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THE ISOLATION OF THE FIRST EIGENVALUE FOR A
DIRICHLET EIGENVALUE PROBLEM INVOLVING THE

FINSLER p-LAPLACIAN AND A NONLOCAL TERM

ANDREI GRECU

Abstract. We analyse the isolation of the first eigenvalue for an eigenvalue
problem involving the Finsler p-Laplace operator and a nonlocal term on a
bounded domain subject to the homogeneous Dirichlet boundary condition.

1. Introduction: statement of the problem and motivation

Let Ω ⊂ RN (N ≥ 2) be a bounded domain with smooth boundary denoted by
∂Ω. Let H be a Finsler norm (i.e., H : RN → [0,∞) is a convex function of class
C2 (RN \ {0}), even and homogeneous of degree 1) such that H2 is strongly convex
(i.e., the Hessian matrix D2[H2](ξ) is positive definite for ξ ∈ RN \ {0}). Define
J : RN → RN by

J (ξ) = H (ξ)∇H (ξ) ∀ ξ ∈ RN .
The goal of this paper is to analyse the isolation of the first (the lowest) eigenvalue
of the following eigenvalue problem:−Qpqu(x) = λ

(∫
Ω
|u(y)|p dy

)q−1
|u(x)|p−2u(x) for x ∈ Ω,

u(x) = 0 for x ∈ ∂Ω,
(1.1)

where p, q ∈ (1,∞) are real numbers, λ is a real parameter, and
Qpqu := div

(
H(∇u)pq−2J(∇u)

)
stands for the Finsler pq-Laplace operator.

Definition 1.1. We say that λ ∈ R is an eigenvalue of problem (1.1) if there exists
u ∈W 1,pq

0 (Ω) \ {0} such that∫
Ω
H (∇u)pq−2

J (∇u) · ∇ϕdx = λ

(∫
Ω
|u|p dx

)q−1 ∫
Ω
|u|p−2uϕdx (1.2)

2020 Mathematics Subject Classification. 35P30, 35J60, 35P99, 35D30.
Key words and phrases. Eigenvalue problem, Finsler norm, isolated eigenvalue.
The author has been partially supported by CNCS-UEFISCDI grant PN-III-P1-1.1-TE-2019-

0456.

443

https://doi.org/10.33044/revuma.2281


444 ANDREI GRECU

for all ϕ ∈ W 1,pq
0 (Ω). Furthermore, u from the above relation will be called an

eigenfunction corresponding to the eigenvalue λ.

For all p, q ∈ (1,∞), we define

λ1(p, q) := inf
u∈W 1,pq

0 (Ω)\{0}

∫
Ω
H (∇u)pq dx(∫
Ω
|u|p dx

)q . (1.3)

In the particular case when q = 1, problem (1.1) becomes the eigenvalue problem{
−Qpu(x) = λ|u(x)|p−2u(x) for x ∈ Ω,
u(x) = 0 for x ∈ ∂Ω,

(1.4)

which was investigated by Belloni, Ferone & Kawohl in [3]. In particular, they
showed that the minimum of the Rayleigh quotient which can be associated to this
eigenvalue problem, i.e.,

λ1(p, 1) := inf
u∈W 1,p

0 (Ω)\{0}

∫
Ω
H (∇u)p dx∫
Ω
|u|p dx

,

gives the lowest eigenvalue of problem (1.4), and its minimizers are corresponding
eigenfunctions of λ1(p, 1) that do not change sign in Ω. Note that if H is the
Euclidean norm in RN , i.e., H (x) = |x|, then the Finsler p-Laplace operator Qp
becomes the classical p-Laplace operator, i.e., ∆pu := div

(
|∇u|p−2∇u

)
, and prob-

lem (1.4) becomes the celebrated eigenvalue problem for the p-Laplace operator
with homogeneous Dirichlet boundary condition:{

−∆pu(x) = λ|u(x)|p−2u(x) for x ∈ Ω,
u(x) = 0 for x ∈ ∂Ω.

(1.5)

We recall that the isolation of the first eigenvalue of problem (1.5) was investigated
by Anane [1], Diaz & Saa [6], Lindqvist [11] and Lê [10]. These works inspired the
study from this paper and stand at the base of the proof of our main result, which
is given by the following theorem.

Theorem 1.2. The number λ1(p, q) given by relation (1.3) is positive and rep-
resents the first eigenvalue of problem (1.1). Furthermore, λ1(p, q) is an isolated
eigenvalue of problem (1.1).

