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A CLEMENS–SCHMID TYPE EXACT SEQUENCE
OVER A LOCAL BASIS

GENARO HERNANDEZ-MADA

Abstract. Let k be a finite field of characteristic p and let X → Spec k[[t]] be
a semistable family of varieties over k. We prove that there exists a Clemens–
Schmid type exact sequence for this family. We do this by constructing a
larger family defined over a smooth curve and using a Clemens–Schmid exact
sequence in characteristic p for this new family.

1. Introduction

Consider the following classical situation. Let ∆ be the open disk around 0 in
the complex plane and let X be a smooth complex variety with Kähler total space.
Suppose that π : X → ∆ is a semi-stable degeneration: a holomorphic, proper and
flat map that is smooth outside the central fiber X0 = π−1(0), which is a normal
crossing divisor, i.e., it is a sum of irreducible components meeting transversally
and such that each of them is smooth.

As stated in [11], in this situation we can associate a limit cohomology Hm
lim

to the central fiber X0, endowed with a monodromy operator N and a weight
filtration from a mixed Hodge structure. If we denote Xt = π−1(t), then we
have Hm

lim
∼= Hm(Xt) for t 6= 0, as vector spaces. We also have isomorphisms (of

vector spaces) Hm(X) ∼= Hm(X0) =: Hm, and similarly for homology. Moreover,
these can be inserted in a long exact sequence respecting mixed Hodge structures
(see [11]):

· · · → H2n+2−m
α→ Hm i∗→ Hm

lim
N→ Hm

lim
β→ H2n−m

α→ Hm+2 → · · · (1.1)

where i∗ is the natural map obtained by the inclusion i : Xt → X, α is obtained
via Poincaré duality, and β by composing the Poincaré duality map with the dual
map to i∗. The sequence (1.1) is called Clemens–Schmid exact sequence.

Then, we may consider an analogous situation in characteristic p > 0. Namely,
let k be a finite field of characteristic p > 0, X a smooth variety of dimension n+1,
and C a smooth curve over k. Consider a proper and flat morphism f : X → C,
over k, and suppose moreover that for a k-rational point s ∈ C, the fiber of f at s,
denoted by Xs, is a normal crossing divisor (NCD) inside X, and that f is smooth
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outside Xs. This allows us to define naturally a log-structure M on X, and then
by pull-back we can define a log-structure Ms on Xs.

If we denote by V a complete and absolutely unramified discrete valuation ring
of mixed characteristic with residue field k and fraction field K, then in [5] it is
obtained an arithmetic version of the Clemens–Schmid exact sequence:

· · · → Hm
Xs,rig(X) α→ Hm

rig(Xs)
γ→ Hm

log-crys((Xs,Ms)/V×)⊗K Nm−→

Hm
log-crys((Xs,Ms)/V×)⊗K(−1) δ→ Hm+2

Xs,rig(X) α→ Hm+2
rig (Xs)→ · · · ,

where M is a log structure on X associated to the NCD Xs, Ms is the fiber of M
at s, and (−1) denotes the (−1)-th Tate twist of the Frobenius structure.

In this article we consider another situation analogous to the classical one.
Namely, let k be a finite field of characteristic p > 0, and consider a proper and
flat morphism

F : X → Spec k[[t]],

where X is smooth over k, such that étale locally is étale over

Spec(k[[t]][x1, . . . , xn]/(x1 · · ·xr − t)).

For this situation, we shall obtain an arithmetic version of the Clemens–Schmid
exact sequence, similar to the one in [5]. In fact, we shall use that sequence, and
for this purpose we shall see the special fiber of F as a fiber of a family over a
smooth curve.

Let us give an outline of the article. First we establish our notation and the
situation that we want to study. In Section 3, we use Néron–Popescu desingular-
ization (see [15]) to see our situation as a fiber inside a larger family of varieties
f : XA → Y , in a similar way to what is done in [9, Section 4]. This allows us
to use the relative cohomology theories defined by Shiho in [14], which give rel-
ative cohomology sheaves on a formal scheme, that is, a smooth lifting Y of Y .
In Section 4 we state the results on relative cohomology that are useful for our
purposes. In particular, we need the base change theorem and the comparison
isomorphisms between the different cohomology theories, since these are needed to
use the results in [5]. This means that the relative cohomology sheaves, defined on
the large family, satisfy the desired properties. Then, in Section 5, we construct a
smooth curve inside Y in such a way that we can restrict the family of varieties,
as well as the cohomology sheaves, over this curve. In particular, this shall allow
us to use the main result in [5] (since the situation studied there is precisely this:
a family over a smooth curve, with the same properties) and get the version of the
Clemens–Schmid exact sequence for our setting.
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2. Notation and setting

In this article we fix a finite field of characteristic p > 0, denoted by k. We
denote by W = W (k) its ring of Witt vectors and by K the fraction field of W .

