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ON CONFORMAL GEOMETRY OF FOUR-DIMENSIONAL
GENERALIZED SYMMETRIC SPACES

AMIRHESAM ZAEIM, YADOLLAH ARYANEJAD, AND MOKHTAR GHEITASI

Abstract. We study conformal geometry on an important class of four-
dimensional (pseudo-)Riemannian manifolds: generalized symmetric spaces.
This leads to the general description of conformally Einstein metrics on the
spaces under consideration. Finally, the class of oscillator Lie groups is studied
for the conformally Einstein property.

1. Introduction

Most geometric objects that exist on a manifold are directly associated with the
Riemann curvature tensor, making the study of manifolds with specific curvature
tensor properties of great interest to geometers. In certain aspects, the spaces with
the simplest form of the curvature tensor are homogeneous manifolds. Due to the
straightforward structure of the Riemann curvature tensor, any property valid at
one point of a homogeneous manifold can easily be extended to any other point.
In other words, studying a homogeneous manifold is akin to studying a single
point, allowing for algebraic interpretations of different objects on the manifold.
Although homogeneous manifolds have been previously examined in the context of
Riemannian manifolds (e.g., [25]), recent research has primarily focused on pseudo-
Riemannian geometry. Three-dimensional homogeneous Lorentzian manifolds were
studied in [3], while the four-dimensional case due to the signature of the invariant
metric was considered in [8], [15]. Special homogeneous pseudo-Riemannian man-
ifolds were also studied in several cases. Three-dimensional Lorentzian manifolds
with recurrent curvature were studied in [19] and [10]. Non-reductive homogeneous
manifolds of dimension four were studied in [17], [9] and [7]. The oscillator group
of dimension four was also considered in several works, e.g. [11] and [4]. One of the
most interesting classes of homogeneous pseudo-Riemannian manifolds with several
geometric traits are generalized symmetric spaces. These spaces were studied from
different points of view after their classification in [14].

Conformal geometry is an interesting topic in many aspects. One says (M, g)
and (M, g̃) are conformally equivalent if there exists a conformal transformation
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between them. In other words, a locally defined smooth function φ (which is an-
gle preserving) exists such that g̃ = φ−2g. In this case, the set of metrics g̃ is
called the conformal class of g. Different geometric properties of a space could be
also studied through its conformal class. For example, a space which is confor-
mally equivalent to a flat (resp., symmetric, Einstein) space is called conformally
flat (resp., conformally symmetric, conformally Einstein). It is well known that
the Weyl conformal tensor W is preserved under a conformal transformation but
neither the connection nor the curvature tensor will remain invariant. Since the
Ricci tensor is not preserved by conformal transformations, it is natural to study
the situation of being conformally Einstein. Brinkmann studied this problem and
obtained the following necessary and sufficient condition:

(n− 2) Hesφ +φϱ = 1
n

{(n− 2)∆φ+ φr}g, (1.1)

where Hesφ = ∇dφ is the Hessian of φ, and ϱ and r respectively denote the Ricci
tensor and the scalar curvature of g [1]. Conformal transformations, which map an
Einstein manifold to another one were also studied later in [2]. Conformal trans-
formations are trivial in dimension two and equivalent to conformal flatness in
dimension three, thus dimension four is the first non-trivial case. Conformally Ein-
stein non-reductive homogeneous manifolds of dimension four were studied in [13].
Conformally Einstein semi-direct extensions of the Heisenberg groups were stud-
ied in [12]. The conformal geometry of a special class of four-dimensional product
surfaces with non-zero scalar curvature was studied in [22] and [23]. Although
Gover and Nurowski presented in [20] some tensorial obstructions as well as non-
degeneracy conditions of the Weyl tensor of a metric to be conformally Einstein, it
is still an interesting problem to study this property on different spaces by tensorial
equations.

This paper is organized in the following way. In Section 2, some basic prelim-
inaries about the subject are given to make the context self-contained and more
readable. Section 3 is devoted to the study of the Bach tensor on the spaces under
consideration. In Section 4, we completely classify conformally Einstein generalized
symmetric spaces of dimension four. Extensions of three-dimensional generalized
symmetric spaces to dimension four are contained in Section 5; finally, the confor-
mal geometry of oscillator Lie groups is studied in Section 6.

2. Preliminaries

In order to keep the paper self-contained, we recall some basic material which
will be used throughout.

2.1. Generalized symmetric spaces of dimension four. Let x be an arbitrary
point on the connected pseudo-Riemannian manifold (M, g). A symmetry at x is
defined as an isometry sx of M which keeps x as an isolated fixed point. On a
symmetric space (M, g), each point x admits a symmetry sx reversing geodesics
passing through the point. A. J. Ledger generalized this property and defined a
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regular s-structure as a family {sx : x ∈ M} of symmetries of (M, g) satisfying

sx ◦ sy = sz ◦ sx, z = sx(y),

for all points x, y of M . The smallest integer k ≥ 2 such that (sx)k = idM for all
x ∈ M is called the order of an s-structure (k may be infinity).

