \mid x_{i} \in\right.$ $\operatorname{Nil}\left(R_{i}\right)^{*}$ for some $\left.1 \leq i \leq m\right\}$ and $B=\left\{\left(x_{1}, \ldots, x_{m}\right) \in R \mid x_{i} \notin \operatorname{Nil}\left(R_{i}\right)^{*}\right.$ for all $1 \leq i \leq m$ and $x_{i}=0$ for some $\left.1 \leq i \leq m\right\}$. One may easily check that $V(W \Gamma(R))=A \cup B, A \cap B=\varnothing$. We show that $W \Gamma(R)$ is a complete graph. To see this, consider the following cases.

Case 1. Let $X_{1}=\left(x_{1}, \ldots, x_{m}\right)$ and $X_{2}=\left(x_{1}^{\prime}, \ldots, x_{m}^{\prime}\right)$ be two distinct elements of A. Then $x_{i} \in \operatorname{Nil}\left(R_{i}\right)^{*}$ for some $1 \leq i \leq m$ and $x_{j}^{\prime} \in \operatorname{Nil}\left(R_{j}\right)^{*}$ for some $1 \leq j \leq m$, and hence there exist two positive integers n, m such that $x_{i}^{n}=0$,
$x_{i}^{n-1} \neq 0$ and $x_{j}^{\prime m}=0, x_{j}^{\prime m-1} \neq 0$ (fix i and j). We have the following two subcases.

Subcase A. If $i \neq j$, then $\left(x_{i}^{n-1} \cdot e_{i}\right)\left(x_{j}^{\prime m-1} \cdot e_{j}\right)=0$. Since $\left(x_{i}^{n-1} \cdot e_{i}\right) \in \operatorname{ann}\left(X_{1}\right)$ and $\left(x_{j}^{\prime m-1} \cdot e_{j}\right) \in \operatorname{ann}\left(X_{2}\right), X_{1}$ is adjacent to X_{2}.

Subcase B. If $i=j$, then either $x_{i}^{n-1} \cdot x_{i}^{\prime m-1}=0$ or $x_{i}^{n-1} \cdot x_{i}^{\prime m-1} \neq 0$. If $x_{i}^{n-1} \cdot x_{i}^{\prime m-1}=0$, then $\left(x_{i}^{n-1} \cdot e_{i}\right) \cdot\left(x_{i}^{\prime m-1} \cdot e_{i}\right)=0$. Hence X_{1} is adjacent to X_{2}. If $x_{i}^{n-1} \cdot x_{i}^{\prime m-1} \neq 0$, then $r=x_{i}^{n-1} \cdot x_{i}^{\prime m-1} \cdot e_{i} \in \operatorname{ann}\left(x_{1}\right) \cap \operatorname{ann}\left(x_{2}\right)$. Since $r^{2}=0$, X_{1} is adjacent to X_{2}.

Case 2. Let $Y_{1}=\left(y_{1}, \ldots, y_{m}\right)$ and $Y_{2}=\left(y_{1}^{\prime}, \ldots, y_{m}^{\prime}\right)$ be two distinct elements of B. We can suppose that the i-th component of Y_{1} is zero, for some $1 \leq i \leq m$, and also that the j-th component of Y_{2} is zero, for some $1 \leq j \leq m$. We consider the following two subcases.

Subcase A. Let $i \neq j$. Since $e_{i} \in \operatorname{ann}\left(Y_{1}\right), e_{j} \in \operatorname{ann}\left(y_{2}\right)$, and $e_{i} e_{j}=0$, we conclude that Y_{1} is adjacent to Y_{2}.

Subcase B. Let $i=j$. Since R_{i} is non-reduced, for every $1 \leq i \leq m$, there exists a non-zero nilpotent element r_{i} in $\operatorname{Nil}\left(R_{j}\right)^{*}$ such that $r_{i}^{n}=0$ and $r_{i}^{n-1} \neq 0$, where n is a positive integer. It is clear that $r_{i}^{n-1} \cdot e_{i} \in \operatorname{ann}\left(Y_{1}\right), r_{i} \cdot e_{i} \in \operatorname{ann}\left(Y_{2}\right)$, and $\left(r_{i}^{n-1} \cdot e_{i}\right) \cdot\left(r_{i} \cdot e_{i}\right)=0$. This implies that Y_{1} is adjacent to Y_{2}.