Remark 1.3. Note that the facts that λ1(p, q) is positive and represents the first
eigenvalue of problem (1.1) were already obtained in our previous works [8, 9].
Moreover, in [8, Lemma 3 & Theorem 1] we proved that the eigenvalue λ1(p, q) is
simple in the sense that the ratio between any two corresponding eigenfunctions is
a nontrivial constant.
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2. Proof of the main result

In order to prove the main result of the paper we recall some auxiliary results.
Before presenting their statements and proofs we point out the simple observation
that since any two norms are equivalent on RN , there exist two positive constants
a and b such that

aH(η)| ≤ |η| ≤ bH(η) ∀ η ∈ RN . (2.1)
We also recall a simple but useful relation which can be found, for example, in [2]:

〈∇H(ξ), ξ〉 = H(ξ) ∀ ξ ∈ RN . (2.2)

Remark 2.1. We point out that arguments similar to those used by Tolksdorf [12]
(see also [10]) can be used in order to show that the eigenfunctions corresponding
to any eigenvalue λ of problem (1.1) belong to C1,α(Ω).

Lemma 2.2 (See [8, Lemma 1]). λ1(p, q) is positive.

Lemma 2.3 (See [8, Lemmas 2 & 3] or [9, Theorems 3.1 & 3.2]). For each p, q ∈
(1,∞), there exists a function u1 ∈ W 1,pq

0 (Ω) \ {0} such that
∫

Ω
H (∇u1)pq dx =

λ1(p, q) and
∫

Ω
|u1|p dx = 1. Moreover, λ1(p, q) is an eigenvalue of problem (1.1),

and u1 represents its associated eigenfunction. Furthermore, u1 does not change
sign in Ω.

In order to go further, for each u ∈W 1,pq
0 (Ω) we define

u±(x) := max{±u(x), 0} ∀x ∈ Ω.

By [7, Lemma 7.6] we know that u+, u− ∈W 1,p
0 (Ω), and

∇u+ =
{

0 if [u ≤ 0],
∇u if [u > 0]

and ∇u− =
{

0 if [u ≥ 0],
∇u if [u < 0].

We propose to prove the following result.

Proposition 2.4. Let v be an eigenfunction corresponding to an eigenvalue λ >
λ1(p, q) of problem (1.1). Then v± 6≡ 0.

In order to prove the above proposition for each u, v ∈W 1,pq(Ω), we define

〈−Qpqu, v〉 :=
∫

Ω
H (∇u)pq−2

J(∇u) · ∇v dx.

Define also

G := {(u, v) ∈W 1,pq(Ω)×W 1,pq(Ω) : u, v ≥ 0, u, v ∈ L∞(Ω)}.

For each ε > 0 and (u, v) ∈ G, we consider

Iε(u, v) :=
〈
−Qpqu,

(u+ ε)p − (v + ε)p

(u+ ε)p−1

〉
−
〈
−Qpqv,

(u+ ε)p − (v + ε)p

(v + ε)p−1

〉
.
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Set uε := u + ε and vε := v + ε. It is clear that (uε, vε) ∈ G. We compute〈
−Qpqu, u

p
ε−v

p
ε

up−1
ε

〉
and

〈
−Qpqv, u

p
ε−v

p
ε

vp−1
ε

〉
. First, direct computations based on rela-

tion (2.2) yield〈
−Qpqu,

upε − vpε
up−1
ε

〉
=
∫

Ω
H (∇u)pq−2

J(∇u) · ∇
(
upε − vpε
up−1
ε

)
dx

=
∫

Ω
H (∇u)pq dx+ (p− 1)

∫
Ω

(
vε
uε

)p
H (∇u)pq dx

− p
∫

Ω

(
vε
uε

)p−1
H (∇u)pq−2

J(∇u) · ∇v dx.

Similarly, we obtain〈
−Qpqv,

upε − vpε
vp−1
ε

〉
= −

〈
−Qpqv,

vpε − upε
vp−1
ε

〉
= −

∫
Ω
H (∇v)pq dx− (p− 1)

∫
Ω

(
uε
vε

)p
H (∇v)pq dx

+ p

∫
Ω

(
uε
vε

)p−1
H (∇v)pq−2

J(∇v) · ∇udx.

The following two results are based on the ideas by Diaz & Saa in [6].