Let (M, g) be a connected pseudo-Riemannian manifold. We call (M, g) a gen-
eralized symmetric space if it admits a regular s-structure. Since s-structures on
(M, g) are not unique, the order of a generalized symmetric space is defined as the
infimum of all integers k ≥ 2 such that M admits a regular s-structure of order k.

Generalized symmetric spaces of dimension four were studied by J. Černý and
O. Kowalski, and they classified these spaces both algebraically and in explicit
coordinates, as summarized in the following result.

Theorem 2.1 ([14]). Let (M, g) be a proper, simply connected generalized sym-
metric space of dimension n = 4; in this case, (M, g) is of order 3 or infinity.
All these spaces are indecomposable and belong (up to an isometry) to one of the
following four types:

Type A. The underlying homogeneous space is G/H, where

G =

 a b u
c d v
0 0 1

 , H =

 cos t − sin t 0
sin t cos t 0

0 0 1

 ,

with ad − bc = 1. In local coordinates, (M, g) is the space R4(x, y, u, v) with the
pseudo-Riemannian metric

g = ±
[
(−x+

√
1 + x2 + y2)du2 + (x+

√
1 + x2 + y2)dv2 − 2y2dudv

]
+ λ

[
(1 + y2)dx2 + (1 + x2)dy2 − 2xydxdy

]
/(1 + x2 + y2),

where λ ̸= 0 is a real constant. The order is k = 3 and the possible signatures are
(4, 0), (0, 4), (2, 2). The typical symmetry of order 3 at the initial point (0, 0, 0, 0)
is the transformation

u′ = −(1/2)u− (
√

3/2)v, v′ = −(
√

3/2)u− (1/2)v,

x′ = −(1/2)x+ (
√

3/2)y, y′ = −(
√

3/2)x− (1/2).

Type B. The underlying homogeneous space is G/H, where

G =


e−(x+y) 0 0 a

0 ex 0 b
0 0 ey c
0 0 0 1

 , H =


1 0 0 −w
0 1 0 −2w
0 0 1 2w
0 0 0 1

 .

In local coordinates (M, g) is the space R4(x, y, u, v) with the pseudo-Riemannian
metric

g = λ(dx2 + dy2 + dxdy) + e−y(2dx+ dy)dv + e−x(dx+ 2dy)du,
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where λ is a real constant. The order is k = 3 and the signature is (2, 2). The
typical symmetry of order 3 at the initial point (0, 0, 0, 0) is the transformation

u′ = −ue(y−x) − v, v′ = ue−(y+2x), x′ = y, y′ = −(x+ y).

Type C. The underlying homogeneous space is the matrix group

G =


e−t 0 0 x
0 et 0 y
0 0 1 z
0 0 0 1

 .

In local coordinates, (M, g) is the space R4(x, y, z, t) with the pseudo-Riemannian
metric

g = ±
(
e2tdx2 + e−2tdy2)

+ dzdt.

The possible signatures are (1, 3), (3, 1). Following [16], these spaces of type C are
indeed symmetric. So, since generalized symmetric (non-symmetric) spaces are the
subject of our study, we eliminate this class in the forthcoming sections.

Type D. The underlying homogeneous space is G/H, where

G =

 a b x
c d y
0 0 1

 , H =

 et 0 0
0 e−t 0
0 0 1

 ,

with ad − bc = 1. (M, g) is the space R4(x, y, u, v) with the pseudo-Riemannian
metric

g = (sinh(2u) − cosh(2u) sin(2v))dx2 + (sinh(2u) + cosh(2u) sin(2v))dy2

− 2 cosh(2u) cos(2v)dxdy + λ(du2 − cosh2(2u)dv2),

where λ ̸= 0 is a real constant. The order is infinite and the signature is (2, 2).
The typical symmetry at the initial point (0, 0, 0, 0) is induced by the automorphism
of G of the form

a′ = a, b′ = (1/α2)b, c′ = α2c, d′ = d, x′ = (1/α)x, y′ = αy,

where α ̸= 0,±1.

Any generalized symmetric pseudo-Riemannian space is homogeneous. More-
over, it admits at least one structure of reductive homogeneous space with an
invariant metric [14]. With regard to the four-dimensional examples, such a re-
ductive decomposition corresponds to their realizations as coset spaces G/H listed
in Theorem 2.1 above. Generalized symmetric spaces of dimension four have been
the subject of several studies. For example, geometric structures and Ricci solitons
were considered in [6] and [5], respectively.
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2.2. Conformally Einstein manifolds. The study of conformally Einstein man-
ifolds in pseudo-Riemannian spaces is an interesting topic from the perspectives
of both geometry and mathematical physics. By applying local coordinates, the
conformally Einstein equation (1.1) gives rise to a system of PDEs which is over-
determined and, obviously, very hard to handle in general. The equation is trivial
in dimension two and equivalent to conformal flatness for three-dimensional mani-
folds, so the first remarkable solutions may occur starting from dimension four.