Recall that a divisor Z ⊂ Y of a noetherian scheme is said to be a strict normal
crossing divisor (SNCD) if Z is a reduced scheme and, if Zi, i ∈ J , are the irre-
ducible components of Z, then, for any I ⊂ J , the intersection ZI = ∩i∈IZi is a
regular scheme of codimension equal to the number of elements of I. We shall say
that Y is a normal crossing divisor (NCD) if, étale locally on Y , it is a SNCD.

We consider a proper and flat morphism F : X → Spec k[[t]] over k, where X is
a smooth scheme such that étale locally it is étale over

Spec (k[[t]][x1, . . . , xn]/(x1 · · ·xr − t)) .

We denote by s the closed point of Spec k[[t]] and by X0 its fiber, which is a NCD
inside X. We denote by (X,M) the scheme X endowed with the log structure
defined by X0, by Spec k[[t]]× the scheme Spec k[[t]] endowed with the log structure
defined by the point s (i.e., by the NCD given by the ideal generated by t), and by
s× the log point given by the point s and the log structure induced from Spec k[[t]]×.
Then, we have the following cartesian diagram of log schemes:

(X0,M0)

s×

(X,M)

Spec k[[t]]×

.....................................................................................................................................
.....
.......
.....

F

..................................................................................... ............

.....................................................................................................................................
.....
.......
.....

.............................................................................................. ............

where (X0,M0) is obtained by taking the fiber product in the category of log
schemes.

3. A construction using Néron–Popescu desingularization

In order to get the desired result, we need to study the cohomology of the special
fiber X0 of X over k[[t]], and for this, we use first the following theorem by Popescu
(see [15]):

Theorem 3.1. Let f : R → Λ be a morphism of rings. Then, f is geometrically
regular if and only if Λ is a filtered colimit of smooth R-algebras.

It can be checked that the natural morphism k[t]→ k[[t]] is geometrically regu-
lar, according to the definition in [15]:

Theorem 3.2. The natural morphism k[t]→ k[[t]] is geometrically regular.

Proof. The morphism is clearly flat, since it is a completion. Now there are only
two prime ideals of k[[t]], namely, 0 and (t), and their respective counterpart in k[t]
are the only couples to consider in the definition of [15].

Rev. Un. Mat. Argentina, Vol. 63, No. 1 (2022)



284 GENARO HERNANDEZ-MADA

Case 1 (the ideals generated by t): In this case, we need to check that
k ⊗k[t] k[[t]](t) ∼= k

is geometrically regular over k, which is trivial.
Case 2 (the ideals 0): In this case, we need to check that k(t) ⊗k[t] k((t)) is geo-
metrically regular over k(t). Take a finite extension k′ of k(t) such that

(k′)p ⊂ k(t).
Note that this is necessarily k(t1/p). Indeed, it is a finite extension of degree p
(hence it does not have any subextension) and (k′)p = k(t). Then, we only need
to check that k(t1/p)⊗k(t) (k(t)⊗k[t] k((t))) is a regular local ring, but

k(t1/p)⊗k(t) (k(t)⊗k[t] k((t))) ∼= k((t1/p)),
which is clearly regular. �

We get
k[[t]] = lim

−→
α

Aα,

where the Aα’s are smooth k[t]-algebras (and in particular smooth k-algebras).
Since X is proper over k[[t]], there exist a smooth k[t]-algebra A, a scheme XA,
proper over SpecA, Zariski locally étale over SpecA[x1, . . . , xn]/(x1 · · ·xr− t), and
such that the following diagram is cartesian:

X

Spec k[[t]]

XA

SpecA

......................................................................................................................................... ............
u

.....................................................................................................................................
.....
.......
.....

F

................................................................................... ............

v

.....................................................................................................................................
.....
.......
.....

f

Note that the composition v ◦ F is flat, hence f is flat in an open subset of XA

containing the image of X under u. Thus, we may assume that f : XA → SpecA
is flat.

