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A NEW TRIGONOMETRIC DISTRIBUTION WITH BOUNDED
SUPPORT AND AN APPLICATION

AHMED M. T. ABD EL-BAR, HASSAN S. BAKOUCH, AND SHOVAN CHOWDHURY

Abstract. In this paper, we introduce a new bounded distribution by using
trigonometric functions, named the cosine-sine distribution. A comprehen-
sive study of its statistical properties is presented along with an application
to a unit-interval data set, namely firms risk management cost-effectiveness
data. The proposed distribution has increasing, bathtub and v hazard rate
shapes. Further, we show that the distribution can be viewed as a truncated
exponential sine distribution.

1. Introduction

In statistical literature, many extensions of the lifetime distributions have been
studied by several researchers over the last two decades. Most of these extensions
concern distributions with unbounded support, while there is a great scarcity of
distributions with bounded support (see Marshall and Olkin [14]). In many prac-
tical situations, a common issue is dealing with uncertain phenomena observed in
the bounded interval (0, 1). For example, in real-life situations we often encounter
measures such as percentages, proportions or fractions. In reliability and survival
analysis, failure of a device during the warranty period may not be counted. More-
over, test conditions, cost or other constraints may lead many reliability systems
to be bounded above (Lai and Jones [12], Lai and Mukherjee [13], Mukherjee and
Islam [15], Jiang [9]). Also, models defined on the unit interval are recommended
when the reliability is measured as the ratio of the number of successful trials to the
number of total trials (Genç [5]). Further, continuous distributions having a finite
support are highly recommended to model and analyze reliability data because of
physical reasons, such as the finite lifetime of a component system or the bounded
signals occurring in industrial systems (see Jiang [9]). In insurance, a probability
distribution with domain on (0, 1) can be used as a distortion function to define a
premium principle (Gómez-Déniz et al. [6], Chowdhury and Nanda [3]). Further,
Papke and Wooldridge [16] claim that variables whose values lie in (0, 1) arise nat-
urally in many economic settings, such as the fraction of land area allocated to

2020 Mathematics Subject Classification. 60E05, 62E15, 62F10.
Key words and phrases. Trigonometric distributions; moments; residual life function; entropy;

goodness-of-fit statistics.

459

https://doi.org/10.33044/revuma.1872


460 A. M. T. ABD EL-BAR, H. S. BAKOUCH, AND S. CHOWDHURY

agriculture, proportion of income spent on non-durable consumption, pension plan
participation rates, etc. Moreover, examples of proportions in empirical finance
can be found in Cook et al. [4].

All existing bounded probability distributions are mostly specialized to the beta
distribution. On the other hand, power function density, finite range density, trun-
cated Weibull distribution, Kumaraswamy and Log-Lindley distributions are used
occasionally to model unit-interval data.

Further, the statistical literature has a lack of distributions based on trigono-
metric functions. Among the distributions that used trigonometric functions are
the von Mises distribution (see Evans et al. [8, pp. 189–191]), the circular Cauchy
distribution introduced by Kent and Tyler [10], and the sine square distribution
explored by Al-Faris and Khan [2].

Motivated by the preceding discussion, there is a need to introduce other unit-
interval distributions besides the ones already existing in the literature; hence we
introduce a new trigonometric distribution with bounded support called cosine-sine
(CS) distribution. This model, when compared to beta, Kumaraswamy, and Log-
Lindley distributions, offers more flexibility in modeling and evaluating actual data,
as will be demonstrated later by a practical example. A comprehensive account of
statistical properties of the distribution is investigated along with an application
to a unit-interval data set, namely firms risk management cost-effectiveness data.
There are other features that motivate the proposed distribution. First, it has a
closed form expression for the cumulative distribution function (cdf) and various
shapes of its hazard rate function, namely increasing, bathtub and v-shapes. Also,
it can be displayed as a truncated exponential sine distribution. Moreover, the
probability density of this model decays slowly and rapidly to 0 at the end of the
distribution support based on the distribution parameter values, which may be a
desired feature for some real-life models.

The remainder of this paper is structured as follows. Section 2 proposes the CS
distribution with some related functions. In Section 3, various probabilistic prop-
erties of the CS model are obtained, including moments, conditional moments, and
moment generating function. Shannon entropy and Rényi entropy are investigated
in Section 4 with some numerical results. In Section 5, we discuss the residual life
and reversed residual life random variables, and get some of their related statistical
functions, such as survival function, mean and variance of the (reversed) residual
life function for the CS distribution. In Section 6, the maximum likelihood esti-
mator of the parameter of the CS model is obtained. The CS model and other
distributions are fitted to a practical data set, and the usefulness of the model
is illustrated by exhibiting a data set for which the CS model fits better than
other existing parametric models, as indicated by several goodness-of-fit measures.
Concluding remarks are presented in Section 7.