Since any conformally Einstein manifold is Bach flat, it is natural to consider
the Bach tensor first. If we denote the Weyl conformal tensor by W and the Ricci
tensor by ϱ, the Bach tensor on (Mn, g) is given by

B = div1 div4 W + n− 3
n− 2W [ϱ],

where, with respect to a pseudo-orthonormal basis {ei}, with εi = g(ei, ei), the
tensor W [ϱ] is the Ricci contraction of W defined by

W [ϱ](X,Y ) =
∑
i,j

εiεjW (ei, X, Y, ej)ϱ(ei, ej).

One can determine the components of the Bach tensor by using the Cotton tensor.
The (0, 2)-tensor field

S = ϱ− r

2(n− 1)g (2.1)

is a symmetric tensor called the Schouten tensor, where r is the scalar curvature.
The condition for the Schouten tensor to be a Codazzi tensor (i.e., for its covariant
derivative to be totally symmetric) is considered using the Cotton tensor which is
defined by the following components:

Cijk = (∇iS)jk − (∇jS)ik. (2.2)

Now, the Bach tensor can be computed by the following components:

Bij = 1
n− 2

{ n∑
k,l=1

gkl(∇lC) +
n∑

k,l=1

(
ϱkl

n∑
s,t=1

gksgltWisjt

)}
, (2.3)

where Wisjt are the components of the Weyl conformal tensor calculated by the
identity

Wijhk = Rijhk − 1
n− 2(gihϱjk − gjhϱik − gikϱjh + gjkϱih)

+ r

(n− 1)(n− 2)(gihgjk − gjhgik).

Since any conformally Einstein manifold is necessarily Bach flat, for Bach-flat man-
ifolds of dimension four the conformally Einstein equation

2 Hesφ +φϱ = 1
4{2∆φ+ φr}g (2.4)

must be carried out to determine conformally Einstein manifolds.
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3. Study of the Bach tensor

We study four classes of generalized symmetric spaces of dimension four sepa-
rately. For simplicity, in computations of the Bach tensor we apply the algebraic
motivation and the results are summarized in the following theorem.

Theorem 3.1. Let (M, g) be a generalized symmetric space of dimension four.
(M, g) is Bach flat if and only if it is of type B.

Proof. The proof is based on a case-by-case study of generalized symmetric spaces
of dimension four, according to the classification which appeared in [14].

Type A: Pseudo-Riemannian case. Let (M = G/H, g) be a four-dimensional
generalized symmetric space of type A, where g is an invariant metric of neutral
signature (2, 2). We show that (M, g) is never Bach flat. Following [14], the Lie
algebra g = m⊕h admits a basis {u1, u2, u3, u4, h1}, where {u1, u2, u3, u4} and {h1}
are bases of m and h, respectively, such that (reversing the metric when needed [24])
the Lie bracket on g and the scalar product on m are completely determined by

[ , ] u1 u2 u3 u4 h1

u1 0 0 −δu1 δu2 u2

u2 0 0 δu2 δu1 −u1

u3 δu1 −δu2 0 −2δ2h1 −2u4

u4 −δu2 −δu1 2δ2h1 0 2u3

h1 −u2 u1 2u4 −2u3 0

where δ > 0 is a real constant, and

g =


−1 0 0 0
0 −1 0 0
0 0 −2 0
0 0 0 −2

 .

By setting Λ[i] = Λui
, a direct calculation yields that we can describe the Levi-

Civita connection as follows:

Λ[1] =


0 0 −δ 0
0 0 0 δ

− δ
2 0 0 0

0 δ
2 0 0

 , Λ[2] =


0 0 0 δ
0 0 δ 0
0 δ

2 0 0
δ
2 0 0 0

 ,

Rev. Un. Mat. Argentina, Vol. 65, No. 1 (2023)



CONFORMAL GEOMETRY OF 4-D GENERALIZED SYMMETRIC SPACES 141

and Λ[3] = Λ[4] = 0. Applying the equation Rij := R(ui, uj) = [Λui ,Λuj ]−Λ[ui,uj ],
one can calculate the non-zero components of the curvature tensor as follows:

R12 =


0 −δ2 0 0
δ2 0 0 0
0 0 0 −δ2

0 0 δ2 0

 , R13 =


0 0 −δ2 0
0 0 0 δ2

− δ2

2 0 0 0
0 δ2

2 0 0

 ,

R14 = R23 =


0 0 0 −δ2

0 0 −δ2 0
0 − δ2

2 0 0
− δ2

2 0 0 0

 , R24 =


0 0 δ2 0
0 0 0 −δ2

δ2

2 0 0 0
0 − δ2

2 0 0

 ,

R34 =


0 2δ2 0 0

−δ2 0 0 0
0 0 0 −4δ2

0 0 4δ2 0

 .

