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THE WEAKLY ZERO-DIVISOR GRAPH
OF A COMMUTATIVE RING

MOHAMMAD JAVAD NIKMEHR, ABDOLREZA AZADI, AND REZA NIKANDISH

Abstract. Let R be a commutative ring with identity, and let Z(R) be the
set of zero-divisors of R. The weakly zero-divisor graph of R is the undirected
(simple) graph W Γ(R) with vertex set Z(R)∗, and two distinct vertices x

and y are adjacent if and only if there exist r ∈ ann(x) and s ∈ ann(y) such
that rs = 0. It follows that W Γ(R) contains the zero-divisor graph Γ(R) as
a subgraph. In this paper, the connectedness, diameter, and girth of W Γ(R)
are investigated. Moreover, we determine all rings whose weakly zero-divisor
graphs are star. We also give conditions under which weakly zero-divisor and
zero-divisor graphs are identical. Finally, the chromatic number of W Γ(R) is
studied.

1. Introduction

The theory of graphs associated with rings was started by Beck [9] in 1981 and
has grown a lot since then. Anderson and Livingston [2] modified Beck’s definition
and introduced the notion of zero-divisor graph. Surely, this is the most important
graph associated with a ring, and not only zero-divisor graphs but also various
generalizations of it have attracted many researchers; see for instance [1, 7, 13, 8,
5, 4, 10, 16, 17]. Therefore, this paper is devoted to introducing and studying a
super graph of zero-divisor graphs. First let us recall some necessary notation and
terminology from ring theory and graph theory.

Throughout this paper, all rings are assumed to be commutative with identity
and they are not fields. We denote by Min(R) and Nil(R) the set of all minimal
prime ideals of R and the set of all nilpotent elements of R, respectively. For a
subset A of a ring R, we let A∗ = A \ {0}. For every subset I of R, we denote the
annihilator of I by annR(I). The ring R is called local if it has a unique maximal
ideal. Also, the ring R is said to be reduced if it has no non-zero nilpotent element.
For any undefined notation or terminology in ring theory, we refer the reader to [6].

Let G = (V,E) be a graph, where V = V (G) is the set of vertices and E = E(G)
is the set of edges. By diam(G) and girth(G) we mean the diameter and the girth
of G, respectively. We write u − v to denote an edge with ends u, v. A graph
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H = (V0, E0) is called a subgraph of G if V0 ⊆ V and E0 ⊆ E. Moreover, H is
called an induced subgraph by V0, denoted by G[V0], if V0 ⊆ V and E0 = {{u, v} ∈
E | u, v ∈ V0}. Let G1 and G2 be two disjoint graphs. The join of G1 and G2,
denoted by G1 ∨G2, is a graph with the vertex set V (G1 ∨G2) = V (G1) ∪ V (G2)
and edge set E(G1 ∨G2) = E(G1)∪E(G2)∪{uv | u ∈ V (G1), v ∈ V (G2)}. Also G
is called a null graph if it has no edge. A complete bipartite graph with part sizes
m,n is denoted by Km,n. If m = 1, then the complete bipartite graph is called star
graph. Also, a complete graph of n vertices is denoted by Kn. A clique of G is a
maximal complete subgraph of G and the number of vertices in the largest clique
of G, denoted by ω(G), is called the clique number of G. For a graph G, let χ(G)
denote the vertex chromatic number of G, i.e., the minimal number of colors which
can be assigned to the vertices of G in such a way that every two adjacent vertices
have different colors. For any undefined notation or terminology in graph theory,
we refer the reader to [18].

The zero-divisor graph of a ring R, denoted by Γ(R), is a graph with the vertex
set Z(R)∗, and two distinct vertices x and y are adjacent if and only if xy = 0.
The weakly zero-divisor graph of R is defined as the graph WΓ(R) with the vertex
set Z(R)∗ = Z(R) \ {0}, and two distinct vertices x and y are adjacent if and
only if there exist r ∈ ann(x) and s ∈ ann(y) such that rs = 0. In this paper,
we study some connections between the graph-theoretic properties of WΓ(R) and
some algebraic properties of rings. Moreover, we investigate the affinity between
weakly zero-divisor graph and zero-divisor graph associated with a ring. We focus
especially on the conditions under which these two graphs are identical. Finally,
the coloring of weakly zero-divisor graphs is studied.

2. Basic properties of weakly zero-divisor graphs

In this section, we study fundamental properties of WΓ(R). It is shown that
WΓ(R) is always a connected graph and diam(WΓ(R)) ≤ 2. Moreover, we prove
that if WΓ(R) contains a cycle, then girth(WΓ(R)) ≤ 4. We begin with a lemma
containing several useful properties of WΓ(R).
Lemma 2.1. Let R be a ring. Then the following statements hold:

(1) If x− y is an edge of Γ(R), for some distinct elements x, y ∈ Z(R)∗, then
x− y is an edge of WΓ(R).

(2) If x ∈ Nil(R)∗, then x is adjacent to all other vertices.
(3) Nil(R)∗ is a complete subgraph of WΓ(R).

Proof. (1) Suppose that x − y is an edge of Γ(R), for some distinct elements
x, y ∈ Z(R)∗. Thus xy = 0 and clearly x ∈ ann(y) and y ∈ ann(x). Hence
x− y is an edge of WΓ(R).