Consider the divisor of Y = SpecA, defined by Y0 = (t = 0), and the fiber
product XA,t=0 = Y0 ×Y XA, which is a NCD divisor in XA. These define fine log
structures MA and N on XA and Y , respectively. Then,

f : (XA,MA)→ (Y,N)
is a morphism of log schemes. Moreover, we have the following:
Lemma 3.3. The morphism f : (XA,MA)→ (Y,N) is log-smooth.
Proof. We use Theorem 3.5 in [10]. First note that f has (étale locally on XA) a
chart (PXA

→ MA, QY → N,Q → P ) given by Q = N, P = Nr, and the diagonal
map Q→ P .

We can easily see also that the kernel and the torsion part of the cokernel of
Qgp → P gp (which is just the diagonal map Z → Zr) are both trivial. Here Qgp
and P gp are the Grothendieck groups of Q and P , respectively.
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It remains to prove that the induced morphism XA → Y ×SpecZ[Q] SpecZ[P ] is
smooth. Recall that XA is locally étale over

V = Spec(A[x1, . . . , xn]/(x1 · · ·xr − t)),

and note that
W = SpecA×SpecZ[Q] SpecZ[P ] ∼= SpecA×SpecZ[u] SpecZ[u1, . . . , ur]

∼= Spec(A[u1, . . . , ur]/(u1 · · ·ur − t)).

The last isomorphism can be verified by checking directly that the ring

A[u1, . . . , ur]/(u1 · · ·ur − t)

satisfies the universal property of the tensor product A⊗Z[u] Z[u1, . . . , ur].
Now note that there are natural closed immersions

jV : V ↪→ AnA, jW : W ↪→ ArA.

Moreover, the following diagram is cartesian:

V

W

AnA

ArA

.......................................................................................................................................... ............
jV

.....................................................................................................................................
.....
.......
.....

h

.......................................................................................................................................... ............

jW

.....................................................................................................................................
.....
.......
.....

p

where h is defined by sending each ui to xi for i = 1, . . . , r, and p is the natural
projection from the first r components. Since p is smooth, we get that h is smooth.
Since XA →W is the composition of an étale and a smooth morphism, we conclude
that it is smooth (in the classical sense). �

Then, we have the following diagram of log schemes:

(X0,M0)

s×

(X,M)

Spec k[[t]]×

(XA,MA)

(Y,N)

.....................................................................................................................................
.....
.......
.....

fs

.....................................................................................................................................
.....
.......
.....

f

.............................................................................................. ............

..................................................................................... ............ ............................................................................... ............

............................................................................. ............

.....................................................................................................................................
.....
.......
.....

F

where the horizontal arrows are exact closed immersions. In particular, note that
s is a closed point inside Y , hence (X0,M0) is a fiber of the log smooth family
(XA,MA) → (Y,N). This means that we can study the cohomology of X0 using
relative log-cohomology sheaves for this family. These are studied in the next
section.
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4. Relative cohomology

By Theorem 7 in [6, Section 4], there exists a W [t]-algebra A0 such that
A0/pA0 = A, which is smooth over W .1 Let Â be the p-adic completion of A0, and
let Y = Spf Â. We can define a log structure N on Y by 1 7→ t, and then we have
the following diagram:

(X0,M0)

s×

(XA,MA)

(Y,N) (Y,N )

...................................................................... ............

.....................................................................................................................................
.....
.......
.....

fs

......................................................................................................................... ............

.....................................................................................................................................
.....
.......
.....

f

..................................................................................................... ............ (4.1)
where the lower row consists of two exact closed immersions. Now we are in the
situation studied in [14], and we can use all the results there. We shall state the
results on relative log crystalline, log convergent and log analytic cohomology that
are useful in applying the main result in [5].

Relative log crystalline cohomology. In the situation of diagram (4.1), Shiho
defined in [14], for any sheaf F on the log crystalline site (X/Y)log

crys, the sheaves of
relative log crystalline cohomology of (XA,MA)/(Y,N ) with coefficient F , denoted
by RmfXA/Y,crys∗F , and for an isocrystal E = Q⊗F , denoted by RmfXA/Y,crys∗E .
Here we will work only with the trivial log isocrystal E = OXA/Y,crys.

In order to study the sheaves RmfXA/Y,crys∗OX/Y,crys, we fix a Hyodo–Kato
embedding system (P•,M•) of an étale hypercovering (X•,M•) of (XA,MA). Such
a system always exists, as stated in [8, 2.18] (the definition of simplicial schemes
and étale hypercoverings can be found in [4]). Then, we have the following diagram:

s×

(X0,M0)

(X0,•,M0,•)

(Y,N)

(XA,MA)

(X•,M•)

(Y,N )

(P•,M•).......................................................... ............