By contraction on the first and third indices of the curvature tensor, we get the
Ricci tensor as

(ϱij) =


0 0 0 0
0 0 0 0
0 0 −6δ2 0
0 0 0 −6δ2

 ,

so (M, g) is never Einstein in this case. By (2.1), the Schouten tensor is determined
to be equal to the Ricci tensor.

The non-zero components of the Cotton tensor (up to symmetries) are

C131 = −3δ3, C142 = 3δ3, C232 = 3δ3, C241 = 3δ3,

and the non-zero components of the Weyl tensor are

W1234 = 2δ2, W1324 = δ2, W1423 = −δ2.

Then, using (2.3), it follows that the Bach tensor is

B =


− 3

2δ
4 0 0 0

0 − 3
2δ

4 0 0
0 0 −3δ4 0
0 0 0 −3δ4

 .

So, (M, g) is Bach flat if and only if δ = 0, which is impossible.

Type A: Riemannian case. Let (M = G/H, g) be a four-dimensional general-
ized symmetric space of type A, where the invariant metric g is of signature (4, 0)
or (0, 4). Following [14], the Lie algebra g = m⊕h admits a basis {u1, u2, u3, u4, h1},
where {u1, u2, u3, u4} and {h1} are bases of m and h, respectively, such that (re-
versing the metric if needed) the Lie bracket on g and the scalar product on m are
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completely determined by

[ , ] u1 u2 u3 u4 h1
u1 0 0 −u1 u2 u2

u2 0 0 u2 u1 −u1

u3 u1 −u2 0 −2h1 −2u4

u4 −u2 −u1 2h1 0 2u3
h1 −u2 u1 2u4 −2u3 0

and

g =


1 0 0 0
0 1 0 0
0 0 2

ρ 0
0 0 0 2

ρ

 ,

where ρ ̸= 0 is a real constant. Direct calculations yield that we can describe the
Levi-Civita connection as follows:

Λ[1] =


0 0 −1 0
0 0 0 1
ρ
2 0 0 0
0 − ρ

2 0 0

 , Λ[2] =


0 0 0 1
0 0 1 0
0 − ρ

2 0 0
− ρ

2 0 0 0

 ,

and Λ[3] = Λ[4] = 0. The components of the curvature tensor are deduced as

R12 =


0 ρ 0 0

−ρ 0 0 0
0 0 0 ρ
0 0 −ρ 0

 , R13 =


0 0 −1 0
0 0 0 1
ρ
2 0 0 0
0 − ρ

2 0 0

 ,

R14 = R23 =


0 0 0 −1
0 0 −1 0
0 ρ

2 0 0
ρ
2 0 0 0

 , R24 =


0 0 1 0
0 0 0 −1

− ρ
2 0 0 0

0 ρ
2 0 0

 ,

R34 =


0 2 0 0

−2 0 0 0
0 0 0 −4
0 0 4 0

 ,

and the Ricci tensor is calculated immediately as

(ϱij) =


0 0 0 0
0 0 0 0
0 0 −6 0
0 0 0 −6

 .

Obviously, (M, g) is never Einstein. By (2.1), the Schouten tensor is determined to
be equal to the Ricci tensor. Then, the non-zero components of the Cotton tensor
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(up to symmetries) are given by

C131 = 3ρ, C142 = −3ρ, C232 = −3ρ, C241 = −3ρ,

and the non-zero components of the Weyl tensor (up to symmetries) are

W1234 = 2, W1324 = 1, W1423 = −1.

Then, using (2.3), it follows that the Bach tensor is

(Bij) =


− 3

2ρ
2 0 0 0

0 − 3
2ρ

2 0 0
0 0 3ρ 0
0 0 0 3ρ

 .

So, (M, g) is Bach flat if and only if ρ = 0, which is impossible.

Type B. Let (M, g) be a four-dimensional generalized symmetric space of type B.
In this case, we have (M = G/H, g) and the Lie algebra g = m ⊕ h is spanned by
{u1, u2, u3, u4, h1}, where {u1, u2, u3, u4} and {h1} span m and h, respectively. The
Lie brackets on g and the scalar product on m are given by the following relations:

[ , ] u1 u2 u3 u4 h1

u1 0 0 −u1 εh1 + u2 0
u2 0 0 −εh1 + u2 u1 0
u3 u1 εh1 − u2 0 0 2u2

u4 −εh1 − u2 −u1 0 0 −2u1

h1 0 0 −2u2 2u1 0

where ε = ±1, and

g =


0 0 −1 0
0 0 0 −1

−1 0 2λ 0
0 −1 0 2λ

 ,

where λ is an arbitrary real constant (see [14]).
By direct calculations with respect to the basis {ui}, we get Λ[1] = Λ[2] = 0 and

Λ[3] =


1 0 −2λ 0
0 −1 0 2λ
0 0 −1 0
0 0 0 1

 , Λ[4] =


0 −1 0 2λ

−1 0 2λ 0
0 0 0 1
0 0 1 0

 .