Lemma 2.5. Let K : Lq(Ω)→ R ∪ {+∞},

K(ϕ) =


1
q

∫
Ω
H
(
∇ϕ

1
p

)pq
dx if ϕ ∈ D(K),

+∞ otherwise,

where D(K) :=
{
ϕ

1
p ∈W 1,pq(Ω), ϕ ≥ 0

}
. Then K 6≡ +∞ and K is convex.

Proof. Let u ∈ W pq
0 (Ω) be a positive eigenfunction corresponding to the eigen-

value λ1(p, q). By Lemma 2.3 we can assume that
∫

ΩH (∇u)pq dx = λ1(p, q) and∫
Ω |u|

p dx = 1. Then, for ϕ = up ∈ D(K), we have K(up) = 1
q
λ1(p, q). Thus,

K 6≡ +∞.
In order to show the convexity of K we consider α1, α2 ∈ D(K). We have to

show that

K(tα1 + (1− t)α2) ≤ tK(α1) + (1− t)K(α2) ∀ t ∈ [0, 1].

Let t ∈ [0, 1] be arbitrary but fixed. Define

β1 := α
1
p

1 , β2 := α
1
p

2 , β3 := (tα1 + (1− t)α2)
1
p .

Simple computations yield

∇β1 = 1
p
β1−p

1 ∇α1, ∇β2 = 1
p
β1−p

2 ∇α2, ∇β3 = 1
p
β1−p

3 (t∇α1 + (1− t)∇α2) .
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Consequently, we have that

βp−1
3 ∇β3 = 1

p
(t∇α1 + (1− t)∇α2)

= 1
p

(
tpβp−1

1 ∇β1 + (1− t)pβp−1
2 ∇β2

)
= tβp−1

1 ∇β1 + (1− t)βp−1
2 ∇β2.

It follows that

H(βp−1
3 ∇β3) = H

(
tβp−1

1 ∇β1 + (1− t)βp−1
2 ∇β2

)
.

Taking into account that H is homogeneous of degree 1 and convex we get

βp−1
3 H(∇β3) ≤ tβp−1

1 H(∇β1) + (1− t)βp−1
2 H(∇β2)

=
(
t
p−1
p βp−1

1

)(
t

1
pH(∇β1)

)
+
(

(1− t)
p−1
p βp−1

2

)(
(1− t)

1
pH(∇β2)

)
.

(2.3)

Recall now the classical Cauchy–Schwarz inequality which holds true for each p > 1,
namely

a1a2 + b1b2 ≤
(
a

p
p−1
1 + b

p
p−1
1

)(p−1)/p (
ap2 + bp2

)1/p ∀ a1, a2, b1, b2 > 0.

Taking

a1 := t
p−1
p βp−1

1 , b1 := (1− t)
p−1
p βp−1

2 ,

a2 := t
1
pH(∇β1), b2 := (1− t)

1
pH(∇β2)

in the above inequality we deduce that(
t
p−1
p βp−1

1

)(
t

1
pH(∇β1)

)
+
(

(1− t)
p−1
p βp−1

2

)(
(1− t)

1
pH(∇β2)

)
≤ (tβp1 + (1− t)βp2)(p−1)/p (tH(∇β1)p + (1− t)H(∇β2)p)1/p

. (2.4)

Combining (2.3) with (2.4) and taking into account that (tβp1 + (1− t)βp2)(p−1)/p =
(tα1 + (1− t)α2)(p−1)/p = βp−1

3 we find

βp−1
3 H(∇β3) ≤ βp−1

3 (tH(∇β1)p + (1− t)H(∇β2)p)1/p
.

From the last inequality, using the fact that the function (0,∞) 3 t → tq (with
q > 1) is convex we deduce via Jensen’s inequality that

H(∇β3)pq ≤ [tH(∇β1)p + (1− t)H(∇β2)p]q

≤ tH(∇β1)pq + (1− t)H(∇β2)pq.

Integrating over Ω and multiplying with 1
q we get the conclusion of the lemma. �

Lemma 2.6. For each ε > 0, we have

Iε(u, v) = 〈K ′(upε ), upε − vpε 〉 − 〈K ′(vpε ), upε − vpε 〉 ∀u, v ∈ G,
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where uε := u+ ε, vε := v + ε, and 〈K ′(ϕ), ξ〉 stands for the Gâteaux derivative of
K at ϕ in the direction ξ when ϕ, ξ ∈ D(K). Moreover,

Iε(u, v) ≥ 0 ∀u, v ∈ G.