.....................................................................................................................................
.....
.......
.....

θs

...................................................................... ............

.....................................................................................................................................
.....
.......
.....

fs

......................................................................................................................... ............

......................................................................... ............
i•

.....................................................................................................................................
.....
.......
.....

θ

.....................................................................................................................................
.....
.......
.....

f

..................................................................................................... ............

....................................................................................................................................................................................................................................................................................................................
.....
.......
.....

g

(4.2)
where (X0,•,M0,•) is the fiber product in the upper left square.

We want to see that the sheaves RmfXA/Y,crys∗(OX/Y,crys) satisfy some finiteness
properties. For each n ∈ N, denote by Yn the reduction of Y modulo pn, and by

1Note that A0 might be not smooth over W [t].
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CX•/Yn
the logarithmic de Rham complex of the log PD-envelope of the closed

immersion i• over (Yn,Nn). Then, we have the following:
Lemma 4.1. (a) For each n, there is a canonical quasi-isomorphism

R(fθ)∗CX•/Yn
⊗LOYn

OYn−1
∼−→ R(fθ)∗CX•/Yn−1 .

(b) For each n, R(fθ)∗CX•/Yn
is bounded and has finitely generated cohomologies.

Proof. In [14, Section 1], it is proved that
R(fθ)∗CX•/Yn

∼= RfX•/Yn,crys,∗(OX•/Yn,crys),
and so part (a) follows from the claim in the proof of [14, Theorem 1.15].

For part (b), we proceed inductively. Note that for n = 1, Y1 = Y , and so the
result follows by properness of f . The inductive step is direct by the second part
of the claim used in the proof of part (a). �

The preceding lemma says that {R(fθ)∗CX•/Yn
}n is a consistent system, as

defined in [2, B.4]. Then, by [2, Corollary B.9], it follows that
RfXA/Y,crys∗(OXA/Y,crys) = R lim

←−
RfXA/Yn,crys,∗(OXA/Yn,crys)

is bounded above and has finitely generated cohomologies. Thus, we have the
following:
Theorem 4.2. RfXA/Y,crys∗(OXA/Y,crys) is a perfect complex of isocoherent sheaves
on Y. Moreover, the isocoherent cohomology sheaf RmfXA/Y,crys∗(OXA/Y,crys) ad-
mits a Frobenius structure for each m.
Proof. The first assertion follows from the above paragraph and [14, Theorem 1.16].
The Frobenius structure is given by [8, 2.24], since f is of Cartier type. Indeed,
recall that f has a local chart (PXA

→ MA, QY → N,Q → P ) given by Q = N,
P = Nr, and Q→ P the diagonal map. �

Now let us consider the following commutative diagram, where all squares are
cartesian:

(XA,MA) (Y,N)

(X0,M0) s×

(Y,N )

Spf W×
.....................................................................................................................................
.....
.......
.....

.......................................................................................................... ............
fs

.................................................................................... ............

f

.....................................................................................................................................
.....
.......
.....

................................................................................................................ ............

..................................................................................................... ............

ι

.....................................................................................................................................
.....
.......
.....

ϕ

(4.3)

By [14, Theorem 1.19], we have the following base change property.
Theorem 4.3. In diagram (4.3), there is a quasi-isomorphism

Lϕ∗RfXA/Y,crys∗(OXA/Y,crys)
∼−→ Rfs,X0/W,crys,∗(OX0/W,crys).

Note that Rfs,X0/W,crys,∗(OX0/W,crys) is a perfect K-complex that gives the co-
homology

Hi
log-crys((X0,M0)/W×)⊗K.
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Relative log convergent cohomology. Following [14], we study the relative log
convergent cohomology sheaves there defined. Again, we work only with the trivial
isocrystal OXA/Y,conv, on the log convergent site, and denote the sheaves of relative
cohomology by RfXA/Y,conv∗(OXA/Y,conv).

Recall that there is a canonical functor (see [14, Proposition 2.35]) from the cat-
egory of isocrystals on the relative log convergent site to that on the log crystalline
site,

Φ: Iconv((XA/Y)log
conv)→ Icrys((XA/Y)log

crys),

sending locally free isocrystals to locally free isocrystals. In particular,

Φ(OXA/Y,conv) = OXA/Y,crys.

Now let us go back to the situation in diagram (4.2). Let ]X•[log
P• be the log tube

of the closed immersion i•, and let P̂• be the completion of P• along X•. Then, as
in [5], we have a specialization map

sp: ]X•[log
P• → P̂•.