Then, the curvature tensor is obtained by the following non-zero components:

R14 = −R23 =


0 0 0 −2
0 0 2 0
0 0 0 0
0 0 0 0

 , R34 =


0 −2 0 0
2 0 0 0
0 0 0 −2
0 0 2 0

 ,
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and immediately the Ricci tensor is

(ϱij) =


0 0 0 0
0 0 0 0
0 0 −4 0
0 0 0 −4

 .

We conclude that (M, g) is never Einstein. By (2.1), the Schouten tensor is de-
termined to be equal to the Ricci tensor. The non-zero components of the Weyl
tensor (up to symmetries) are given by

W3434 = 4λ.

Also, the Cotton tensor which is calculated by (2.2) will vanish identically. Then,
using (2.3), it follows that the Bach tensor vanishes too. So, (M, g) is always Bach
flat in this case.

Type D. Let (M = G/H, g) denote a generalized symmetric space of type D.
According to the classification in [14], for the Lie algebra g = m ⊕ h of the Lie
group G, there exists a basis {u1, u2, u3, u4, h1}, with {u1, u2, u3, u4} and {h1}
bases of m and h, respectively, such that

[ , ] u1 u2 u3 u4 h1

u1 0 0 0 −u2 u1

u2 0 0 −u1 0 −u2

u3 0 u1 0 −h1 2u3

u4 u2 0 h1 0 −2u4

h1 −u1 u2 −2u3 2u4 0

and the invariant metric is

g =


0 1 0 0
1 0 0 0
0 0 0 λ
0 0 λ 0

 ,

where λ ̸= 0 is a real constant. With respect to {ui}, we deduce that

Λ[1] =


0 0 0 0
0 0 0 −1
1
λ 0 0 0
0 0 0 0

 , Λ[2] =


0 0 −1 0
0 0 0 0
0 0 0 0
0 1

λ 0 0

 ,
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Λ[3] = Λ[4] = 0, and the curvature tensor is completely determined by the following
non-zero components:

R12 =


1
λ 0 0 0
0 − 1

λ 0 0
0 0 − 1

λ 0
0 0 0 1

λ

 , R14 =


0 0 −1 0
0 0 0 0
0 0 0 0
0 1

λ 0 0

 ,

R23 =


0 0 0 0
0 0 0 −1
1
λ 0 0 0
0 0 0 0

 , R34 =


−1 0 0 0
0 1 0 0
0 0 −2 0
0 0 0 2

 .

Then, the Ricci tensor is immediately calculated as

(ϱij) =


0 0 0 0
0 0 0 0
0 0 0 −3
0 0 −3 0

 ,

from which we conclude that (M, g) is never Einstein. By (2.1), the Schouten tensor
is determined to be equal to the Ricci tensor. Then, the non-zero components of
the Cotton tensor (up to symmetries) are given by

C141 = C232 = 3
λ
,

and the Weyl tensor is determined by the following non-zero components:

W1234 = 1, W1324 = 1
2 , W1423 = −1

2 .

Then, using (2.3), it follows that the Bach tensor is

(Bij) =


0 − 3

2λ2 0 0
− 3

2λ2 0 0 0
0 0 0 3

2λ
0 0 3

2λ 0

 .

Clearly, B ̸= 0, and so (M, g) is never Bach flat in this case. □

4. Conformally Einstein generalized symmetric spaces

Let φ be a solution of the conformally Einstein equation (2.4). Then, σ =
−2 ln(φ) is a function that vanishes the (0, 3)-tensor field C := C − W (·, ·, ·,∇σ);
in fact, by [21, Proposition 4.1], C = 0 and B = 0 are necessary conditions for any
solution of (2.4). These conditions are also sufficient to be conformally Einstein if
(M, g) is weakly generic, in the sense that its Weyl tensor W does not define an
injective map from TM to ⊗3TM .

As we observed in the previous section, the only Bach-flat case was B (Theo-
rem 3.1), so the only case that remains to be considered for non-trivial conformally
Einstein solutions is the case B of generalized symmetric spaces of dimension four.
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Theorem 4.1. Let (M, g) be a generalized symmetric space of dimension four. In
this case, (M, g) is non-trivially conformally Einstein if and only if it is of type B
with the multiplying function

φ(x, y) = c1e
x + c2e

−(x+y) + c3e
y,

in local coordinates (x, y, u, v) on (M, g), where c1, c2, c3 are arbitrary real con-
stants.

Proof. As mentioned above, the only case through four-dimensional generalized
symmetric spaces which we must study for non-trivial conformally Einstein exam-
ples is the case B.