2. The CS distribution

The parametric class that we will study in this paper is comprised of laws indexed
by a parameter λ ∈ R+. Each law in the class is that of a random variable
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X = arcsin
(
π
2Y
)
, where Y has a truncated exponential distribution (0, 1) with

parameter λ, i.e., Y has density

g(y) = λe−λy

1− e−λ I(0,1)(y), 0 < y < 1.

Straightforward calculations, using the change of variable formula, lead to the
following expression of the CS density function:

f (x;λ) = πλ

2 (1− e−λ) cos (πx/2) e−λ sin(πx/2)I(0,1)(x), 0 < x < 1, λ > 0, (2.1)

and the cumulative distribution function (cdf) of the CS model is

F (x;λ) = 1
1− e−λ

(
1− e−λ sin(πx/2)

)
I(0,1)(x) + I[1,∞)(x), 0 < x < 1,

which has a closed form. The corresponding hazard rate (hr) function is

h(x) = πλ

2 cos (πx/2) e−λ sin(πx/2)
(
e−λ sin(πx/2) − e−λ

)−1
, 0 < x < 1. (2.2)

In Figures 1 and 2, we plot the pdf and hrf of the CS model for different values of
the parameter λ. From Figure 1, we note that the pdf f (x;λ) decays rapidly to 0
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Figure 1. Plots of the CS pdfs.

as x goes to 1 with λ < 1 and slowly when λ ≥ 1. Figure 2 shows various shapes
for the hrf, including increasing, bathtub and v-shapes. This variety of shapes may
be due to trigonometric functions in expression (2.2), which makes the distribution
capable of analyzing many practical data.
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Figure 2. Plots of the CS hrfs

Throughout the rest of the paper we will use the following definitions and results.
For m > 0 and r = 1, 2, . . . , we define

υ (m; r, λ) =
∫ m

0
xrf(x;λ) dx

= 2r

πr (1− e−λ)

×
∞∑
k=0

ϕr,k
1

λr+2k [Γ (r + 2k + 1)− Γ (r + 2k + 1, λ sin (πm/2))] .

(2.3)

For k = 1, 2, . . . , let bk = (2k)!
22k(k!)2(2k+1) ; for any fixed r we define ϕr,0 = br0

and ϕr,k = (kb0)−1∑k
n=1 [n (r + 1)− k] bnϕr,k−n, where Γ(.) is the gamma func-

tion and Γ(., .) denotes the incomplete gamma function (see Abramowitz and Ste-
gun [1]).

The entropy formulae that we will derive later will make use of the following
functions.

(i) The modified Bessel function of the first kind is given by

Iν (z) =
∞∑
k=0

(z/2)2k+ν

k! Γ(ν + k + 1) ,
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where ν ∈ R, z ∈ C and

I(1,0)
ν (z) = Iν(z) log (z/2)−

∞∑
k=0

$(k + ν + 1)
k! Γ(ν + k + 1) ,

where $(.) is the polygamma function defined as

$(n)(z) = dn

dzn
$(z) = dn+1

dzn+1 ln Γ(z), n = 1, 2, 3, . . .

(see Abramowitz and Stegun [1]).
(ii) The modified Struve function is defined by

Lν(z) =
∞∑
k=0

(z/2)2k+ν+1

Γ (k + 3/2) Γ (k + ν + 3/2) ,

and

L(1,0)
ν (z) = Lν log (z/2)−

∞∑
k=0

$ (k + ν + 3/2)
Γ (k + 3/2) Γ (k + ν + 3/2) .

3. Moments

In this section, we derive an expression for the marginal and conditional moments
of the random variable X as a function of λ.

Theorem 3.1. Let X be a random variable with CS density function (2.1). Then
the r-th moment about the origin of X is given, for r = 1, 2, . . . , by

E (Xr) = 2r

πr (1− e−λ)

∞∑
k=0

ϕr,k
1

λr+2k [Γ (r + 2k + 1)− Γ (r + 2k + 1, λ)] . (3.1)

Proof. Using the definition of the r-th moment of X around the origin, we have

E (Xr) = πλ

2 (1− e−λ)

∫ 1

0
xr cos(π/2)e−λ sin(πx/2) dx

= 2rλ
πr (1− e−λ)

∫ 1

0

(
sin−1 u

)r
e−λu du.