Case 3. Let $X_{1} \in A$ and $Y_{1} \in B$. Then we have the following two subcases.
Subcase A. If $i \neq j$, then $x_{i}^{n-1} e_{i} \cdot e_{j}=0$. Since $x_{i}^{n-1} e_{i} \in \operatorname{ann}\left(x_{1}\right)$ and $e_{j} \in \operatorname{ann}\left(Y_{1}\right)$, we conclude that X_{1} is adjacent to Y_{1}.

Subcase B. If $i=j$, then $r=x_{i}^{n-1} \cdot e_{i} \in \operatorname{ann}\left(x_{1}\right)$ and $s=x_{i} \cdot e_{i} \in \operatorname{ann}\left(y_{1}\right)$. Hence X_{1} is adjacent to Y_{1}, since $r s=0$.

Therefore $W \Gamma(R)$ is a complete graph.

3. When is $W \Gamma(R)$ identical to $\Gamma(R)$?

As we have seen in Section $2, \Gamma(R)$ is a subgraph of $W \Gamma(R)$. A natural question is posed: When are $W \Gamma(R)$ and $\Gamma(R)$ identical? In this section, we completely answer this question.

Theorem 3.1. Let R be a reduced ring that is not an integral domain. Then $W \Gamma(R)=\Gamma(R)$ if and only if $|\operatorname{Min}(R)|=2$.
Proof. Suppose that $W \Gamma(R)=\Gamma(R)$. If $|\operatorname{Min}(R)| \geq 3$, then by [14, Theorem 2.6], $\operatorname{diam}(\Gamma(R))=3$. This contradicts Theorem 2.2 Hence $|\operatorname{Min}(R)|=2$, as $|\operatorname{Min}(R)|=1$ means that R is an integral domain. Conversely, suppose that P_{1} and P_{2} are two distinct minimal prime ideals of R. It is not hard to check that $W \Gamma(R)=\Gamma(R)=K_{\left|P_{1}^{*}\right|,\left|P_{2}^{*}\right|}$.

Next, we study non-reduced rings R whose weakly zero-divisor graphs and zerodivisor graphs are identical.

Theorem 3.2. Let R be a non-reduced ring. Then the following statements are equivalent:
(1) $W \Gamma(R)=\Gamma(R)$.
(2) $Z(R)^{2}=0$.
(3) $\Gamma(R)$ is a complete graph.

Proof. (1) $\Longrightarrow(2)$. Let $x \in \operatorname{Nil}(R)^{*}$. Then by part (2) of Lemma 2.1, x is adjacent to all the other vertices in $W \Gamma(R)$. This fact, together with $W \Gamma(R)=\Gamma(R)$, implies that $\operatorname{ann}(x)=Z(R)$, by [2, Theorem 2.5]. Thus $W \Gamma(R)$ is a complete graph, and so is $\Gamma(R)$. Hence by [2, Theorem 2.8], the result holds.
$(2) \Longrightarrow(3)$ and $(3) \Longrightarrow(1)$ are clear.
Theorem 3.2 leads to the following corollary.
Corollary 3.3. Let R be a non-reduced ring. Then the following statements are equivalent:
(1) $W \Gamma(R)$ is a star graph.
(2) $\operatorname{girth}(W \Gamma(R))=\infty$.
(3) $W \Gamma(R)=\Gamma(R)$ and $\operatorname{girth}(\Gamma(R))=\infty$.
(4) $\left|Z(R)^{*}\right|=\left|\operatorname{Nil}(R)^{*}\right|=2$.
(5) $W \Gamma(R)=\Gamma(R)=K_{1,1}$.

Proof. $(1) \Longrightarrow(2)$. It is clear.
(2) $\Longrightarrow(3)$. If $a \in \operatorname{Nil}(R)^{*}$, then a is adjacent to all the other vertices in $W \Gamma(R)$. Since $\operatorname{girth}(W \Gamma(R))=\infty$ and $\Gamma(R)$ is a connected subgraph of $W \Gamma(R)$, we conclude that $W \Gamma(R)=\Gamma(R)$, and so $\operatorname{girth}(\Gamma(R))=\infty$.
$(3) \Longrightarrow(4)$. If $W \Gamma(R)=\Gamma(R)$, then $W \Gamma(R)=\Gamma(R)$ is a complete graph, by Theorem 3.2. Since $\operatorname{girth}(\Gamma(R))=\infty$ and R is non-reduced, we have that $\left|Z(R)^{*}\right|=\left|\operatorname{Nil}(R)^{*}\right|=2$.
$(4) \Longrightarrow(5)$ and $(5) \Longrightarrow(1)$ are clear.

4. Coloring of $W \Gamma(R)$

In this section, we study the coloring of $W \Gamma(R)$. First, we state the following lemma.