Let (M, g) be a generalized symmetric space of class B. In this case, (M, g) is
the space R4(x, y, u, v) with the pseudo-Riemannian metric

g = λ(dx2 + dy2 + dxdy) + e−y(2dx+ dy)dv + e−x(dx+ 2dy)du,

where λ is an arbitrary real constant. The order is k = 3 and the signature is (2, 2).
By direct calculations, the non-zero components of the Levi-Civita connection are

∇∂x
∂x = 1

3∂x − 2
3∂y + 2

3λe
x∂u − 1

3λe
y∂v,

∇∂x
∂y = −1

3∂x − 1
3∂y + 1

3λe
x∂u + 1

3λe
y∂v,

∇∂x∂u = −2
3∂u + 1

3e
y−x∂v,

∇∂x
∂v = 2

3e
x−y∂u − 1

3∂v,

∇∂y∂y = −2
3∂x + 1

3∂y − 1
3λe

x∂u + 2
3λe

y∂v,

∇∂y
∂u = −1

3∂u + 2
3e

y−x∂v,

∇∂y∂v = 1
3e

x−y∂u − 2
3∂v,

where ∂x := ∂
∂x , ∂y := ∂

∂y , ∂u := ∂
∂u , ∂v := ∂

∂v are the coordinate vector fields. The
curvature tensor is completely determined by the following components:

R(∂x, ∂y) = −1
3∂x ⊗ dx− 2

3∂x ⊗ dy + 2
3∂y ⊗ dx+ 1

3∂y ⊗ dy + 1
3∂u ⊗ du

+ 2
3e

x−y∂u ⊗ dv − 2
3e

y−x∂v ⊗ du− 1
3∂v ⊗ dv,

R(∂x, ∂u) = 2
3∂u ⊗ dx+ 1

3∂u ⊗ dy − 1
3e

y−x∂v ⊗ dx− 2
3e

y−x∂v ⊗ dy,

R(∂y, ∂u) = −2
3e

x−y∂u ⊗ dx− 1
3e

x−y∂u ⊗ dy + 1
3∂v ⊗ dx+ 2

3∂v ⊗ dy;

then, the Ricci tensor is computed as

ϱ = −4
3dx⊗ dx− 2

3(dx⊗ dy + dy ⊗ dx) − 4
3dy ⊗ dy.
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The Cotton tensor given by (2.2) will vanish and the Weyl tensor is given by

W = λ

2 (dx⊗ dy ⊗ dx⊗ dy − dx⊗ dy ⊗ dy ⊗ dx− dy ⊗ dx⊗ dx⊗ dy

+ dy ⊗ dx⊗ dy ⊗ dx),

which shows that (M, g) is not weakly generic. The case λ = 0 leads to conformal
flatness, so we focus on the cases with λ ̸= 0.

Let φ(x, y, u, v) be an arbitrary positive function on M and σ = −2 ln(φ). Then,
by performing a simple calculation the gradient of σ is found to be

∇σ = 4
3φ

{
− (2ey∂vφ− ex∂uφ)∂x

+ (ey∂vφ− 2ex∂uφ)∂y

− (λex+y∂vφ− 2λe2x∂uφ+ 2ex∂yφ− ex∂xφ)∂u

+ (2λe2y∂vφ− λex+y∂uφ+ ey∂yφ− 2ey∂xφ)∂v

}
.

Therefore, the only non-zero components of the tensor C are as follows (observe
that Cijk = −Cjik for all i, j, k ∈ {1, . . . , 4}):{ 3

2φC121 = λ(2ex∂uφ− ey∂vφ),
3
2φC122 = λ(ex∂uφ− 2ey∂vφ).

Since the tensor field C of any conformally Einstein manifold necessarily vanishes,
we have { 3

2φ(C121 − 2C122) = 3λey∂vφ = 0,
3
2φ(2C121 − C122) = 3λex∂uφ = 0;

and since λ ̸= 0, the function φ does not depend on the variables u and v.
We now check the conformally Einstein equation (2.4) for some smooth function

φ(x, y). We set

ψ := 2 Hesφ +φϱ− 1
4{2∆φ+ φr}g;

obviously, ψij = −ψji for all i, j ∈ {1, . . . , 4}. By standard calculations, the com-
ponents of the tensor field ψ are as follows:

ψ11 = −4
3φ+ 4

3∂yφ− 2
3∂xφ+ 2∂2

xxφ,

ψ12 = −2
3φ+ 2

3∂yφ+ 2
3∂xφ+ 2∂2

xyφ,

ψ22 = −4
3φ− 2

3∂yφ+ 4
3∂xφ+ 2∂2

yyφ.