(2) Assume that x ∈ Nil(R)∗, for some x ∈ Z(R)∗, and let y ∈ V (WΓ(R))
and r ∈ ann(y). Since x ∈ Nil(R)∗, we deduce that there exists a positive
integer n ∈ N such that xn = 0 and xi 6= 0, for all 1 ≤ i ≤ n − 1. It is
clear that xn−1 ∈ ann(x). If xn−1r = 0, then x − y is an edge of WΓ(R).
If xn−1r 6= 0, then xn−1r ∈ ann(x) ∩ ann(y) and xn−1rxn−1r = 0. Thus
x− y is an edge of WΓ(R).
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(3) It is clear, by part (2). �

By using Lemma 2.1, we give upper bounds for diam(WΓ(R)) and girth(WΓ(R))
(if WΓ(R) contains a cycle).

Theorem 2.2. Let R be a ring. Then WΓ(R) is connected and diam(WΓ(R)) ≤ 2.
Moreover, if WΓ(R) contains a cycle, then girth(WΓ(R)) ≤ 4.

Proof. By Lemma 2.1, every edge (path) of Γ(R) is an edge (path) of WΓ(R).
Hence [2, Theorem 2.3] implies that WΓ(R) is connected. Moreover, it follows
from [15, p. 3541] that girth(WΓ(R)) ≤ 4. To complete the proof, we show that
diam(WΓ(R)) ≤ 2. Suppose that x− y is not an edge of WΓ(R), for some distinct
elements x, y ∈ Z(R)∗. Then rs 6= 0, for every r ∈ ann(x) and s ∈ ann(y). Since
rsx = 0 and rsy = 0, we find the path x− rs− y is in WΓ(R). This completes the
proof. �

The next result shows that girth(WΓ(R)) = 4 may occur.

Theorem 2.3. Let R be a ring and let WΓ(R) contain a cycle. Then
girth(WΓ(R)) = 4 if and only if R is reduced with |Min(R)| = 2.

Proof. First suppose that girth(WΓ(R)) = 4. If Nil(R) 6= (0), then by part (2) of
Lemma 2.1, girth(WΓ(R)) = 3, a contradiction. Hence Nil(R) = (0). We claim
that WΓ(R) = Γ(R). Assume, to the contrary, that WΓ(R) 6= Γ(R). Then there
are distinct elements x, y ∈ Z(R)∗ such that x − y is an edge of WΓ(R) which is
not an edge of Γ(R). Hence there are r ∈ ann(x) and s ∈ ann(y) such that rs = 0,
r 6= s, x 6= r 6= y, and y 6= s 6= x.

We consider the following cases.
Case 1. 0 6= b ∈ ann(x) ∩ ann(y). Thus b − x − y − b is a cycle in WΓ(R) of

length three. Hence girth(WΓ(R)) = 3, a contradiction.
Case 2. ann(x) ∩ ann(y) = 0. Then it is not hard to check that y, xy, x are

pairwise distinct. Since r ∈ ann(x) ⊆ ann(xy) and rs = 0, we deduce that xy − y
is an edge of WΓ(R). Also xy − x is an edge of WΓ(R), as s ∈ ann(y) ⊆ ann(xy)
and rs = 0. Therefore, xy − x − y − xy is a cycle in WΓ(R) of length three, a
contradiction, and so the claim is proved. This fact, together with girth(WΓ(R)) =
4 and the fact that R is reduced, implies that |Min(R)| = 2, by [3, Theorem 2.2].
Conversely, suppose that R is reduced and Min(R) = {P1, P2}. Since R is reduced,
Z(R) = P1 ∪ P2 and P1 ∩ P2 = (0), by [12, Corollary 2.4]. It is enough to show
that P1, P2 are independent sets of WΓ(R). Let x, y ∈ P1, 0 6= r ∈ ann(x), and
0 6= s ∈ ann(y). Then r, s ∈ P2, as P1 ∩ P2 = 0. If rs = 0, then either r = 0 or
s = 0, a contradiction. Similarly, P2 is independent. Then WΓ(R) = K|P ∗

1 |,|P ∗
2 |.

By hypothesis WΓ(R) contains a cycle and so girth(Γ(R)) = 4. �

The next result provides conditions under which WΓ(R) contains a triangle.

