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A COMPACT MANIFOLD WITH INFINITE-DIMENSIONAL
CO-INVARIANT COHOMOLOGY

MEHDI NABIL

Abstract. Let M be a smooth manifold. When Γ is a group acting on M by
diffeomorphisms, one can define the Γ-co-invariant cohomology of M to be the
cohomology of the complex Ωc(M)Γ = span{ω − γ∗ω : ω ∈ Ωc(M), γ ∈ Γ}.
For a Lie algebra G acting on the manifold M , one defines the cohomology of G-
divergence forms to be the cohomology of the complex CG(M) = span{LXω :
ω ∈ Ωc(M), X ∈ G}. In this short paper we present a situation where these
two cohomologies are infinite dimensional on a compact manifold.

1. Introduction

The concept of co-invariant cohomology was introduced in [1]. In basic terms,
it is the cohomology of a subcomplex of the de Rham complex generated by the
action of a group on a smooth manifold. The authors showed that, under nice
enough hypotheses on the nature of the action, there is an interplay between the
de Rham cohomology of the manifold, the cohomology of invariant forms and the
co-invariant cohomology, and this relationship can be exhibited either by vector
space decompositions or through long exact sequences depending on the case of
study ([1, Theorems 1.1 and 1.3]). Among the various consequences that can be
derived from this inspection, it is evident that the dimension of the de Rham co-
homology has some control over the dimension of the co-invariant cohomology,
and in most cases presented in [1] the latter is finite whenever the former is also
finite. This occurs for instance in the case of a finite action on a compact man-
ifold or more generally in the case of an isometric action on a compact oriented
Riemannian manifold, and this fact holds as well for a non-compact manifold as
long as one requires the action to be free and properly discontinuous with compact
orbit space. A concept closely related to co-invariant cohomology is the cohomol-
ogy of divergence forms, which is defined by means of a Lie algebra action on a
smooth manifold and was introduced by A. Abouqateb [2]. In the course of his
study, the author gave many examples where the cohomology of divergence forms
is finite-dimensional.
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The goal of this paper is to show that this phenomenon heavily depends on the
nature of the action in play, and that without underlying hypotheses, co-invariant
cohomology and cohomology of divergence forms are not generally well behaved.
This is illustrated by an example of a vector field action on a smooth compact man-
ifold giving rise to infinite-dimensional cohomology of divergence forms and whose
discrete flow induces an infinite-dimensional co-invariant cohomology as opposed
to the de Rham cohomology of the manifold. This shows in particular that many
results obtained in [1] and [2] cannot be easily generalized and brings into perspec-
tive the necessity to look for finer finiteness conditions of co-invariant cohomology
in a future study which would put the present paper in a broader context.

The general outline of the paper is as follows: In Section 2, we briefly recall
the notions of co-invariant forms and divergence forms, then we define an homo-
morphism of the de Rham complex that is induced by a complete vector field on
the manifold, and which maps divergence forms relative to the action of the vector
field onto the complex of co-invariant differential forms associated to its discrete
flow (see (2.1) and Proposition 2.1). Section 3 is concerned with the setting on
which our cohomology computations will take place; it comprises a smooth com-
pact manifold, the 3-dimensional hyperbolic torus, which can be obtained as the
quotient of a solvable Lie group by a uniform lattice (the construction given here is
that of A. El Kacimi in [3]); the Lie algebra action considered is by means of a left-
invariant vector field. We then use a number of results to prove Theorem 3.5, which
states that the operator defined in (2.1) is an isomorphism between the complex of
divergence forms and the complex of co-invariant forms, hence allowing us to only
consider the cohomology of co-invariant forms for computation. Finally, Section 4
is dedicated to the main computation, in which we prove that the discrete flow
of the vector field in question on the hyperbolic torus gives infinite-dimensional
co-invariant cohomology.

2. Preliminaries

Let M be a smooth n-dimensional manifold and let us denote by Diff(M) the
group of diffeomorphisms of M and by X (M) the Lie algebra of smooth vector fields
on M . Let ρ : Γ −→ Diff(M) be an action of a group Γ on M by diffeomorphisms.
For an r-form ω on M and element γ ∈ Γ, we denote by γ∗ω the pull-back of ω by
the diffeomorphism ρ(γ) : M −→ M . Let Ωc(M) = ⊕pΩp

c(M) denote the de Rham
complex of forms with compact support on M and put

Ωp
c(M)ρ := span{ω − γ∗ω : γ ∈ Γ, ω ∈ Ωp

c(M)}.
Any element of Ωp

c(M)ρ is called a ρ-co-invariant or just a (Γ-)co-invariant when
there is no ambiguity. The graded vector space Ωc(M)ρ := ⊕pΩp

c(M)ρ is a differen-
tial subcomplex of the de Rham complex Ωc(M), called the complex of co-invariant
differential forms on M . When M is compact this complex is simply denoted by
Ω(M)ρ. In the case where ρ : Z −→ M is the action induced by a diffeomorphism
γ : M −→ M , i.e., ρ(n) := γn, then we get that

Ωp
c(M) = {ω − γ∗ω : ω ∈ Ωp

c(M)}.
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Let τ : G −→ X (M) be a Lie algebra homomorphism and set X̂ := τ(X) for any
X ∈ G; then define