Lemma 4.1. Let $R \cong D_{1} \times D_{2} \times \cdots \times D_{n}$, where $n \geq 3$ is a positive integer and D_{i} is an integral domain, for every $1 \leq i \leq n$. Then $W \Gamma(R)=K_{m} \bigvee H_{n}$, where H_{n} is a complete n-partite graph and K_{m} is a complete graph.

Proof. Let $A=\left\{X=\left(x_{1}, \ldots, x_{n}\right) \in R \mid\right.$ only one of x_{i} 's is zero $\}$ and $B=\{X=$ $\left(x_{1}, \ldots, x_{n}\right) \in R \mid$ at least two of the x_{i} 's are zero $\}$. It is clear that $V(W \Gamma(R))=$ $A \cup B$. Suppose that $X=\left(x_{1}, \ldots, x_{n}\right)$ and $Y=\left(y_{1}, \ldots, y_{n}\right)$ are elements of A, where $x_{i}, y_{i} \in D_{i}$, for every $1 \leq i \leq n$. Define the relation \sim on A as follows: $X \sim Y$ whenever $x_{i}=0$ if and only if $y_{i}=0$, for every $1 \leq i \leq n$. It is easily seen that \sim is an equivalence relation on A. By $\left[X_{i}\right]$, we mean the equivalence class of X_{i}, where $X_{i}=(1,1, \ldots, 1,0,1, \ldots, 1)$ such that only the i-th component is zero, for every $1 \leq i \leq n$. It is clear that $A=\bigcup_{i=1}^{n}\left[X_{i}\right]$. We claim that $W \Gamma(R)[A]$ is a complete n-partite subgraph of $W \Gamma(R)$. First we show that there is no adjacency between elements of $\left[X_{i}\right]$, for every $1 \leq i \leq n$. To see this, suppose that $X=\left(x_{1}, x_{2}, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_{n}\right)$ and $Y=\left(y_{1}, y_{2}, \ldots, y_{i-1}, 0, y_{i+1}, \ldots, y_{n}\right)$
are two distinct arbitrary elements of $\left[X_{i}\right]$. Then we have $\operatorname{ann}(X)=\operatorname{ann}(Y)=$ $\left\{\left(0, \ldots, 0, a_{i}, 0, \ldots, 0\right) \mid a_{i} \in D_{i}\right\}$. This implies that there are no elements r, s of $\operatorname{ann}(X)=\operatorname{ann}(Y)$ such that $r s=0$, and so X is not adjacent to Y. Now, suppose that $\left[X_{i}\right]$ and $\left[X_{j}\right]$ are two distinct arbitrary equivalence classes of A. We show that each element of $\left[X_{i}\right]$ is adjacent to each element of $\left[X_{j}\right]$. Let $X=$ $\left(x_{1}, x_{2}, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_{n}\right)$ be an element of $\left[X_{i}\right]$ and $Y=\left(y_{1}, y_{2}, \ldots, y_{j-1}, 0\right.$, $\left.y_{j+1}, \ldots, y_{n}\right)$ be an element of $\left[X_{j}\right]$. Then $e_{i} \in \operatorname{ann}(X)$ and $e_{j} \in \operatorname{ann}(Y)$, where e_{i}, e_{j}, are the i th and j th standard basis vectors. Since $e_{i} e_{j}=0$, we conclude that X is adjacent to Y. Therefore $W \Gamma(R)[A]=H_{n}$, where H_{n} is a complete n-partite graph. In what follows, we show that $W \Gamma(R)[B]=K_{m}$, where $m=$ $|B|$. Let $X=\left(x_{1}, x_{2}, \ldots, x_{k-1}, 0, x_{k+1}, \ldots, x_{l-1}, 0, x_{l+1}, \ldots, x_{n}\right) \in B$ and $Y=$ $\left(y_{1}, y_{2}, \ldots, y_{i-1}, 0, y_{i+1}, \ldots, y_{j-1}, 0, y_{j}, \ldots, y_{n}\right) \in B$. Then either $k \neq i$ or $k \neq j$. With no loss of generality, assume that $i \neq k$. Then $e_{k} \in \operatorname{ann}(X), e_{i} \in \operatorname{ann}(Y)$, and $e_{k} e_{i}=0$. Hence X is adjacent to Y and thus $W \Gamma(R)[B]=K_{m}$. To complete the proof, we show that every vertex contained in B is adjacent to every vertex contained in A. Let $X=\left(x_{1}, x_{2}, \ldots, x_{k-1}, 0, x_{k+1}, \ldots, x_{l-1}, 0, x_{l+1}, \ldots, x_{n}\right) \in B$ and $Y=\left(y_{1}, y_{2}, \ldots, y_{i-1}, 0, y_{i+1}, \ldots, y_{n}\right) \in\left[x_{i}\right] \subset A$. Then $i \neq k$ or $i \neq l$. With no loss of generality, assume that $i \neq k$. Since $e_{k} \in \operatorname{ann}(X), e_{i} \in \operatorname{ann}(Y)$, and $e_{k} e_{i}=0$, we conclude that X is adjacent to Y. Therefore $W \Gamma(R)=K_{m} \bigvee H_{n}$.