Theorem 2.4. Let R be a reduced ring and assume that Z(R)∗ is an ideal of R.
Then WΓ(R) 6= Γ(R) and girth(WΓ(R)) = 3.
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Proof. Let a ∈ Z(R)∗ and b ∈ ann(a) \ {0}. Then a + b ∈ Z(R)∗, as Z(R) is an
ideal. Since a(b+a) 6= 0, we deduce that a−a+ b is not an edge of Γ(R). A simple
check yields ann(a + b) ⊆ ann((b + a)a) = ann(a2), and so ann(a + b) ⊆ ann(a2).
Then there exists m ∈ R such that m ∈ ann(a+b) and m ∈ ann(a2). Thus ma = 0,
since R is reduced. Hence mb = 0. This fact, together with m ∈ ann(a + b) and
b ∈ ann(a), implies that a+ b−a is an edge of WΓ(R). Since a+ b−a is an edge of
WΓ(R) that is not an edge of Γ(R), we conclude that WΓ(R) 6= Γ(R). To complete
the proof, we show that girth(Γ(R)) = 3. We claim that a + b 6= (a + b)a 6= a. If
(a+ b)a = a, then a2 = a and so R is decomposable. Hence Z(R) is not an ideal,
a contradiction. Thus (a + b)a 6= a. Also if a + b = (a + b)a, then a + b = a2 and
a2 6= a. These imply that a2 = (a + b)a = a2 · a = a3 and so a2 is idempotent.
Again we get a contradiction. By the above assumptions, m ∈ ann(a+b) ⊆ ann(a),
b ∈ ann(a) = ann(a2) = ann((a+b)a), and mb = 0. Thus a+b−a− (a+b)a−a+b
is a triangle in WΓ(R), as desired. �

In the following theorem we classify all rings with star weakly zero-divisor
graphs.

Theorem 2.5. Let R be a ring. Then WΓ(R) is a star graph if and only if one
of the following statements holds:

(1) R ∼= Z2 ×D, where D is an integral domain.
(2) |Nil(R)| = |Z(R)| = 3.

Proof. One side is clear. To prove the other side, suppose that WΓ(R) is a star
graph. By Lemma 2.1 (3), |Nil(R)| ≤ 3. We consider the following cases.

Case 1. |Nil(R)| = 1 (i.e., R is reduced). Suppose that a ∈ V (WΓ(R)) is
adjacent to all the other vertices. We claim that a is idempotent. For, if not,
ann(a) = ann(a2), as R is reduced. This implies that a and a2 are adjacent to all
the other vertices. Then Z(R) = {0, a, a2}, since WΓ(R) is star. But it is clear
that a2 6= 0, a · a2 6= 0, and (a2)2 6= 0 (since R is reduced), a contradiction, and
so the claim is proved. Therefore, R ∼= R1 × R2, where R1, R2 are two rings. We
show that R1 ∼= Z2 and R2 ∼= D, where D is an integral domain. If R1 ∼= Z2 and
R2 ∼= Z2, then there is nothing to prove. Without loss of generality, suppose that
|R∗2| ≥ 2 (i.e., 1 6= b ∈ R∗2). For any 1 6= r ∈ R1, (r, 0) is a zero-divisor and so
(r, 0) − (0, 1) − (1, 0) − (0, b) − (r, 0) is a cycle in WΓ(R), a contradiction unless
r = 0. Hence, R1 ∼= Z2. If x ∈ Z(R2)∗ and a ∈ ann(x), then it is easily seen that
the induced subgraph on the vertices (1, 0), (0, x), and (0, a) forms a triangle in
WΓ(R), a contradiction. Thus Z(R2) = (0) and so R ∼= Z2 × D, where D is an
integral domain.

Case 2. We show that |Nil(R)| = 2 does not happen. Suppose, to the contrary,
that |Nil(R)| = 2. Since Γ(R) is a star graph, [2, Theorem 2.5] implies that
ann(x) = Z(R), for some x ∈ Z(R)∗. We show that WΓ(R) is complete. Suppose
that z and y are two vertices of WΓ(R) such that y 6= x 6= z. Since x ∈ ann(y) ∩
ann(z) and x2 = 0, y − z is an edge of WΓ(R), i.e., WΓ(R) is complete. This
fact, together with WΓ(R) being a star graph, implies that WΓ(R) ∼= K2. So
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Z(R) = {0, x, b}. This yields b2 = b and hence R ∼= Rb×R(1− b), i.e., Z(R) is not
an ideal, a contradiction. Therefore |Nil(R)| 6= 2.

Case 3. |Nil(R)| = 3. By Lemma 2.1 (2), we conclude that WΓ(R) ∼= K2 and
so |Nil(R)| = |Z(R)| = 3. �

The last result of this section is devoted to studying complete weakly zero divisor
graphs. First, we fix a notation. Let R ∼= R1 × R2 × · · · × Rm, where every Ri

is a ring, for 1 ≤ i ≤ m. By ei we mean the i-th standard basis vector, for every
i = 1, . . . ,m. Indeed, ei = (0, . . . , 0, 1Ri , 0, . . . , 0).

Theorem 2.6. Let R be an Artinian ring. Then WΓ(R) is a complete graph if
and only if one of the following statements holds:

(1) R ∼= Z2 × · · · × Z2.
(2) R ∼= R1×· · ·×Rm, where Ri is a non-reduced Artinian local ring, for every

1 ≤ i ≤ m.

Proof. First suppose that WΓ(R) is a complete graph. By [6, Theorem 8.7], R ∼=
R1 × · · · × Rm, where Ri is an Artinian local ring, for every 1 ≤ i ≤ m. If every
Ri, 1 ≤ i ≤ m, is non-reduced, then there is nothing to prove. So suppose that at
least one of the Ri’s is a field, say R1 (obviously, every reduced local Artinian ring
is a field). Consider the following two cases.