Proof. Let ϕ, ξ ∈ D(K) be arbitrary but fixed such that ϕ > 0 in Ω. Define
f : R→ R by

f(t) = 1
q

∫
Ω
H
(
∇(ϕ+ tξ)

1
p

)pq
dx ∀ t ∈ R.

Clearly, f ∈ C1(R) and

f ′(0) = lim
t→0

f(t)− f(0)
t

= lim
t→0

K(ϕ+ tξ)−K(ϕ)
t

= 〈K ′(ϕ), ξ〉.

On the other hand, simple computations yield

f ′(t) =
∫

Ω
H
(
∇(ϕ+ tξ)

1
p

)pq−2
J
(
∇(ϕ+ tξ)

1
p

) ∂

∂t

[
(ϕ+ tξ)

1−p
p (∇ϕ+ t∇ξ)

]
dx

=
∫

Ω
H
(
∇(ϕ+ tξ)

1
p

)pq−2
J
(
∇(ϕ+ tξ)

1
p

)
×
[

1− p
p

(ϕ+ tξ)
1
p−2ξ(∇ϕ+ t∇ξ) + (ϕ+ tξ)

1−p
p ∇ξ

]
dx.

Then, we have

〈K ′(ϕ), ξ〉 = f ′(0) =
∫

Ω
H
(
∇ϕ

1
p

)pq−2
J
(
∇ϕ

1
p

)[
(1− p) ξ

ϕ
∇ϕ

1
p + ϕ

1−p
p ∇ξ

]
dx.

Observe that 〈K ′(ϕ), ξ〉 is linear with respect to ξ and consequently we can allow
ξ to change sign in Ω. Let now (u, v) ∈ G. Taking ϕ = upε and ξ = upε − vpε we have

〈K ′(upε ), upε − vpε 〉

=
∫

Ω
H (∇uε)pq−2

J (∇uε)
[
(1− p)u

p
ε − vpε
upε

∇uε + u1−p
ε ∇(upε − vpε )

]
dx

=
∫

Ω
H(∇u)pq dx+ (p− 1)

∫
Ω

(
vε
uε

)p
H(∇u)pq dx

− p
∫

Ω

(
vε
uε

)p−1
H(∇u)pq−2J(∇u) · ∇v dx

=
〈
−Qpqu,

upε − vpε
up−1
ε

〉
.
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Similarly, taking ϕ = vpε and ξ = upε − vpε we have

〈K ′(vpε ), upε − vpε 〉

=
∫

Ω
H (∇vε)pq−2

J (∇vε)
[
(1− p)u

p
ε − vpε
vpε

∇vε + v1−p
ε ∇(upε − vpε )

]
dx

= −
∫

Ω
H(∇v)pq dx− (p− 1)

∫
Ω

(
uε
vε

)p
H(∇v)pq dx

+ p

∫
Ω

(
uε
vε

)p−1
H(∇v)pq−2J(∇v) · ∇udx

= −
〈
−Qpqv,

vpε − upε
vp−1
ε

〉
=
〈
−Qpqv,

upε − vpε
vp−1
ε

〉
.

Now, using the convexity of K given by Lemma 2.5 we have

K(ϕ) ≥ K(ξ) + 〈K ′(ξ), ϕ− ξ〉 ∀ϕ, ξ ∈ D(K),
K(ξ) ≥ K(ϕ) + 〈K ′(ϕ), ξ − ϕ〉 ∀ϕ, ξ ∈ D(K).

Adding the above two relations we find

〈K ′(ξ), ξ − ϕ〉 − 〈K ′(ϕ), ξ − ϕ〉 ≥ 0 ∀ϕ, ξ ∈ D(K).

For each ε > 0, letting ξ = upε and ϕ = vpε , the above pieces of information lead to
the conclusion of the lemma. �

We are now ready to prove Proposition 2.4.

Proof of Proposition 2.4. Let u be a positive eigenfunction corresponding to the
principal eigenvalue λ1(p, q) such that∫

Ω
H(∇u)pq dx = 1 and

(∫
Ω
up dx

)q
= 1
λ1(p, q) .