To state our main result in this section, we need to fix a notation.
Notation. Let $R \cong F_{1} \times \cdots \times F_{k} \times R_{1} \times \cdots \times R_{n}$, where F_{i} is a field for every $1 \leq i \leq$ k and R_{j} is a non-field Artinian local ring, for every $1 \leq j \leq n$. Set $A=\bigcup_{i=1}^{k} A_{i}$, where $A_{i}=\left\{\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{n}\right) \mid x_{i}=0\right.$ for exactly one $1 \leq i \leq k$, and y_{j} is a unit of R_{j} for all $\left.1 \leq j \leq n\right\}$. Moreover, put $M=\left|Z(R)^{*}\right|-|A|$.

Theorem 4.2. Let $R \cong F_{1} \times \cdots \times F_{k} \times R_{1} \times \cdots \times R_{n}$, where F_{i} is a field for every $1 \leq i \leq k$ and R_{j} is an Artinian local ring with $\left|\operatorname{Nil}\left(R_{j}\right)^{*}\right| \neq 0$ for every $1 \leq j \leq n$. Then $\omega(W \Gamma(R))=\chi(W \Gamma(R))=M+k$.

Proof. We put $A=\bigcup_{i=1}^{k} A_{i}$, where

$$
\begin{aligned}
A_{i}=\left\{\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{n}\right) \mid x_{i}=0\right. & \text { for exactly one } 1 \leq i \leq k, \\
& \left.\quad \text { and } y_{j} \text { is a unit of } R_{j} \text { for all } 1 \leq j \leq n\right\}
\end{aligned}
$$

and $B=\bigcup_{i=1}^{3} B_{i}$, where

$$
\begin{aligned}
& B_{1}=\left\{\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{n}\right) \mid y_{j} \in \operatorname{Nil}\left(R_{j}\right)^{*} \text { for some } 1 \leq j \leq n\right\}, \\
& B_{2}=\left\{\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{n}\right) \mid x_{i} \neq 0 \text { for all } 1 \leq i \leq k,\right. \\
&\left.\qquad y_{j} \notin \operatorname{Nil}\left(R_{j}\right)^{*} \text { for all } 1 \leq j \leq n, \text { and only one of } y_{j} \text { 's is zero }\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
B_{3}=\left\{\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{n}\right) \mid y_{j} \notin \operatorname{Nil}\left(R_{j}\right)^{*}\right. & \text { for all } 1 \leq j \leq n, \\
& \text { and at least two components are zero }\} .
\end{aligned}
$$

One may check that $V(W \Gamma(R))=A \cup B, A \cap B=\varnothing$, and so $\{A, B\}$ is a partition of $V(W \Gamma(R))$. We note that $B_{1} \cap B_{2}=B_{1} \cap B_{3}=B_{2} \cap B_{3}=\varnothing$. First we show that $W \Gamma(R)=W \Gamma(R)[A] \bigvee W \Gamma(R)[B]$. Indeed, we have the following claims:

Claim 1. $W \Gamma(R)[A]$ is a complete K-partite subgraph of $W \Gamma(R)$.
Suppose that A_{i} and A_{j} are two distinct arbitrary sets. It is enough to show that there is no adjacency between two vertices of A_{i} and that every vertex of A_{i} is adjacent to all the vertices of A_{j}. To see this, let X_{1} and X_{2} be two vertices of A_{i} and Y_{1} a vertex of A_{j}. So $X_{1}=\left(x_{1}, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_{k}, y_{1}, \ldots, y_{n}\right)$, $X_{2}=\left(x_{1}^{\prime}, \ldots, x_{i-1}^{\prime}, 0, x_{i+1}^{\prime}, \ldots, x_{k}^{\prime}, y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right)$, and $Y_{1}=\left(x_{1}^{\prime \prime}, \ldots, x_{j-1}^{\prime \prime}, 0, x_{j+1}^{\prime \prime}, \ldots\right.$, $\left.x_{k}^{\prime \prime}, y_{1}^{\prime \prime}, \ldots, y_{n}^{\prime \prime}\right)$, where $i \neq j$. Then $\operatorname{ann}\left(X_{1}\right)=\operatorname{ann}\left(X_{2}\right)=\left\{\left(0, \ldots, 0, a_{i}, 0, \ldots, 0\right) \mid\right.$ $\left.a_{i} \in F_{i}\right\}$, and so there are no elements r, s of $\operatorname{ann}\left(X_{1}\right)=\operatorname{ann}\left(X_{2}\right)$ such that $r s=0$. This implies that X_{1} and X_{2} are not adjacent. Also $e_{i} \in \operatorname{ann}\left(X_{1}\right)$ and $e_{j} \in \operatorname{ann}(Y)$. Since $i \neq j$, we obtain $e_{i} e_{j}=0$. Therefore X_{1} is adjacent to Y, as desired.