Case 1. Ri
∼= Z2, for every i 6= 1. We show that R ∼= Z2 × · · · × Z2. Suppose,

to the contrary, that R1 6∼= Z2. Let 1 6= u ∈ R∗1. Then x = (u, 1, . . . , 1, 0),
y = (1, 1, . . . , 1, 0) ∈ V (WΓ(R)) and ann(x) = ann(y) = (0, . . . , 0, 1). Therefore,
x, y are not adjacent, a contradiction.

Case 2. Ri 6∼= Z2, for some i 6= 1. We show that this case does not occur.
Without loss of generality, suppose that Rm 6∼= Z2. Let x = (0, 1, . . . , 1, u), y =
(0, 1, . . . , 1, 1) ∈ V (WΓ(R)), and 1 6= u ∈ Rm \ Z(R). Then ann(x) = ann(y) =
{(r, 0, . . . , 0) | r ∈ R∗1}. This implies that x is not adjacent to y, a contradiction.

To prove the other side, first suppose that R ∼= Z2 × · · · × Z2. One may easily
check that V (WΓ(R)) = {(x1, . . . , xm) ∈ R | xi = 0 for some 1 ≤ i ≤ m}. We
show that WΓ(R) is complete. To see this, suppose that x = (x1, . . . , xm) and
y = (y1, . . . , ym) are two distinct arbitrary elements of V (WΓ(R)). Then there
exist 1 ≤ i, j ≤ m such that i 6= j, xi = 0, and xj = 0. Since ei ∈ ann(X),
ej ∈ ann(Y ), and eiej = 0, we conclude that x is adjacent to y, as desired.

Now suppose that R ∼= R1 × · · · × Rm, where Ri is an non-reduced Artinian
local ring, for every 1 ≤ i ≤ m. We put A = {(x1, . . . , xm) ∈ R | xi ∈
Nil(Ri)∗ for some 1 ≤ i ≤ m} and B = {(x1, . . . , xm) ∈ R | xi 6∈ Nil(Ri)∗
for all 1 ≤ i ≤ m and xi = 0 for some 1 ≤ i ≤ m}. One may easily check that
V (WΓ(R)) = A ∪ B, A ∩ B = ∅. We show that WΓ(R) is a complete graph.
To see this, consider the following cases.

Case 1. Let X1 = (x1, . . . , xm) and X2 = (x′1, . . . , x′m) be two distinct elements
of A. Then xi ∈ Nil(Ri)∗ for some 1 ≤ i ≤ m and x′j ∈ Nil(Rj)∗ for some
1 ≤ j ≤ m, and hence there exist two positive integers n,m such that xn

i = 0,
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xn−1
i 6= 0 and x′j

m = 0, x′j
m−1 6= 0 (fix i and j). We have the following two

subcases.
Subcase A. If i 6= j, then (xn−1

i ·ei)(x′j
m−1 ·ej) = 0. Since (xn−1

i ·ei) ∈ ann(X1)
and (x′j

m−1 · ej) ∈ ann(X2), X1 is adjacent to X2.
Subcase B. If i = j, then either xn−1

i · x′i
m−1 = 0 or xn−1

i · x′i
m−1 6= 0. If

xn−1
i · x′i

m−1 = 0, then (xn−1
i · ei) · (x′i

m−1 · ei) = 0. Hence X1 is adjacent to X2.
If xn−1

i · x′i
m−1 6= 0, then r = xn−1

i · x′i
m−1 · ei ∈ ann(x1) ∩ ann(x2). Since r2 = 0,

X1 is adjacent to X2.
Case 2. Let Y1 = (y1, . . . , ym) and Y2 = (y′1, . . . , y′m) be two distinct elements

of B. We can suppose that the i-th component of Y1 is zero, for some 1 ≤ i ≤ m,
and also that the j-th component of Y2 is zero, for some 1 ≤ j ≤ m. We consider
the following two subcases.

Subcase A. Let i 6= j. Since ei ∈ ann(Y1), ej ∈ ann(y2), and eiej = 0, we
conclude that Y1 is adjacent to Y2.

Subcase B. Let i = j. Since Ri is non-reduced, for every 1 ≤ i ≤ m, there
exists a non-zero nilpotent element ri in Nil(Rj)∗ such that rn

i = 0 and rn−1
i 6= 0,

where n is a positive integer. It is clear that rn−1
i · ei ∈ ann(Y1), ri · ei ∈ ann(Y2),

and (rn−1
i · ei) · (ri · ei) = 0. This implies that Y1 is adjacent to Y2.

Case 3. Let X1 ∈ A and Y1 ∈ B. Then we have the following two subcases.
Subcase A. If i 6= j, then xn−1

i ei · ej = 0. Since xn−1
i ei ∈ ann(x1) and

ej ∈ ann(Y1), we conclude that X1 is adjacent to Y1.
Subcase B. If i = j, then r = xn−1

i · ei ∈ ann(x1) and s = xi · ei ∈ ann(y1).
Hence X1 is adjacent to Y1, since rs = 0.

Therefore WΓ(R) is a complete graph. �

3. When is WΓ(R) identical to Γ(R)?

As we have seen in Section 2, Γ(R) is a subgraph of WΓ(R). A natural question
is posed: When are WΓ(R) and Γ(R) identical? In this section, we completely
answer this question.