The existence of such a function u follows from Lemma 2.3. Let λ > λ1(p, q) be
another fixed eigenvalue of problem (1.1). We assume by contradiction that λ has
an eigenfunction v which does not change sign in Ω. Assume for instance that v > 0
in Ω, and by a rescaling argument we may also assume that

∫
ΩH(∇v)pq dx = 1

and
(∫

Ω |v|
p dx

)q = λ−1. Taking into account that u and v are smooth enough
(see Remark 2.1) by Lemma 2.6 we know that, for each ε > 0, Iε(u, v) ≥ 0, and
consequently,

lim inf
ε→0+

Iε(u, v) ≥ 0. (2.5)

On the other hand, by relation (1.2) we have

Iε(u, v) =
〈
−Qpqu,

upε − vpε
up−1
ε

〉
−
〈
−Qpqv,

upε − vpε
vp−1
ε

〉
= λ1(p, q) 1

λ1(p, q)
q−1
q

∫
Ω
up−1 (upε − vpε )

up−1
ε

dx− λ 1
λ
q−1
q

∫
Ω
vp−1 (upε − vpε )

vp−1
ε

dx.
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Thus, letting ε → 0+ and using Lebesgue’s dominated convergence theorem we
obtain

lim sup
ε→0+

Iε(u, v) = lim sup
ε→0+

{
λ1(p, q)

1
q

∫
Ω
up−1 (upε − vpε )

up−1
ε

dx

−λ
1
q

∫
Ω
vp−1 (upε − vpε )

vp−1
ε

dx
}

=
(
λ1(p, q)

1
q − λ

1
q

)( 1
λ1(p, q)

1
q

− 1
λ

1
q

)
< 0,

a contradiction with (2.5). Hence, v must change sign in Ω. The proof of Proposi-
tion 2.4 is complete. �

Proposition 2.7. Let λ > λ1(p, q) be an eigenvalue of problem (1.1). Then, there
exists a corresponding eigenfunction η such that∫

Ω
H(∇η)pq dx = 1 and

(∫
Ω
|η|p dx

)q
= λ−1,

and
|Ω−η | ≥

(
λ2q−1Cpqbpq

)1/(1−q)
,

where Ω−η is the set {x ∈ Ω : η(x) < 0}, C = C(p, q,N,Ω) is the constant given by
Poincaré’s inequality, and b is given by relation (2.1).

Proof. First, note that the first part of the conclusion holds true via a rescaling
argument. Next, note that from Proposition 2.4 we know that any eigenfunc-
tion corresponding to λ > λ1(p, q) changes sign over Ω. We observe that if u is
an eigenfunction corresponding to eigenvalue λ, then −u is also an eigenfunction
corresponding to eigenvalue λ. Testing in (1.2) with ϕ = u− we find that∫

Ω
H (∇u−)pq dx = λ

(∫
Ω
up+ dx+

∫
Ω
up− dx

)q−1 ∫
Ω
up− dx.

Next, if
∫

Ω u
p
− dx ≥

∫
Ω u

p
+ dx, we get∫

Ω
H (∇u−)pq dx ≤ λ2q−1

(∫
Ω
up− dx

)q
. (2.6)

Using Hölder’s inequality, Poincaré’s inequality (Brezis [5, Corollary 9.19]) and
relation (2.1) we get the existence of a positive constant C = C(p, q,N,Ω) such
that(∫

Ω
up− dx

)q
≤ |Ω−η |q−1

∫
Ω
upq− dx ≤ |Ω−η |q−1Cpqbpq

∫
Ω
H (∇u−)pq dx. (2.7)

Combining (2.6) and (2.7) we deduce that

|Ω−η | ≥
(
λ2q−1Cpqbpq

)1/(1−q)
.

If
∫

Ω u
p
− dx ≤

∫
Ω u

p
+ dx, then we consider v = −u to be the eigenfunction corre-

sponding to the eigenvalue λ. Since v− = u+ and v+ = u−, we obtain
∫

Ω v
p
− dx ≥
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∫
Ω v

p
+ dx. Then, testing in (1.2) with ϕ = v− and then repeating the above argu-

ments we find again the desired estimation of |Ω−η |. Thus, the proof of Proposi-
tion 2.7 is complete. �

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Let λ be an eigenvalue of problem (1.1). Let v be an eigen-
function corresponding to the eigenvalue λ such that∫

Ω
H(∇v)pq dx = 1 and

(∫
Ω
|v|p dx

)q
= λ−1.