Claim 2. $W \Gamma(R)[B]$ is a complete subgraph of $W \Gamma(R)$.
Suppose that $X=\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{n}\right)$ and $Y=\left(x_{1}^{\prime}, \ldots, x_{k}^{\prime}, y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right)$ are two vertices of $W \Gamma(R)[B]$. Then we have the following cases.

Case 1. Let X and Y be two vertices of B_{1}. Then $y_{i} \in \operatorname{Nil}\left(R_{i}^{*}\right)$ for some $1 \leq i \leq n$, and $y_{j}^{\prime} \in \operatorname{Nil}\left(R_{j}^{*}\right)$ for some $1 \leq j \leq n$. Hence there exist two positive integers n, m such that $y_{i}^{n}=0, y_{i}^{n-1} \neq 0$ and $y_{j}^{\prime m}=0, y_{j}^{\prime m-1} \neq 0$. Fix i and j and consider the following two subcases.

Subcase A. If $i=j$, then either $y_{i}^{n-1} y_{i}^{\prime m-1}=0$ or $y_{i}^{n-1} y_{i}^{\prime m-1} \neq 0$. If $y_{i}^{n-1} y_{i}^{\prime m-1}=0$, then $\left(0, \ldots, 0, y_{i}^{n-1}, 0, \ldots, 0\right)\left(0, \ldots, 0, y_{i}^{\prime m-1}, 0, \ldots, 0\right)=0$. Hence X is adjacent to Y, since $\left(0, \ldots, 0, y_{i}^{n-1}, 0, \ldots, 0\right) \in \operatorname{ann}(X)$ and $\left(0, \ldots, 0, y_{i}^{\prime m-1}\right.$, $0, \ldots, 0) \in \operatorname{ann}(Y)$. If $y_{i}^{n-1} y_{i}^{\prime m-1} \neq 0$, then $a=\left(0, \ldots, 0, y_{i}^{n-1} y_{i}^{\prime m-1}, 0, \ldots, 0\right) \in$ $\operatorname{ann}(X) \cap \operatorname{ann}(Y)$. Hence X is adjacent to Y, since $a^{2}=0$.

Subcase B. If $i \neq j$, then $\left(0, \ldots, 0, y_{i}^{n-1}, 0, \ldots, 0\right)\left(0, \ldots, 0, y_{j}^{\prime m-1}, 0, \ldots, 0\right)=0$. Hence X is adjacent to Y.

Case 2. Let X and Y be two vertices of B_{2}. We can suppose that the $(i+k)$-th component of X is zero, for some $1 \leq i \leq n$, and also that the $(j+k)$-th component of Y is zero, for some $1 \leq j \leq n$. We have the following two subcases.

Subcase A. Let $i=j$. Since R_{i} is non-reduced for every $1 \leq i \leq n$, there exists a non-zero nilpotent element y_{i} in $\operatorname{Nil}\left(R_{i}\right)^{*}$ such that $y_{i}^{n}=0$ and $y_{i}^{n-1} \neq 0$, where n is a positive integer. It is clear that $\left(0, \ldots, 0, y_{i}^{n-1}, 0, \ldots, 0\right) \in \operatorname{ann}(X)$, $\left(0, \ldots, 0, y_{i}, 0, \ldots, 0\right) \in \operatorname{ann}(Y)$, and $\left(0, \ldots, 0, y_{i}^{n-1}, 0, \ldots, 0\right)\left(0, \ldots, 0, y_{i}, 0, \ldots, 0\right)=$ 0 . This implies that X is adjacent to Y.

Subcase B. Let $i \neq j$. Since $e_{k+i} \in \operatorname{ann}(X), e_{k+j} \in \operatorname{ann}(Y)$, and $e_{k+i} e_{k+j}=0$, we conclude that X is adjacent to Y.