Using the expressions

sin−1 x =
∞∑
k=0

(2k)!
22k (k!)2 (2k + 1)

x2k+1

and ( ∞∑
k=0

bku
2k+1

)r
=
∞∑
k=0

ϕr,ku
2k+r

(see Gradshteyn and Ryzhik [7]) in the successive substitutions, Eq. (3.1) is at-
tained. In particular, using (2.3), the mean of the CS distribution follows as

E(X) = 2
π (1− e−λ)

∞∑
k=0

ϕ1,k
1

λ2k+1 [Γ (2k + 2)− Γ(2k + 2, λ)] . (3.2)
�
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In connection with lifetime distribution, it is important to determine the con-
ditional moments E (Xr | X > t), r = 1, 2, . . . , which are of interest in predictive
inference.

Proposition 3.2. The conditional moments of the CS distribution are given by

E (Xr | X > t) = 1− e−λ

e−λ sin(πt/2) − e−λ
[E (Xr)− υ(t; r, λ)] , t ∈ (0, 1),

where E (Xr) is given in (3.1) and υ(t; r, λ) is given by (2.3).

Proof. The proof follows by applying the identity

E (Xr | X > t) = 1
S(t)

[
E (Xr)−

∫ t

0
xrf(x;λ) dx

]
. �

4. Stochastic ordering and entropies

In this section we show that the CS model can be ordered in terms of the
likelihood ratio order, which is a powerful tool in parametric models. We also
provide expressions for the Shannon and Rényi entropies for this model.

4.1. Stochastic ordering. The next theorem shows that the CS model can be
ordered in terms of the likelihood ratio ordering.

Theorem 4.1. Let X and Y be CS random variables with pdf f(x;λ1) and f(x;λ2),
respectively. If λ2 < λ1, then X is said to be smaller than Y in the likelihood ratio
order (denoted by X ≤lr Y ).

Proof. The density ratio is given by
fX(x)
fY (x) =

λ1
(
1− e−λ2

)
λ2 (1− e−λ1) e

(λ2−λ1) sin(πx2 ).

Hence, if follows that
d

dx

[
fX(x)
fY (x)

]
= (λ2 − λ1) π2 cos

(πx
2

) fX(x)
fY (x) .

Since λ2 < λ1, we have d
dx

[
fX(x)
fY (x)

]
< 0. Hence fX(x)

fY (x) is decreasing in x. That is,
X ≤lr Y , which completes the proof. �

4.2. Entropies. Entropy is a measure of uncertainty variation of a system modeled
by a probability distribution f(x). Two popular entropy measures of f(x) are the
Shannon entropy (Shannon [18]) and Rényi entropy (Rényi [17]), defined as

Λ = E (− log [f(x)]) (4.1)
and

Ω = 1
1− δ log

[∫
R

fδ(x)dx
]
, δ > 0, δ 6= 1, (4.2)

respectively. The next two theorems explore explicit expressions of such entropies
for the CS model.
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Theorem 4.2. The Shannon entropy for the CS model is given by

Λ = log
[
2
(
1− e−λ

)]
− log [πλ] + 1− (1 + λ) e−λ

λ (1− e−λ)

−
√

2π3λ3

4 (1− e−λ)

(
I(1,0)

[
1
2 , λ

]
− L(1,0)

[
1
2 , λ

])
− πλ

4 (1− e−λ) [(2γ − log [4] + 2 log [λ]) (cosh (λ)− sinh (λ)− 1)] ,

where γ ≈ 0.577216 is the Euler–Mascheroni constant.

Proof. Using the definition of Shannon entropy (4.1), we have

Λ = log
[
2
(
1− e−λ

)]
− log [πλ] + λE ((sin πX/2))− E (log [cos (πX/2)]) .

The expression E (sin (πX/2)) is immediate from the fact that X = 2
π arcsin (Y ),

where Y follows a truncated exponential distribution. Hence,

E (sin (πX/2)) = 1− (1 + λ) e−λ

λ (1− e−λ) .

Also, the quantity E (log [cos (πX/2)]) can be computed as

E (log [cos (πX/2)]) = πλ

2 (1− e−λ)

∫ 1

0
log [cos (πx/2)] cos (πx/2) e−λ sin(πx/2)dx

= πλ

4 (1− e−λ) [(2γ − log [4] + 2 log [λ]) (cosh (λ)− sinh (λ)− 1)]

+ πλ

4 (1− e−λ)

[√
2πλ

(
I(1,0)

[
1
2 , λ

]
− L(1,0)

[
1
2 , λ

])]
.