Moreover, if we denote by Ω•]X•[log
P•
/YK
〈M•/N〉 the logarithmic de Rham complex

of the simplicial rigid analytic space ]X•[log
P• over the generic fiber YK of Y, then

by [14, Corollary 2.34] we have

RfXA/Y,conv∗(OXA/Y,conv) ∼= R(fθ)∗sp∗Ω•]X•[log
P•
/YK
〈M•/N〉.

Now, by using the techniques introduced in [14] before Theorem 2.36, and passing
to the projective limit, we have a canonical morphism of complexes

sp∗Ω•]X•[log
P•
/YK
〈M•/N〉 −→ lim

←−
n

CX•/Yn
, (4.4)

which by [14, Theorem 2.36] gives the following:

Theorem 4.4. The canonical morphism (4.4) induces an isomorphism

RmfXA/Y,conv∗(OXA/Y,conv) ∼= RmfXA/Y,crys∗(OXA/Y,crys)

of isocoherent sheaves on Y.

By Theorem 4.2, this result allows us to prove that RfXA/Y,conv∗(OXA/Y,conv)
is a perfect complex of isocoherent sheaves, and a base change theorem:

Theorem 4.5. With the same notation as in diagram (4.3), there is a natural
isomorphism

Lϕ∗RfXA/Y,conv∗(OXA/Y,conv) ∼= RfsX0/W,conv∗(OX/Y,conv).

This complex gives the cohomology Hi
log-conv((X0,M0)/W×).
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Relative log analytic cohomology. Now we study the sheaves of relative log
analytic cohomology. Note that g in diagram (4.2) induces a morphism

gex
K : ]X•[log

P• → YK .
Then, the log analytic cohomology sheaves of (XA,MA)/(Y,N) with respect to
(Y,N ) can be computed by (see [14, Definition 4.1])

RmfXA/Y,an∗(OXA/Y,an) = Rmgex
K∗Ω•]X•[log

P•
/YK
〈M•/N〉.

Then, by applying [14, Theorem 4.6], we have the following comparison theorem:

Theorem 4.6. Let sp be the specialization map YK → Y. Then for each m,
RmfXA/Y,an∗(OXA/Y,an) is a coherent sheaf on YK , and there is an isomorphism

sp∗RmfXA/Y,an∗(OXA/Y,an) ∼= RmfXA/Y,conv∗(OXA/Y,conv).

5. Reduction to the case of a family over a curve

Now that we have relative cohomology sheaves defined for the family over Y , we
want to restrict those sheaves to a smaller family. Namely, a family over a curve,
in order to be in the same situation as in [5].

Let us first construct the curve that we shall use. As stated at the beginning
of the preceding section, A0 is a smooth W -algebra. Let Ỹ = SpecA0 and S =
SpecW . Since Y → Ỹ is a closed immersion, the image ŝ of s inside Ỹ is a
closed point. Since the natural morphism Ỹ → S is smooth, there exists an affine
open neighborhood Ũ of ŝ and an étale morphism σ : Ũ → AdW such that W̃ → S
factorizes in the following way:

Ũ

S

AdW....................................................................................................................................... ............
σ

.....................................................................................................................................
.....
.......
.....

..................................................................................................................................................................................................
....
............

Let us recall this construction. There exists an open affine subset Ũ = Spec(A0)g
of Ỹ such that the restriction of Ỹ → S is standard smooth. Moreover, we may
assume that we can write

(A0)g = W [x1, . . . , xr, t]/(f1, . . . , fc),
in such a way that the morphism W [xc+1, . . . , xr, t] → (A0)g is étale, and we get
the desired factorization with d = r + 1− c.

Using this description, it is clear how to construct a smooth curve CW inside Ũ ,
transversal to (t = 0) and passing through the point ŝ: by pulling back a curve with
these properties inside AdW . In particular, its reduction C modulo p is a smooth
curve inside Y , transversal to (t = 0) and passing throught the point s.

Let NC be the log structure on C defined to make the closed immersion
(C,NC)→ (Y,N)
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exact. Then, we have a sequence of exact closed immersions

s× → (C,NC)→ (Y,N).

Let (XC ,MC) = (XA,MA)×(Y,N) (C,NC). Then, we have the following diagram,
where all the squares are cartesian:

(X0,M0)

s×

(XC ,MC)

(C,NC) (Y,N)

(XA,MA)
.....................................................................................................................................
.....
.......
.....

..................................................................... ............

.....................................................................................................................................
.....
.......
.....

................................................................ ............