Case 3. Let X and Y be two vertices of B_{3}. Since $X \in B_{3}$, two components of X are zero. We can suppose that the i-th and j-th components are the zero of X, for some $1 \leq i \leq k+n$ and $1 \leq j \leq k+n$. Similarly, since $Y \in B_{3}$, we can suppose that the l-th and h-th components are the zero of Y, for some $1 \leq l \leq k+n$ and $1 \leq h \leq k+n$. It is clear that either $i \neq l$ or $i \neq h$. Without loss of generality,
take $i \neq l$. It is easily seen that $e_{i} \in \operatorname{ann}(X), e_{l} \in \operatorname{ann}(Y)$, and $e_{i} e_{l}=0$. Hence X is adjacent to Y.

Case 4. Let X be a vertex of B_{1} and Y be a vertex of B_{2}. Since $X \in B_{1}$, we have $y_{i} \in \operatorname{Nil}\left(R_{i}^{*}\right)$, for some $1 \leq i \leq n$, and there exists a positive integer n such that $y_{i}^{n}=0, y_{i}^{n-1} \neq 0$. Then $\left(0, \ldots, 0, y_{i}^{n-1}, 0, \ldots, 0\right) \in \operatorname{ann}(X)$. On the other hand, since $Y \in B_{2}$, for the component $y_{j}^{\prime}, 1 \leq j \leq n$, we have $y_{j}^{\prime}=0$. We consider the following two subcases.

Subcase A. Let $i=j$. It is clear that $\left(0, \ldots, 0, y_{i}^{n-1}, 0, \ldots, 0\right) \in \operatorname{ann}(X)$, $\left(0, \ldots, 0, y_{i}, 0, \ldots, 0\right) \in \operatorname{ann}(Y)$, and $\left(0, \ldots, 0, y_{i}^{n-1}, 0, \ldots, 0\right)\left(0, \ldots, 0, y_{i}, 0, \ldots, 0\right)=$ 0 . This implies that X is adjacent to Y.

Subcase B. Let $i \neq j$. Clearly, $\left(0, \ldots, 0, y_{i}^{n-1}, 0, \ldots, 0\right) \in \operatorname{ann}(X), e_{k+j} \in$ $\operatorname{ann}(Y)$, and $\left(0, \ldots, 0, y_{i}^{n-1}, 0, \ldots, 0\right) e_{k+j}=0$ imply that X is adjacent to Y.

Case 5. Let X be a vertex of B_{1} and Y be a vertex of B_{3}. Since $Y \in B_{3}$, two components of Y are zero. We can suppose that the i-th and j-th components are the zero of Y, for $1 \leq i \leq k+n$ and $1 \leq j \leq k+n$. So e_{j} and $e_{i} \in$ $\operatorname{ann}(Y)$. Also, by an argument similar to that in Case 4, we can suppose that $\left(0, \ldots, 0, y_{l}^{n-1}, 0, \ldots, 0\right) \in \operatorname{ann}(X)$ such that $y_{l}^{n}=0$ for $1 \leq l \leq n$. Clearly, either $i \neq l$ or $j \neq l$. Without loss of generality, take $i \neq l$. This implies that $e_{i}\left(0, \ldots, 0, y_{l}^{n-1}, 0, \ldots, 0\right)=0$, as desired.

Case 6. Let X be a vertex of B_{1} and Y be a vertex of B_{3}. The proof is similar to that of Case 5. Therefore $W \Gamma(R)[B]$ is a complete subgraph of $W \Gamma(R)$.

Claim 3. Every vertex of $W \Gamma(R)[B]$ is adjacent to every vertex of $W \Gamma(R)[A]$.
Let $X=\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{n}\right)$ be a vertex of $W \Gamma(R)[B]$ and $Y=\left(x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right.$, $\left.y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right)$ be a vertex of $W \Gamma(R)[A]$. Then there exists a positive integer m such that $Y \in A_{m}, 1 \leq m \leq k$. Since $X \in B=\bigcup_{i=1}^{3} B_{i}$, either $X \in B_{1}, X \in B_{2}$, or $X \in B_{3}$. The following three cases complete the proof.

Case 1. Let $X \in B_{1}$. This implies that $y_{i} \in \operatorname{Nil}\left(R_{i}\right)^{*}$, for some $1 \leq i \leq n$ such that $y_{i}^{n}=0, y_{i}^{n-1} \neq 0$, where n is a positive integer. Now, $\left(0, \ldots, 0, y_{i}^{n-1}, 0, \ldots, 0\right) \in$ $\operatorname{ann}(X)$ and $e_{m} \in \operatorname{ann}(Y)$. Thus X is adjacent to Y, since $e_{m}\left(0, \ldots, 0, y_{i}^{n-1}\right.$, $0, \ldots, 0)=0$.