Then it is clear that ∫
Ω
H(∇v)pq dx = λ

(∫
Ω
|v|p dx

)q
,

and since ∫
Ω
H(∇v)pq dx ≥ λ1(p, q)

(∫
Ω
|v|p dx

)q
and v 6= 0, we deduce that λ ≥ λ1(p, q). It follows that λ1(p, q) is isolated to the
left. Assume by contradiction that it is not isolated to the right. Then, there exists
a sequence of eigenvalues {λn}n of problem (1.1) such that λn > λ1(p, q) for each n
and

lim
n→∞

λn = λ1(p, q).

Let {un}n be a sequence of corresponding eigenfunctions given by Proposition 2.7
such that ∫

Ω
H(∇un)pq dx = 1 and

(∫
Ω
|un|p dx

)q
= λn

−1,

and
|Ω−un | ≥

(
λn2q−1Cpqbpq

)1/(1−q)
. (2.8)

Since
∫

ΩH(∇un)pq dx = 1 for each n, by relation (2.1) we deduce that {un}n is
bounded in W 1,pq

0 (Ω). This implies the existence of a subsequence of {un}n, still
denoted by {un}n, that converges weakly in W 1,pq

0 (Ω) to a function u ∈W 1,pq
0 (Ω).

Since W 1,pq
0 (Ω) is compactly embedded in Lp (Ω), we deduce that {un}n converges

strongly to u in Lp (Ω) and a.e. in Ω. Moreover, since
(∫

Ω |un|
p dx

)q = λn
−1 for

each integer n, and limn→∞ λn = λ1(p, q), it follows that
(∫

Ω |u|
p dx

)q = λ1(p, q),
which ensures that u 6= 0.

On the other hand, we recall that by relation (1.2) we have that, for each positive
integer n, the following equality holds true:∫

Ω
H (∇un)pq−2

J (∇un) · ∇ϕdx

= λn

(∫
Ω
|un|p dx

)q−1 ∫
Ω
|un|p−2unϕdx ∀ϕ ∈W 1,pq

0 (Ω) . (2.9)
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Testing with ϕ = un − u in the above relation we get∫
Ω
H (∇un)pq−2

J (∇un) · (∇un −∇u) dx

= λn

(∫
Ω
|un|p dx

)q−1 ∫
Ω
|un|p−2un(un − u) dx ∀n ≥ 1.

Since un converges strongly to u in Lp (Ω), the above pieces of information yield

lim
n→∞

∫
Ω
H (∇un)pq−2

J (∇un) · (∇un −∇u) dx = 0.

On the other hand, since un converges weakly to u in W 1,pq(Ω), we infer that

lim
n→∞

∫
Ω
H (∇u)pq−2

J (∇u) · (∇un −∇u) dx = 0.

Combining the last two relations we get

lim
n→∞

∫
Ω

(H (∇un)pq−2
J (∇un)−H (∇u)pq−2

J (∇u)) · (∇un −∇u) dx = 0,

which combined with a convexity argument implies that, actually, un converges
strongly to u in W 1,pq(Ω). Thus, letting n→∞ in (2.9) we get∫

Ω
H (∇u)pq−2

J (∇u) · ∇ϕdx

= λ1(p, q)
(∫

Ω
|u|p dx

)q−1 ∫
Ω
|u|p−2unϕdx ∀ϕ ∈W 1,pq

0 (Ω) ,

which means that the limit function u is an eigenfunction corresponding to the
eigenvalue λ1(p, q). By Lemma 2.3 we may assume that u > 0. Next, using
Egorov’s theorem we deduce that un converges uniformly to u on the exterior of
an arbitrarily small subset of Ω.

Let ε > 0 be arbitrary but fixed and let S ⊂ Ω be a compact set such that
|Ω \ S| < ε. Clearly, there exists a real number δ > 0 (depending on S) such that
u(x) ≥ δ > 0 for all x ∈ S. On the other hand, we know that un(x) converges to
u(x) for a.e. x ∈ Ω, and, consequently, we can construct S as above such that un
converges uniformly to u in Ω \ S. Since u > 0 in Ω, we find that Ω−un ⊂ Ω \ S for
each integer n large enough. The above pieces of information and inequality (2.8)
imply (

λn2q−1Cpqbpq
)−1/(1−q) ≤ |Ω−un | ≤ |Ω \ S| < ε

for each integer n large enough. Letting n→∞ in the above relation we find(
λ1(p, q)2q−1Cpqbpq

)−1/(1−q) ≤ ε.
The above inequality should hold true for each ε > 0, which, undoubtedly, leads
to a contradiction with Lemma 2.2. Consequently, λ1(p, q) is isolated to the right.
This concludes the proof of Theorem 1.2. �
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