Theorem 3.1. Let R be a reduced ring that is not an integral domain. Then
WΓ(R) = Γ(R) if and only if |Min(R)| = 2.

Proof. Suppose that WΓ(R) = Γ(R). If |Min(R)| ≥ 3, then by [14, Theo-
rem 2.6], diam(Γ(R)) = 3. This contradicts Theorem 2.2. Hence |Min(R)| = 2, as
|Min(R)| = 1 means that R is an integral domain. Conversely, suppose that P1
and P2 are two distinct minimal prime ideals of R. It is not hard to check that
WΓ(R) = Γ(R) = K|P ∗

1 |,|P ∗
2 |. �

Next, we study non-reduced rings R whose weakly zero-divisor graphs and zero-
divisor graphs are identical.

Theorem 3.2. Let R be a non-reduced ring. Then the following statements are
equivalent:

(1) WΓ(R) = Γ(R).
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(2) Z(R)2 = 0.
(3) Γ(R) is a complete graph.

Proof. (1) =⇒ (2). Let x ∈ Nil(R)∗. Then by part (2) of Lemma 2.1, x is adjacent
to all the other vertices in WΓ(R). This fact, together with WΓ(R) = Γ(R), implies
that ann(x) = Z(R), by [2, Theorem 2.5]. Thus WΓ(R) is a complete graph, and
so is Γ(R). Hence by [2, Theorem 2.8], the result holds.

(2) =⇒ (3) and (3) =⇒ (1) are clear. �

Theorem 3.2 leads to the following corollary.

Corollary 3.3. Let R be a non-reduced ring. Then the following statements are
equivalent:

(1) WΓ(R) is a star graph.
(2) girth(WΓ(R)) =∞.
(3) WΓ(R) = Γ(R) and girth(Γ(R)) =∞.
(4) |Z(R)∗| = |Nil(R)∗| = 2.
(5) WΓ(R) = Γ(R) = K1,1.

Proof. (1) =⇒ (2). It is clear.
(2) =⇒ (3). If a ∈ Nil(R)∗, then a is adjacent to all the other vertices in

WΓ(R). Since girth(WΓ(R)) = ∞ and Γ(R) is a connected subgraph of WΓ(R),
we conclude that WΓ(R) = Γ(R), and so girth(Γ(R)) =∞.

(3) =⇒ (4). If WΓ(R) = Γ(R), then WΓ(R) = Γ(R) is a complete graph,
by Theorem 3.2. Since girth(Γ(R)) = ∞ and R is non-reduced, we have that
|Z(R)∗| = |Nil(R)∗| = 2.

(4) =⇒ (5) and (5) =⇒ (1) are clear. �

4. Coloring of WΓ(R)

In this section, we study the coloring of WΓ(R). First, we state the following
lemma.

Lemma 4.1. Let R ∼= D1 ×D2 × · · · ×Dn, where n ≥ 3 is a positive integer and
Di is an integral domain, for every 1 ≤ i ≤ n. Then WΓ(R) = Km

∨
Hn, where

Hn is a complete n-partite graph and Km is a complete graph.

Proof. Let A = {X = (x1, . . . , xn) ∈ R | only one of xi’s is zero} and B = {X =
(x1, . . . , xn) ∈ R | at least two of the xi’s are zero}. It is clear that V (WΓ(R)) =
A ∪ B. Suppose that X = (x1, . . . , xn) and Y = (y1, . . . , yn) are elements of A,
where xi, yi ∈ Di, for every 1 ≤ i ≤ n. Define the relation ∼ on A as follows:
X ∼ Y whenever xi = 0 if and only if yi = 0, for every 1 ≤ i ≤ n. It is easily seen
that ∼ is an equivalence relation on A. By [Xi], we mean the equivalence class
of Xi, where Xi = (1, 1, . . . , 1, 0, 1, . . . , 1) such that only the i-th component is
zero, for every 1 ≤ i ≤ n. It is clear that A =

⋃n
i=1[Xi]. We claim that WΓ(R)[A]