Case 2. Let $X \in B_{2}$. Then the $(i+k)$-th component is zero for $1 \leq i \leq n$, and so $e_{i+k} \in \operatorname{ann}(X)$. Since $e_{i+k} e_{m}=0$, we conclude that X is adjacent to Y.

Case 3. Let $X \in B_{3}$. The proof is similar to that of Case 3 in Claim 2. Therefore $W \Gamma(R)=K_{M} \bigvee H_{k}$, where $M=|B|=\left|B_{1}\right|+\left|B_{2}\right|+\left|B_{3}\right|$, and so $\omega(W \Gamma(R))=\chi(W \Gamma(R))=M+k$.

In Theorems 4.3 and 4.4 we study weakly zero-divisor graphs with finite chromatic number.

Theorem 4.3. Let R be a ring that is not an integral domain and suppose that $\chi(W \Gamma(R))<\infty$. Then the following statements are equivalent.
(1) $Z(R)=\operatorname{Nil}(R)$.
(2) R is an Artinian local ring.

Proof. (1) $\Longrightarrow(2)$. Let $Z(R)=\operatorname{Nil}(R)$. Then $W \Gamma(R)$ is a complete graph, by Lemma 2.1 (3). Since $\chi(W \Gamma(R))<\infty$, we have $2 \leq|Z(R)|=|\operatorname{Nil}(R)|<\infty$ and so $|R|<\infty$, by [11, Theorem 1]. This, together with $Z(R)=\operatorname{Nil}(R)$, implies that R is an Artinian local ring.

The converse is trivial.
Following [11], we know that $Z(R)$ is finite if and only if either R is finite or an integral domain. So, for an Artinian local ring R, if $|\operatorname{Nil}(R)| \neq 1$ then R is finite if and only if $\operatorname{Nil}(R)$ is finite. We use these facts to prove the last result of this paper.

Theorem 4.4. Let R be an Artinian ring. Then $\omega(W \Gamma(R))=\chi(W \Gamma(R))<\infty$ if and only if one of the following statements holds:
(1) $R \cong F$, where F is a field.
(2) R is a finite ring.
(3) $R \cong F_{1} \times F_{2}$, where F_{i} is a field, for $i=1,2$.

Proof. Suppose that $\chi(W \Gamma(R))=\omega(W \Gamma(R))<\infty$. If $\chi(W \Gamma(R))=\omega(W \Gamma(R))=$ 0 , then R is an integer domain and so R is a field. Also, if $0<\chi(W \Gamma(R))=$ $\omega(W \Gamma(R))<\infty$, then we show that either $|R|<\infty$ or $R \cong F_{1} \times F_{2}$. By [6, Theorem 8.7], $R \cong R_{1} \times R_{2} \times \cdots \times R_{n}$, where R_{i} is an Artinian local ring, for every $1 \leq i \leq n$. We have the following two cases.

Case 1. If at least one of the R_{i} 's is non-reduced, then we claim that $\left|R_{i}\right|<\infty$, for every $1 \leq i \leq n$. Let $\operatorname{Nil}\left(R_{k}\right) \neq 0$ (fixed $\left.k\right)$. Since $W \Gamma(R)\left[\left(0, \ldots, \operatorname{Nil}\left(R_{k}\right), 0\right.\right.$, $\ldots, 0)]$ is a complete subgraph of $W \Gamma(R)$ (by Lemma 2.1p, $\left|Z\left(R_{k}\right)\right|=\left|\operatorname{Nil}\left(R_{k}\right)\right|<$ ∞. Thus $\left|R_{k}\right|<\infty$. Also, let $A=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in R_{i}\right.$ with $i \neq k$ and $\left.x_{k} \in \operatorname{Nil}\left(R_{k}\right)\right\}$. Then $W \Gamma(R)[A]$ is a complete subgraph of $W \Gamma(R)$, by an argument similar to that used in Case 1 of Claim 2 in Theorem 4.2. Since $\omega(W \Gamma(R))=$ $\chi(W \Gamma(R))<\infty,\left|R_{i}\right|<\infty$ and so $|R|<\infty$.

Case 2. If R_{i} is reduced for every $1 \leq i \leq n$, then we have the following two subcases.