Applying all the above results in the expression for Λ, we have the desired proof. �

Theorem 4.3. The Rényi entropy for the CS distribution is

Ω = 1
1− δ log [ξ (δ, λ)] + 1

1− δ log
[
Γ[(1 + δ) /2](I [δ/2, δλ]− L [δ/2, δλ])

]
,

where ξ (δ, λ) = (πλ)δ

2δ(1−e−λ)δ
√
π

( 2
δλ

)δ/2.

Proof. Using Eq. (2.1), we get∫ 1

0
fδ(x;λ) dx = (πλ)δ

2δ (1− e−λ)δ

∫ 1

0
(cos (πx/2))δ e−λδ sin(πx/2) dx

= (πλ)δ

2δ
√
π (1− e−λ)δ

(
2
δλ

)δ/2
Γ
[

1 + δ

2

]
(I [δ/2, δλ]− L [δ/2, δλ]) .
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Using (4.2), it follows that

Ω = 1
1− δ log

[
(πλ)δ

2δ (1− e−λ)δ
√
π

(
2
δλ

)δ/2]

+ 1
1− δ log

[
Γ
[

1 + δ

2

]
(I [δ/2, δλ]− L [δ/2, δλ])

]
,

which completes the proof. �

Table 1 gives some numerical values for the Shannon entropy and the Rényi
entropy. It can be observed that the Shannon entropy decreases with increasing λ
and takes negative values, which may mean loss of system information. Also, it
can be noted that the Rényi entropy takes negative values and decreases with
increasing λ.

Table 1. Shannon and Rényi entropies for different values of λ.

λ ↓ Shannon entropy λ ↓ Rényi entropy with δ = 2
1 −0.274 2 −0.667
2 −0.453 3 −0.928
3 −0.658 5 −1.370
4 −0.864 7 −1.700
5 −1.056 9 −1.953

5. Some reliability measures

Residual life and reversed residual life random variables are used extensively in
reliability analysis and risk theory. In this section, we get some of their related
statistical functions, such as survival function (SF), mean and variance of residual
life functions for the CS model.

5.1. Residual life functions. The survival function of the residual lifetime ψ(t)
for the CS distribution is

Sψ(t)(x) = S (x+ t)
S(t) = e−λ sin(π(x+t)/2) − e−λ

e−λ sin(πt/2) − e−λ
.

Using this equation, the pdf and hrf of ψ(t) are defined, respectively, as

fψ(t)(x) = (πλ/2) cos (π (x+ t) 2)
e−λ sin(πt/2) − e−λ

e−λ sin(π(x+t)/2), 0 ≤ x+ t < 1,

and

hψ(t)(x) = (πλ/2) cos (π (x+ t) /2)
e−λ sin(π(x+t)/2) − e−λ

e−λ sin(π(x+t)/2), 0 ≤ x+ t < 1.
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Additionally, the mean of residual lifetime (MRL) of ψ(t) for the CS distribution is

ϑ(t) = E
(
ψ(t)

)
= 1
S(t)

∫ 1

t

xf(x;λ) dx− t

= 1
S(t) [E(x)− υ(t; 1, λ)]− t, 0 ≤ t < 1,

where E(x) is obtained by (3.2) and υ (t; 1, λ) is given by (2.3).
Finally, the variance of residual lifetime of ψ(t) for the CS model is given by

ρ(t) = V
(
ψ(t)

)
= 2
S(t)

∫ 1

t

xS(x) dx− 2tϑ(t)− [ϑ(t)]2

= 1
S(t) [µ′2 − υ (t; 2, λ)]− t2 − 2tϑ(t)− [ϑ(t)]2 , 0 ≤ t < 1,

where S(.) is the SF of the CS distribution, µ′2 can be obtained using (3.1), and
υ(t; 2, λ) is given by (2.3). Some numerical values of the MRL are displayed in
Table 2 for different values of λ at the time points t = 0.1, 0.3, 0.5, 0.7, 0.9. From
this table, the MRL decreases with increasing the time points t and decreases with
increasing λ.

Table 2. MRL for different values of λ and the time points t.