................................................................................................................ ............ ............................................................................................... ............

.....................................................................................................................................
.....
.......
.....

Note that the family (XC ,MC)→ (C,NC) is in the situation studied in [5]. We
denote by C the p-adic completion of CW along the special fiber C. Then 1 7→ t
defines a log structure NC on C and we have the diagram

(XC ,MC)

(XA,MA)

(C,N)

(Y,N) (Y,N )

(C,NC)
.....................................................................................................................................
.....
.......
.....

.................................................................................. ............

fC .....................................................................................................................................
.....
.......
.....

.................................................................................................. ............

.....................................................................................................................................
.....
.......
.....

ι

..................................................................................................... ................................................................................................ ............
f

Then, by [14, Theorem 1.19 and Corollary 2.38], we have an isomorphism

Lι∗RfXA/Y,crys∗(OXA/Y,crys)
∼−→ RfC,XC/C,crys∗(OXC/C,crys). (5.1)

Now consider the diagram

(X0,M0)

(XC ,MC)

s×

(C,NC) (C,NC)

Spf W×
.....................................................................................................................................
.....
.......
.....

........................................................................... ............

.......................................................................................................... ............

.....................................................................................................................................
.....
.......
.....

........................................................................................... ............

................................................................................................................ ............

.....................................................................................................................................
.....
.......
.....

ψ

where ι ◦ ψ = ϕ. Then we have an isomorphism

Lψ∗RfC,XC/C,crys∗(OXC/C,crys)
∼−→ Rfs,X0/W,crys∗(OX0/W,crys). (5.2)

By combining the isomorphisms (5.1) and (5.2) and the fact that

Lψ∗Lι∗ ∼= L(ψ∗ι∗) ∼= L((ι ◦ ψ)∗) = Lψ∗,
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we get that Rfs,X0/W,crys∗(OX0/W,crys) can be obtained from the family over Y or
over C. In particular, by the main result in [5], we get the following Clemens–
Schmid type exact sequence:

· · · → Hm
X0,rig(XC)→ Hm

rig(X0)→ Hm
log-crys((X0,M0)/W×)⊗K N→

Hm
log-crys((X0,M0)/W×)⊗K(−1)→ Hm+2

X0,rig(XC)→ Hm+2
rig (X0)→ · · ·

The terms of the form Hm+2
X0,rig(XC) depend a priori on the choice of the curve C, but

if we choose a different smooth curve C ′, by Poincaré duality ([1, Theorem 2.4]),
we have isomorphisms

Hm+2
X0,rig(XC) ∼= Hm+2

X0,rig(XC′) ∼= H2 dimX−m−2
c,rig (X0)∨(−dimX)

∼= Hrig
2 dimX0−m(X0)(−dimX),

and we get a Clemens–Schmid type exact sequence that depends only on X and
the special fiber X0 for our starting situation.

Remark 5.1. The Clemens–Schmid type exact sequence that we have obtained
can be used to prove a good reduction criterion for K3 surfaces. Namely, if K
is a finite extension of Qp and XK is a smooth, projective K3 surface, with a
minimal semistable model X over the ring of integers OK of K, then XK has good
reduction if and only if the monodromy on H2

DR(XK) is trivial. This criterion is
obtained by first realizing the special fiber of X inside a family over k[[t]] (this can
be done by [12]). Then we apply our Clemens–Schmid type exact sequence to this
family and proceed in a similar fashion as in [7]. The obtained criterion is directly
equivalent to the one obtained in [13], which is obtained using a trascendental
argument and p-adic Hodge theory. Moreover, these criteria can be extended to
more cases, as is done in [3].
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Sci. Paris Sér. I Math. 325 (1997), no. 5, 493–498. MR 1692313.
[2] P. Berthelot and A. Ogus, Notes on Crystalline Cohomology, Princeton University Press,

Princeton, NJ, 1978. MR 0491705.
[3] B. Chiarellotto and C. Lazda, Combinatorial degenerations of surfaces and Calabi–Yau three-

folds, Algebra Number Theory 10 (2016), no. 10, 2235–2266. MR 3582018.
[4] B. Chiarellotto and N. Tsuzuki, Cohomological descent of rigid cohomology for étale cover-

ings, Rend. Sem. Mat. Univ. Padova 109 (2003), 63–215. MR 1997987.
[5] B. Chiarellotto and N. Tsuzuki, Clemens–Schmid exact sequence in characteristic p, Math.

Ann. 358 (2014), no. 3-4, 971–1004. MR 3175147.
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