Subcase A. Let $n \geq 3$. We show that $|R|<\infty$. It is sufficient to show that $\left|R_{i}\right|<\infty$. Put $B=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{1}=x_{2}=0\right.$ and $\left.x_{k} \in R_{k}\right\}, A=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid\right.$ $x_{2}=x_{3}=0$ and $\left.x_{k} \in R_{k}\right\}$, and $C=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{1}=x_{3}=0\right.$ and $\left.x_{k} \in R_{k}\right\}$. Hence $W \Gamma(R)[B], W \Gamma(R)[A]$, and $W \Gamma(R)[C]$ are complete subgraphs of $W \Gamma(R)$, by an argument similar to that used in Case 3 of Claim 2 in Theorem 4.2 Then $\left|R_{i}\right|<\infty$, and hence $|R|<\infty$.

Subcase B. Let $2 \geq n$. Since $0<\omega(W \Gamma(R))=\chi(W \Gamma(R)), n \neq 1$ and so $R \cong F_{1} \times F_{2}$.

References

[1] D. F. Anderson and J. D. LaGrange, Some remarks on the compressed zero-divisor graph, J. Algebra 447 (2016), 297-321. MR 3427636
[2] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), no. 2, 434-447. MR 1700509
[3] D. F. Anderson and S. B. Mulay, On the diameter and girth of a zero-divisor graph, J. Pure Appl. Algebra 210 (2007), no. 2, 543-550. MR 2320017
[4] T. Asir and K. Mano, Classification of non-local rings with genus two zero-divisor graphs, Soft Comput. 24 (2020), 237-245. https://doi.org/10.1007/s00500-019-04345-0
[5] T. Asir and K. Mano, Classification of rings with crosscap two class of graphs, Discrete Appl. Math. 265 (2019), 13-21. MR 3981222.
[6] M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley, Reading, MA, 1969. MR 0242802
[7] A. Badawi, On the annihilator graph of a commutative ring, Comm. Algebra 42 (2014), no. 1, 108-121. MR 3169557.
[8] M. Badie, A little more on the zero-divisor graph and the annihilating-ideal graph of a reduced ring, preprint, 2019. arXiv:1905.04530 [math.AC].
[9] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), no. 1, 208-226. MR 0944156
[10] A. Đurić, S. Jevđenić and N. Stopar, Compressed zero-divisor graphs of matrix rings over finite fields, Linear Multilinear Algebra, 2019, 28 pp. https://doi.org/10.1080/03081087.2019.1655523
[11] N. Ganesan, Properties of rings with a finite number of zero divisors, Math. Ann. 157 (1964), 215-218. MR 0169870
[12] J. A. Huckaba, Commutative rings with zero divisors, Monographs and Textbooks in Pure and Applied Mathematics, 117, Marcel Dekker, New York, 1988. MR 0938741
[13] N. Jahanbakhsh Basharlou, M. J. Nikmehr and R. Nikandish, On generalized zero-divisor graph associated with a commutative ring, Ital. J. Pure Appl. Math. 39 (2018), 128-139.
[14] T. G. Lucas, The diameter of a zero divisor graph, J. Algebra 301 (2006), no. 1, 174-193. MR 2230326
[15] S. B. Mulay, Cycles and symmetries of zero-divisors, Comm. Algebra 30 (2002), no. 7, 35333558. MR 1915011
[16] M. J. Nikmehr, R. Nikandish and M. Bakhtyiari, On the essential graph of a commutative ring, J. Algebra Appl. 16 (2017), no. 7, 1750132, 14 pp. MR 3660415
[17] S. P. Redmond, An ideal-based zero-divisor graph of a commutative ring, Comm. Algebra 31 (2003), no. 9, 4425-4443. MR 1995544
[18] D. B. West, Introduction to graph theory, Second edition, Prentice Hall, Upper Saddle River, NJ, 2001.

M. J. Nikmehr
Faculty of Mathematics, K. N. Toosi University of Technology, Tehran, Iran
nikmehr@kntu.ac.ir
A. Azadi ${ }^{\boxtimes}$
Faculty of Mathematics, K. N. Toosi University of Technology, Tehran, Iran
abdoreza.azadi@email.kntu.ac.ir
R. Nikandish
Department of Mathematics, Jundi-Shapur University of Technology, Dezful, Iran r.nikandish@jsu.ac.ir

Received: June 23, 2019
Accepted: November 19, 2019

[^0]: 2020 Mathematics Subject Classification. 13A15; 13B99; 05C25; 05C99.
 Key words and phrases. Weakly zero-divisor graph; Zero-divisor graph; Chromatic number; Clique number.