is a complete n-partite subgraph of WΓ(R). First we show that there is no adja-
cency between elements of [Xi], for every 1 ≤ i ≤ n. To see this, suppose that
X = (x1, x2, . . . , xi−1, 0, xi+1, . . . , xn) and Y = (y1, y2, . . . , yi−1, 0, yi+1, . . . , yn)
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are two distinct arbitrary elements of [Xi]. Then we have ann(X) = ann(Y ) =
{(0, . . . , 0, ai, 0, . . . , 0) | ai ∈ Di}. This implies that there are no elements r, s of
ann(X) = ann(Y ) such that rs = 0, and so X is not adjacent to Y . Now, sup-
pose that [Xi] and [Xj ] are two distinct arbitrary equivalence classes of A. We
show that each element of [Xi] is adjacent to each element of [Xj ]. Let X =
(x1, x2, . . . , xi−1, 0, xi+1, . . . , xn) be an element of [Xi] and Y = (y1, y2, . . . , yj−1, 0,
yj+1, . . . , yn) be an element of [Xj ]. Then ei ∈ ann(X) and ej ∈ ann(Y ), where
ei, ej , are the ith and jth standard basis vectors. Since eiej = 0, we conclude
that X is adjacent to Y . Therefore WΓ(R)[A] = Hn, where Hn is a complete
n-partite graph. In what follows, we show that WΓ(R)[B] = Km, where m =
|B|. Let X = (x1, x2, . . . , xk−1, 0, xk+1, . . . , xl−1, 0, xl+1, . . . , xn) ∈ B and Y =
(y1, y2, . . . , yi−1, 0, yi+1, . . . , yj−1, 0, yj , . . . , yn) ∈ B. Then either k 6= i or k 6= j.
With no loss of generality, assume that i 6= k. Then ek ∈ ann(X), ei ∈ ann(Y ),
and ekei = 0. Hence X is adjacent to Y and thus WΓ(R)[B] = Km. To complete
the proof, we show that every vertex contained in B is adjacent to every vertex
contained in A. Let X = (x1, x2, . . . , xk−1, 0, xk+1, . . . , xl−1, 0, xl+1, . . . , xn) ∈ B
and Y = (y1, y2, . . . , yi−1, 0, yi+1, . . . , yn) ∈ [xi] ⊂ A. Then i 6= k or i 6= l. With
no loss of generality, assume that i 6= k. Since ek ∈ ann(X), ei ∈ ann(Y ), and
ekei = 0, we conclude that X is adjacent to Y . Therefore WΓ(R) = Km

∨
Hn. �

To state our main result in this section, we need to fix a notation.
Notation. Let R ∼= F1×· · ·×Fk×R1×· · ·×Rn, where Fi is a field for every 1 ≤ i ≤
k and Rj is a non-field Artinian local ring, for every 1 ≤ j ≤ n. Set A =

⋃k
i=1Ai,

where Ai = {(x1, . . . , xk, y1, . . . , yn) | xi = 0 for exactly one 1 ≤ i ≤ k, and yj is
a unit of Rj for all 1 ≤ j ≤ n}. Moreover, put M = |Z(R)∗| − |A|.

Theorem 4.2. Let R ∼= F1×· · ·×Fk×R1×· · ·×Rn, where Fi is a field for every
1 ≤ i ≤ k and Rj is an Artinian local ring with |Nil(Rj)∗| 6= 0 for every 1 ≤ j ≤ n.
Then ω(WΓ(R)) = χ(WΓ(R)) = M + k.

Proof. We put A =
⋃k

i=1Ai, where

Ai = {(x1, . . . , xk, y1, . . . , yn) | xi = 0 for exactly one 1 ≤ i ≤ k,
and yj is a unit of Rj for all 1 ≤ j ≤ n}

and B =
⋃3

i=1Bi, where

B1 = {(x1, . . . , xk, y1, . . . , yn) | yj ∈ Nil(Rj)∗ for some 1 ≤ j ≤ n},

B2 = {(x1, . . . , xk, y1, . . . , yn) | xi 6= 0 for all 1 ≤ i ≤ k,
yj 6∈ Nil(Rj)∗ for all 1 ≤ j ≤ n, and only one of yj ’s is zero}

and

B3 = {(x1, . . . , xk, y1, . . . , yn) | yj 6∈ Nil(Rj)∗ for all 1 ≤ j ≤ n,
and at least two components are zero}.
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One may check that V (WΓ(R)) = A∪B, A∩B = ∅, and so {A,B} is a partition
of V (WΓ(R)). We note that B1 ∩ B2 = B1 ∩ B3 = B2 ∩ B3 = ∅. First we show
that WΓ(R) = WΓ(R)[A]

∨
WΓ(R)[B]. Indeed, we have the following claims:

Claim 1. WΓ(R)[A] is a complete K-partite subgraph of WΓ(R).
Suppose that Ai and Aj are two distinct arbitrary sets. It is enough to show

that there is no adjacency between two vertices of Ai and that every vertex of Ai

is adjacent to all the vertices of Aj . To see this, let X1 and X2 be two vertices
of Ai and Y1 a vertex of Aj . So X1 = (x1, . . . , xi−1, 0, xi+1, . . . , xk, y1, . . . , yn),
X2 = (x′1, . . . , x′i−1, 0, x′i+1, . . . , x

′
k, y
′
1, . . . , y

′
n), and Y1 = (x′′1 , . . . , x′′j−1, 0, x′′j+1, . . . ,

x′′k , y
′′
1 , . . . , y′′n), where i 6= j. Then ann(X1) = ann(X2) = {(0, . . . , 0, ai, 0, . . . , 0) |

ai ∈ Fi}, and so there are no elements r, s of ann(X1) = ann(X2) such that rs = 0.
This implies that X1 and X2 are not adjacent. Also ei ∈ ann(X1) and ej ∈ ann(Y ).
Since i 6= j, we obtain eiej = 0. Therefore X1 is adjacent to Y , as desired.