λ ↓ t −→ 0.1 0.3 0.5 0.7 0.9
1 0.271 0.217 0.160 0.098 0.033
1.5 0.248 0.205 0.155 0.097 0.033
1.9 0.229 0.195 0.151 0.096 0.033
2.2 0.217 0.188 0.148 0.095 0.033
2.6 0.201 0.179 0.145 0.095 0.033

5.2. Reversed residual life functions. The survival function of the reversed
residual lifetime ψ̄(t) for the CS model is

Sψ̄(t)
(x) = F (t− x;λ)

F (t;λ) = 1− e−λ sin(π(t−x)/2)

1− e−λ sin(πt/2) , 0 ≤ x < t.

Therefore, using this equation, the pdf and hrf of ψ̄(t) are, respectively,

f
ψ̄(t)

(x) = (πλ/2) cos (π (t− x) /2)
1− e−λ sin(πt/2) e−λ sin(π(t−x)/2),

and

hψ̄(t)
(x) = (πλ/2) cos (π (t− x) /2)

1− e−λ sin(π(t−x)/2) e−λ sin(π(t−x)/2).
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Moreover, the mean of reversed residual lifetime (MRRL) of ψ̄(t) for the CS
model is

Λ(t) = E
(
ψ̄(t)

)
= t− 1

F (t;λ)

∫ t

0
xf(x;λ) dx = t− υ (t; 1, λ)

F (t;λ) ,

where F (.) is the cdf of the CS model and υ(t ; 1, λ) is given by (2.3).
Finally, the variance of reversed residual lifetime of ψ̄(t) for the CS model is

given by

Ω(t) = Var
(
ψ̄(t)

)
= 2tΛ(t)− [Λ(t)]2 − 2

F (t;λ)

∫ t

0
xF (x;λ) dx

= 2tΛ(t)− [Λ(t)]2 − t2 + υ (t; 2, λ)
F (t;λ) ,

where υ(t ; 2, λ) is given by (2.3) for r = 2. In Table 3 we give some numerical values
for the MRRL with different values of λ at the time points t = 0.1, 0.3, 0.5, 0.7, 0.9.
It can be seen that the MRRL increases with increasing the time points t and
increases with increasing λ.

Table 3. MRRL for different values of λ and the time points t.

λ ↓ t −→ 0.1 0.3 0.5 0.7 0.9
1 0.0514 0.1641 0.2923 0.4387 0.6073
1.5 0.0521 0.1696 0.3062 0.4615 0.6366
1.9 0.0526 0.1740 0.3168 0.4787 0.6583
2.2 0.0529 0.1773 0.3246 0.4909 0.6736
2.6 0.0535 0.1815 0.3345 0.5064 0.6925

6. Estimation with data analysis

In this section, we obtain the maximum likelihood estimator (MLE) of the un-
known parameter of the CS model. Using this estimator we check the capability
of this distribution to model a practical data set.

Let X1, X2, . . . , Xn be a random sample of size n from the CS distribution with
observed values x1, x2, . . . , xn. Then, the corresponding log-likelihood function is

` = n log (π/2) + n log (λ)− n log
(
1− e−λ

)
+

n∑
i=1

log (cos (πxi/2))− λ
n∑
i=1

sin (πxi/2) .

Differentiating with respect to λ, we have

d`

dλ
= n

λ
− ne−λ

1− e−λ −
n∑
i=1

sin (πxi/2) .
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By setting d`
dλ = 0, the MLE λ̂ of the parameter λ can be obtained by solving

the non-linear equation above numerically for λ using some statistical software
package, such as Mathematica.

6.1. Data analysis. By making use of a practical data set, we illustrate the ap-
plicability of the CS model among a set of classical and recent models —containing
beta, Kumaraswamy and Log-Lindley— which also have support on (0, 1). We esti-
mate the model parameters by using the maximum likelihood method. We compare
goodness-of-fit of the models with the Akaike information criterion (AIC) and the
Bayesian information criterion (BIC). Also, we apply the following goodness-of-
fit tests: Cramér–von Mises (W ∗), Anderson–Darling (A∗), the P-values based
on Cramér–von Mises statistic and the Anderson–Darling statistic. In general, the
smaller the values of these statistics and the largest P-values, the better the model’s
fit.

The competitive models are:
(1) Beta (Be) distribution;
(2) Kumaraswamy (Kw) distribution — see Kumaraswamy [11];
(3) Log-Lindley (LL) distribution — see Gómez-Déniz et al. [6].

Description of the data is as follows.

The data set is given in Table 4. This data set is extracted from firms risk
management cost-effectiveness, available at the personal web page of Professor
E. Frees (Wisconsin School of Business). The data is defined as the total property
and casualty premiums and uninsured losses as a percentage of the total assets
leading to a bounded set on (0, 1). This data set was used by Gómez-Déniz et al. [6]
to illustrate the applicability of the Log-Lindley distribution.