Now, we set ψ = 0, and from the resulting system of PDEs, we obtain the solution
φ(x, y) = c1e

x + c2e
−(x+y) + c3e

y, for some arbitrary real constants c1, c2 and c3,
and this finishes the proof. □
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5. Extensions of generalized symmetric spaces of dimension three

In this section, we extend three-dimensional generalized symmetric spaces to di-
mension four by considering direct products of them with R. From the classification
in [14], any proper, simply connected generalized symmetric pseudo-Riemannian
space (M, g) of dimension n = 3 is of order 4. Those are indecomposable (the gen-
eralized symmetric spaces which are not direct products of any pseudo-Riemannian
manifolds of lower dimensions) and described, up to an isometry, as follows: the
underlying homogeneous space G/H is the matrix group e−t 0 x

0 et y
0 0 1

 ,

and (M, g) is the space R3(x, y, z) with a pseudo-Riemannian metric

ḡ =

 ±e2z 0 0
0 ±e−2z 0
0 0 λ

 , (5.1)

where λ is a real constant. Using this classification, the extension of these spaces
to generalized symmetric spaces of dimension four gives the following result.
Theorem 5.1. Let (M, g) be a generalized symmetric space which is a direct prod-
uct of a generalized symmetric space of dimension three with R. In this case, (M, g)
is never Bach flat, and so it is never conformally Einstein.
Proof. Let (M = G/H, ḡ) be a three-dimensional generalized symmetric space
of dimension three, where ḡ is described in local coordinates (x, y, z) as (5.1).
We study the extended four-dimensional generalized symmetric space (M × R, g).
Clearly, with respect to the local coordinates (x, y, z, t), g will be

g =


εe2z 0 0 0

0 εe−2z 0 0
0 0 λ 0
0 0 0 δ

 ,

where ε, δ are ±1 and λ is an arbitrary real constant. The non-zero components of
the Levi-Civita connection are

∇∂x
∂z = ∂x,

∇∂x∂x = −ε
λ
e2z∂z,

∇∂y
∂z = −∂y,

∇∂y
∂y = ε

λ
e−2z∂z.

By direct calculation, the Ricci tensor is found to be

(ϱij) =


0 0 0 0
0 0 0 0
0 0 −2 0
0 0 0 0

 .
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The scalar curvature is r = −2
λ , and clearly, (M, g) is never Einstein. By (2.1), the

components of the Schouten tensor are

(Sij) =


ε

3λe
2z 0 0 0

0 ε
3λe

−2z 0 0
0 0 − 5

3 0
0 0 0 δ

3λ

 .

The non-zero components of the Cotton tensor (up to symmetries) are given by

C311 = 2ε
λ
e2z, C232 = 2ε

λ
e−2z,

and the non-zero components of the Weyl tensor are

W1212 = 2
3λ, W1313 = −ε

3e
2z,

W1414 = − εδ

3λe
2z, W2323 = −ε

3e
−2z,

W2424 = − εδ

3λe
−2z, W3434 = 2δ

3 .

Now, using (2.3), it follows that the Bach tensor matrix is

(Bij) =


2ε

3λ2 e
2z 0 0 0

0 2ε
3λ2 e

−2z 0 0
0 0 − 2

λ 0
0 0 0 2δ

3λ2

 .

So, (M, g) is never Bach flat and this finishes the proof. □

6. The oscillator group

The four-dimensional oscillator algebra g is considered as the matrix subalgebra
of gl(4,R) with four generators X,Y, P,Q as follows:

X =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 , Y =


0 −1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 ,

P =


0 0 0 2
0 0 0 0
0 0 0 0
0 0 0 0

 , Q =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 .

Clearly, the non-vanishing Lie brackets will be
[X,Y ] = P, [Q,X] = Y, [Q,Y ] = −X.

The corresponding connected simply connected Lie group G, which is a subgroup
of GL(4,R), is called the (four-dimensional) oscillator group.
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Following [18], we equip G with the 1-parameter family of left-invariant Lorentz-
ian metrics ga = ⟨ , ⟩, described by nonvanishing products as

⟨e1, e1⟩ = ⟨e4, e4⟩ = a, ⟨e2, e2⟩ = ⟨e3, e3⟩ = 1, ⟨e1, e4⟩ = ⟨e4, e1⟩ = 1,
for any real constant a with −1 < a < 1. The metric is bi-invariant whenever
a = 0, and in all other cases ga is only left-invariant [18]. With respect to local
coordinates (x1, x2, x3, x4), one can evaluate the invariant metric ga explicitly as
ga = adx2

1 +2ax3dx1dx2 +(1+ax2
3)dx2

2 +dx2
3 +2dx1dx4 +2x3dx2dx4 +adx2

4. (6.1)
Direct calculations yield that ga is locally symmetric if and only if a = 0 [18]. In
order to study the conformally Einstein property of the oscillator group, we consider
the necessary condition of Bach flatness, which yields the following theorem.

Theorem 6.1. Let (G, ga) be the oscillator group of dimension four. The following
statements are equivalent:

(i) (G, ga) is Bach flat.
(ii) (G, ga) is locally conformally flat.
(iii) (G, ga) is locally symmetric.
(iv) ga is bi-invariant.