Claim 2. WΓ(R)[B] is a complete subgraph of WΓ(R).
Suppose that X = (x1, . . . , xk, y1, . . . , yn) and Y = (x′1, . . . , x′k, y′1, . . . , y′n) are

two vertices of WΓ(R)[B]. Then we have the following cases.
Case 1. Let X and Y be two vertices of B1. Then yi ∈ Nil(R∗i ) for some

1 ≤ i ≤ n, and y′j ∈ Nil(R∗j ) for some 1 ≤ j ≤ n. Hence there exist two positive
integers n,m such that yn

i = 0, yn−1
i 6= 0 and y′j

m = 0, y′j
m−1 6= 0. Fix i and j

and consider the following two subcases.
Subcase A. If i = j, then either yn−1

i y′i
m−1 = 0 or yn−1

i y′i
m−1 6= 0. If

yn−1
i y′i

m−1 = 0, then (0, . . . , 0, yn−1
i , 0, . . . , 0)(0, . . . , 0, y′i

m−1
, 0, . . . , 0) = 0. Hence

X is adjacent to Y , since (0, . . . , 0, yn−1
i , 0, . . . , 0) ∈ ann(X) and (0, . . . , 0, y′i

m−1
,

0, . . . , 0) ∈ ann(Y ). If yn−1
i y′i

m−1 6= 0, then a = (0, . . . , 0, yn−1
i y′i

m−1
, 0, . . . , 0) ∈

ann(X) ∩ ann(Y ). Hence X is adjacent to Y , since a2 = 0.
Subcase B. If i 6= j, then (0, . . . , 0, yn−1

i , 0, . . . , 0)(0, . . . , 0, y′j
m−1

, 0, . . . , 0) = 0.
Hence X is adjacent to Y .

Case 2. Let X and Y be two vertices of B2. We can suppose that the (i+k)-th
component of X is zero, for some 1 ≤ i ≤ n, and also that the (j+k)-th component
of Y is zero, for some 1 ≤ j ≤ n. We have the following two subcases.

Subcase A. Let i = j. Since Ri is non-reduced for every 1 ≤ i ≤ n, there
exists a non-zero nilpotent element yi in Nil(Ri)∗ such that yn

i = 0 and yn−1
i 6= 0,

where n is a positive integer. It is clear that (0, . . . , 0, yn−1
i , 0, . . . , 0) ∈ ann(X),

(0, . . . , 0, yi, 0, . . . , 0) ∈ ann(Y ), and (0, . . . , 0, yn−1
i , 0, . . . , 0)(0, . . . , 0, yi, 0, . . . , 0) =

0. This implies that X is adjacent to Y .
Subcase B. Let i 6= j. Since ek+i ∈ ann(X), ek+j ∈ ann(Y ), and ek+iek+j = 0,

we conclude that X is adjacent to Y .
Case 3. Let X and Y be two vertices of B3. Since X ∈ B3, two components

of X are zero. We can suppose that the i-th and j-th components are the zero of X,
for some 1 ≤ i ≤ k+n and 1 ≤ j ≤ k+n. Similarly, since Y ∈ B3, we can suppose
that the l-th and h-th components are the zero of Y , for some 1 ≤ l ≤ k + n and
1 ≤ h ≤ k + n. It is clear that either i 6= l or i 6= h. Without loss of generality,
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take i 6= l. It is easily seen that ei ∈ ann(X), el ∈ ann(Y ), and eiel = 0. Hence X
is adjacent to Y .

Case 4. Let X be a vertex of B1 and Y be a vertex of B2. Since X ∈ B1, we
have yi ∈ Nil(R∗i ), for some 1 ≤ i ≤ n, and there exists a positive integer n such
that yn

i = 0, yn−1
i 6= 0. Then (0, . . . , 0, yn−1

i , 0, . . . , 0) ∈ ann(X). On the other
hand, since Y ∈ B2, for the component y′j , 1 ≤ j ≤ n, we have y′j = 0. We consider
the following two subcases.

Subcase A. Let i = j. It is clear that (0, . . . , 0, yn−1
i , 0, . . . , 0) ∈ ann(X),

(0, . . . , 0, yi, 0, . . . , 0) ∈ ann(Y ), and (0, . . . , 0, yn−1
i , 0, . . . , 0)(0, . . . , 0, yi, 0, . . . , 0) =

0. This implies that X is adjacent to Y .
Subcase B. Let i 6= j. Clearly, (0, . . . , 0, yn−1

i , 0, . . . , 0) ∈ ann(X), ek+j ∈
ann(Y ), and (0, . . . , 0, yn−1

i , 0, . . . , 0)ek+j = 0 imply that X is adjacent to Y .
Case 5. Let X be a vertex of B1 and Y be a vertex of B3. Since Y ∈ B3,

two components of Y are zero. We can suppose that the i-th and j-th components
are the zero of Y , for 1 ≤ i ≤ k + n and 1 ≤ j ≤ k + n. So ej and ei ∈
ann(Y ). Also, by an argument similar to that in Case 4, we can suppose that
(0, . . . , 0, yn−1

l , 0, . . . , 0) ∈ ann(X) such that yn
l = 0 for 1 ≤ l ≤ n. Clearly,

either i 6= l or j 6= l. Without loss of generality, take i 6= l. This implies that
ei(0, . . . , 0, yn−1

l , 0, . . . , 0) = 0, as desired.
Case 6. Let X be a vertex of B1 and Y be a vertex of B3. The proof is similar

to that of Case 5. Therefore WΓ(R)[B] is a complete subgraph of WΓ(R).
Claim 3. Every vertex of WΓ(R)[B] is adjacent to every vertex of WΓ(R)[A].
Let X = (x1, . . . , xk, y1, . . . , yn) be a vertex of WΓ(R)[B] and Y = (x′1, . . . , x′k,

y′1, . . . , y
′
n) be a vertex of WΓ(R)[A]. Then there exists a positive integer m such

that Y ∈ Am, 1 ≤ m ≤ k. Since X ∈ B =
⋃3

i=1Bi, either X ∈ B1, X ∈ B2, or
X ∈ B3. The following three cases complete the proof.