Table 5 gives some descriptive statistics for the data set and using it we note that
the data are under-dispersed (variance < mean) and positively skewed. Further, the
data set possesses a negative kurtosis. Description of such data adapts features of
the CS distribution and this proves the suitability of this distribution for analyzing
such data. From Tables 5 and 8, we find that the descriptive and the corresponding
theoretical estimated measures (under the CS model) are closed approximately for
the data set. Also, Table 8 shows negative values for the considered entropies that
adapt the theoretical results given in Table 1.

On the other hand, comparing the CS model with other bounded distributions
is investigated as follows. For the data set, we estimate the unknown parameters of
each distribution by the maximum-likelihood method, and using those estimates,
we obtain the statistics AIC, BIC, W ∗, A∗, and the P-values based on Cramér–
von Mises statistic and the Anderson–Darling statistic. The results obtained are
reported in Tables 6 and 7. From these tables, the smallest values of the AIC,
BIC, W ∗, A∗, and the largest P-values based on Cramér–von Mises statistic and
the Anderson–Darling statistic are obtained for the CS model. Hence, we conclude
that the CS model provides the best fit among the compared distributions.
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Table 4. Firms risk management cost-effectiveness data.

0.03289999962 0.1937999916 0.00930000007 0.1753000069 0.65
0.0931000042 0.0375 0.10 0.14 0.08510000229
0.04070000172 0.1332999992 0.05820000172 0.02059999943 0.04309999943
0.06940000057 0.04579999924 0.09130000114 0.0125 0.00360000014
0.05349999905 0.1396000004 0.09 0.1192000008 0.07829999924
0.2886000061 0.00280000001 0.1260999966 0.00649999976 0.05090000153
0.02789999962 0.06079999924 0.02150000095 0.03150000095 0.00400000006
0.15 0.00939999998 0.2221999931 0.02549999952 0.03700000048
0.03890000105 0.02970000029 0.1271000004 0.08180000305 0.15
0.04070000172 0.04110000134 0.1597000027 0.1128999996 0.1356999969
0.04340000153 0.01220000029 0.04320000172 0.08850000381 0.1244999981
0.04329999924 0.06289999962 0.08489999771 0.0075999999 0.00200000003
0.05289999962 0.06119999886 0.0525 0.05710000038 0.18
0.07900000095 0.0350999999 0.1832999992 0.2912000084
0.9755000305 0.02160000086 0.2171999931 0.7930000305

Table 5. Descriptive statistics of the data set.

Mean 0.1312
Median 0.1129
SD 0.0887
MD-mean 0.0765
MD-median 0.0761
Skewness 0.5776
Kurtosis −0.6515

7. Concluding remarks

A new trigonometric distribution with bounded support, named cosine-sine dis-
tribution, is introduced. The probability density function of this model decays
slowly and rapidly to 0 at the end of the distribution support based on the distri-
bution parameter values, which may be a desired feature for some real-life models.
Also, this model can be displayed as a truncated exponential sine distribution.
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Table 6. Firms risk management cost-effectiveness data:
ML estimates, AIC and BIC values.

Model Estimates AIC BIC
Be(a, b) a = 0.1625 b = 3.7979 −148.235 −143.654
Kw(a, b) a = 0.6648 b = 3.4407 −153.308 −148.727
LL(λ, σ) λ = 0.0343 σ = 0.6907 −149.208 −144.627
CS(λ) λ = 6.2743 −176.068 −173.777

Table 7. Firms risk management cost-effectiveness data:
Goodness-of-fit tests.

Model W ∗ A∗ A∗ (P-value) W ∗ (P-value)
Be(a, b) 0.6924 3.9193 0.0096 0.0130
Kw(a, b) 0.4984 3.0643 0.0255 0.0399
LL(λ, σ) 1.0602 5.5756 0.0016 0.0017
CS(λ) 0.0927 0.7884 0.4891 0.6332

Table 8. Some measures of the CS model for the data set.

Mean 0.1031
Median 0.0703
SD 0.1061
MD-mean 0.0030
MD-median 0.0720
Shannon entropy −1.2725
Rényi entropy −1.7387

Additionally, the new model has a closed form expression for the cumulative dis-
tribution function and various shapes of its hazard rate function. Finally, the
cosine-sine model and other distributions are fitted to a practical data set and the
usefulness of the model is illustrated.
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