Proof. Starting from (6.1), we can describe the Levi-Civita connection ∇, and then
the curvature of (G, ga), with respect to the basis {∂i} of coordinate vector fields.
Explicitly, the Levi-Civita connection is completely determined by the following
possibly non-vanishing components:

∇∂1∂2 = −a

2∂3, ∇∂1∂3 = −ax3

2 ∂1 + a

2∂2, ∇∂2∂2 = −ax3∂3,

∇∂2∂3 = 1 − ax2
3

2 ∂1 + ax3

2 ∂2, ∇∂2∂4 = −1
2∂3, ∇∂3∂4 = −x3

2 ∂1 + 1
2∂2.

Then, we can describe the Riemannian curvature tensor R of (G, ga) with respect
to {∂i}. Setting Rij := R(∂i, ∂j), we have

R12 =


a2x3

4
a2x2

3+a
4 0 ax3

4
− a2

4 − a2x3
4 0 − a

4
0 0 0 0
0 0 0 0

 , R13 =


0 0 a

4 0
0 0 0 0

− a2

4 − a2x3
4 0 − a

4
0 0 0 0

 ,

R14 = 0, R23 =


0 0 ax3 0
0 0 − 3a

4 0
− a2x3

4
3a−a2x2

3
4 0 − ax3

4
0 0 0 0

 ,

R24 =


− ax3

4 − ax2
3+1
4 0 − x3

4
a
4

ax3
4 0 1

4
0 0 0 0
0 0 0 0

 , R34 =


0 0 − 1

4 0
0 0 0 0
a
4

ax3
4 0 1

4
0 0 0 0

 .
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The Ricci tensor is then obtained by contraction of the curvature tensor. Hence,
with respect to {∂i}, the Ricci tensor is described by the matrix

(ϱij) =


1
2a

2 1
2a

2x3 0 1
2a

1
2a

2x3
1
2a(ax2

3 − 1) 0 1
2ax3

0 0 − 1
2a 0

1
2a

1
2ax3 0 1

2

 ,

so (G, ga) is never Einstein. By (2.1), the Schouten tensor is calculated as follows:

(Sij) =


7

12a
2 7

12a
2x3 0 7

12a
7

12a
2x3

7
12a

2x2
3 − 5

12a 0 7
12ax3

0 0 − 5
12a 0

7
12a

7
12ax3 0 1

12a
2 + 1

2

 .

The non-zero components of the Cotton tensor (up to symmetries) are

C123 = C312 = 1
2a

2, C321 = a2, C322 = 3
2a

2x3,

C324 = a, C342 = C423 = 1
2a.

Finally, with respect to {∂i}, the Weyl conformal tensor W is completely deter-
mined by the following possibly non-vanishing matrices Wij := W (∂i, ∂j):

W12 =


a2x3

6
a(1+ax2

3)
6 0 ax3

6

− a2

6 − a2x3
6 0 − a

6
0 0 0 0
0 0 0 0

 , W13 =


0 0 a

6 0
0 0 0 0

− a2

6 − a2x3
6 0 − a

6
0 0 0 0

 ,

W14 =


− a

3 − ax3
3 0 − a2

3
0 0 0 0
0 0 0 0
a2

3
a2x3

3 0 a
3

 , W23 =


0 0 ax3

2 0
0 0 − a

3 0
− a2x3

6
a(2−ax2

3)
6 0 − ax3

6
0 0 0 0

 ,

W24 =


− ax3

2 − ax2
3

2 0 − a2x3
2

a
6

ax3
6 0 a2

6
0 0 0 0

a2x3
3

a(2ax2
3−1)

6 0 ax3
3

 , W34 =


0 0 0 0
0 0 0 0
a
6

ax3
6 0 a2

6
0 0 − a

6 0

 .

Observe that these equalities yield at once that ga is locally conformally flat if and
only if a = 0.
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Then, using (2.3), it follows that the Bach tensor is

(Bij) =


− 5

6a
3 − 5

6a
3x3 0 − 5

6a
2

− 5
6a

3x3 − a2

6 (5ax2
3 − 3) 0 − 5

6a
2x3

0 0 1
2a

2 0
− 5

6a
2 − 5

6a
2x3 0 − a

6 (a2 + 4)

 .

So, (G, ga) is Bach flat if and only if a = 0, which is equivalent to being locally
conformally flat and being locally symmetric. Clearly, the metric g0 is bi-invariant
in this case. □

7. Conclusion

In this paper, we studied conformally Einstein generalized symmetric spaces of
dimension four. The mentioned spaces, classified in [14], were deeply studied for dif-
ferent geometric properties in the literature. We proved that generalized symmetric
spaces of dimension four which accept non-trivial conformally Einstein metrics be-
long to the purely pseudo-Riemannian class B. We also determined the non-zero
function φ in which φ−2g is Einstein, where g is an arbitrary invariant metric on
a generalized symmetric space of class B. We also studied four-dimensional exten-
sions of generalized symmetric spaces of dimension three and showed that these
spaces are never Bach flat. As an example of metric Lie groups, we examined
the four-dimensional oscillator Lie group and proved that, for these metrics, being
conformally Einstein is equivalent to being bi-invariant.
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