Case 1. Let X ∈ B1. This implies that yi ∈ Nil(Ri)∗, for some 1 ≤ i ≤ n such
that yn

i = 0, yn−1
i 6= 0, where n is a positive integer. Now, (0, . . . , 0, yn−1

i , 0, . . . , 0) ∈
ann(X) and em ∈ ann(Y ). Thus X is adjacent to Y , since em(0, . . . , 0, yn−1

i ,
0, . . . , 0) = 0.

Case 2. Let X ∈ B2. Then the (i+ k)-th component is zero for 1 ≤ i ≤ n, and
so ei+k ∈ ann(X). Since ei+kem = 0, we conclude that X is adjacent to Y .

Case 3. Let X ∈ B3. The proof is similar to that of Case 3 in Claim 2.
Therefore WΓ(R) = KM

∨
Hk, where M = |B| = |B1| + |B2| + |B3|, and so

ω(WΓ(R)) = χ(WΓ(R)) = M + k. �

In Theorems 4.3 and 4.4, we study weakly zero-divisor graphs with finite chro-
matic number.

Theorem 4.3. Let R be a ring that is not an integral domain and suppose that
χ(WΓ(R)) <∞. Then the following statements are equivalent.

(1) Z(R) = Nil(R).
(2) R is an Artinian local ring.
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Proof. (1) =⇒ (2). Let Z(R) = Nil(R). Then WΓ(R) is a complete graph, by
Lemma 2.1 (3). Since χ(WΓ(R)) < ∞, we have 2 ≤ |Z(R)| = |Nil(R)| < ∞ and
so |R| <∞, by [11, Theorem 1]. This, together with Z(R) = Nil(R), implies that
R is an Artinian local ring.

The converse is trivial. �

Following [11], we know that Z(R) is finite if and only if either R is finite or an
integral domain. So, for an Artinian local ring R, if |Nil(R)| 6= 1 then R is finite
if and only if Nil(R) is finite. We use these facts to prove the last result of this
paper.

Theorem 4.4. Let R be an Artinian ring. Then ω(WΓ(R)) = χ(WΓ(R)) <∞ if
and only if one of the following statements holds:

(1) R ∼= F , where F is a field.
(2) R is a finite ring.
(3) R ∼= F1 × F2, where Fi is a field, for i = 1, 2.

Proof. Suppose that χ(WΓ(R)) = ω(WΓ(R)) <∞. If χ(WΓ(R)) = ω(WΓ(R)) =
0, then R is an integer domain and so R is a field. Also, if 0 < χ(WΓ(R)) =
ω(WΓ(R)) < ∞, then we show that either |R| < ∞ or R ∼= F1 × F2. By [6,
Theorem 8.7], R ∼= R1×R2×· · ·×Rn, where Ri is an Artinian local ring, for every
1 ≤ i ≤ n. We have the following two cases.

Case 1. If at least one of the Ri’s is non-reduced, then we claim that |Ri| <∞,
for every 1 ≤ i ≤ n. Let Nil(Rk) 6= 0 (fixed k). Since WΓ(R)[(0, . . . ,Nil(Rk), 0,
. . . , 0)] is a complete subgraph of WΓ(R) (by Lemma 2.1), |Z(Rk)| = |Nil(Rk)| <
∞. Thus |Rk| < ∞. Also, let A = {(x1, . . . , xn) | xi ∈ Ri with i 6= k and
xk ∈ Nil(Rk)}. Then WΓ(R)[A] is a complete subgraph of WΓ(R), by an argument
similar to that used in Case 1 of Claim 2 in Theorem 4.2. Since ω(WΓ(R)) =
χ(WΓ(R)) <∞, |Ri| <∞ and so |R| <∞.

Case 2. If Ri is reduced for every 1 ≤ i ≤ n, then we have the following two
subcases.

Subcase A. Let n ≥ 3. We show that |R| < ∞. It is sufficient to show that
|Ri| <∞. Put B = {(x1, . . . , xn) | x1 = x2 = 0 and xk ∈ Rk}, A = {(x1, . . . , xn) |
x2 = x3 = 0 and xk ∈ Rk}, and C = {(x1, . . . , xn) | x1 = x3 = 0 and xk ∈ Rk}.
Hence WΓ(R)[B], WΓ(R)[A], and WΓ(R)[C] are complete subgraphs of WΓ(R),
by an argument similar to that used in Case 3 of Claim 2 in Theorem 4.2. Then
|Ri| <∞, and hence |R| <∞.

Subcase B. Let 2 ≥ n. Since 0 < ω(WΓ(R)) = χ(WΓ(R)), n 6= 1 and so
R ∼= F1 × F2. �
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