Cp
τ (M) := span{LX̂ω : X ∈ G, ω ∈ Ωp

c(M)}.
Any element of Cp

τ (M) is called a τ -divergence p-form or simply G-divergence form.
The graded vector space Cτ (M) := ⊕pCp

τ (M) is a differential subcomplex of the
de Rham complex. If X is any vector field on M , with corresponding Lie algebra
homomorphism τ : R −→ X (M), τ(1) := X, then

Cp
τ (M) = span{LXω : ω ∈ Ωp

c(M)}.
In what follows, X ∈ X (M) is a complete vector field and Φ : M × [0, 1] −→ M
is the flow ΦX of the vector field X restricted to M × [0, 1]. We define the linear
operator I : Ω(M) −→ Ω(M) by the expression

I(η) := −
∫ 1

0
Φ∗η ∧ pr∗

2(ds), (2.1)

where
−
∫ 1

0
: Ω∗(M × [0, 1]) −→ Ω∗−1(M)

is the fiberwise integration operator of the trivial bundle M × [0, 1] pr1−→ M (see [4])
and ds is the usual volume form on [0, 1].

Let τ : R −→ X (M) be the Lie algebra homomorphism induced by X and
let ρ : Z −→ Diff(M) be the discrete flow of X, i.e., the group action given by
ρ(n) := ΦX

n .

Proposition 2.1. The operator I : Ω(M) −→ Ω(M) defined by (2.1) is a differen-
tial complex homomorphism, i.e., I ◦ d = −d ◦ I. Moreover, I(Cτ (M)) ⊂ Ωc(M)ρ

and the restriction of I : Cτ (M) −→ Ωc(M)ρ is surjective.

Proof. Let η ∈ Ω(M) and let ιs : M −→ M × {s} ↪→ M × [0, 1] be the natural
inclusion; then using the Stokes formula for fiberwise integration we get

I(dη) = −
∫ 1

0
Φ∗(dη)∧pr∗

2(ds) = −
∫ 1

0
d(Φ∗η∧pr∗

2(ds)) = −dI(η)+
[
ι∗s(Φ∗η∧pr∗

2ds)
]1

0,

and since ι∗spr∗
2(ds) = 0 we get I(dη) = −dI(η). For the second claim we start

by showing that I(η) has compact support whenever η does. Indeed, assume η ∈
Ωc(M) and set K := supp(η). Next consider the map

f : M × R −→ M, (x, s) 7→ Φ−1
s (x) := Φ(x,−s).

Then f is continuous and therefore L := f(K×[0, 1]) is compact. For any y ∈ M \L
and any s ∈ [0, 1] we get that Φs(y) /∈ K and therefore (Φ∗η)(y,s) = 0; this implies
that I(η)y = 0. We conclude that supp I(η) ⊂ L, i.e., I(η) ∈ Ωc(M).

From the relation T(x,t)Φ(0, 1) = XΦt(x) one gets that Φ∗ ◦ iX = i(0, ∂
∂s ) ◦ Φ∗ and

therefore Φ∗ ◦ LX = L(0, ∂
∂s ) ◦ Φ∗. Moreover, we have that

L(0, ∂
∂s )pr∗

2(ds) = 0 and −
∫ 1

0
◦ i(0, ∂

∂s ) = 0.
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If we write η = LXω for some ω ∈ Ωc(M) then we get that

I(LXω) = −
∫ 1

0
Φ∗(LXω) ∧ pr∗

2(ds)

= −
∫ 1

0
L(0, ∂

∂s )(Φ∗ω) ∧ pr∗
2(ds)

= −
∫ 1

0
L(0, ∂

∂s )(Φ∗ω ∧ pr∗
2(ds))

= −
∫ 1

0
d ◦ i(0, ∂

∂s )(Φ∗ω ∧ pr∗
2(ds)) + −

∫ 1

0
i(0, ∂

∂s )d(Φ∗ω ∧ pr∗
2(ds))

= d

(
−
∫ 1

0
i(0, ∂

∂s )(Φ∗ω ∧ pr∗
2(ds))

)
+ [ι∗si(0, ∂

∂s )(Φ∗ω ∧ pr∗
2(ds))]10

= [Φ∗
sω]10

= Φ∗
1ω − Φ∗

0ω

= Φ∗
1ω − ω.

It follows that I(Cτ (M)) ⊂ Ωc(M)ρ. This also shows that I : Cτ (M) −→ Ωc(M)ρ

is surjective. □

Remark 2.2. Note that ΦX -invariant forms on M are fixed by I, i.e., if ω ∈ Ω(M)
is such that LXω = 0 then I(ω) = ω.

3. The hyperbolic torus

Consider A ∈ SL(2,Z) with tr(A) > 2. It is easy to check that A = PDP−1

for some P ∈ GL(2,R) and D = diag(λ, λ−1). Clearly λ > 0 and λ ̸= 1. Hence
it makes sense to set Dt = diag(λt, λ−t) and define At = PDtP−1 for any t ∈ R.
Next we define the Lie group homomorphism

φ : R −→ Aut(R2), t 7→ At.

The hyperbolic torus T3
A is the smooth manifold defined as the quotient Γ3\G3

where G3 := R2 ⋊φ R and Γ3 := Z2 ⋊φ Z. The natural projection R2 ⋊φ R p−→ R
induces a fiber bundle structure T3

A

p−→ S1 with fiber type T2 and p[x, y, t] = [t];
in particular, T3

A is a compact manifold.
If (1, a) and (1, b) are the eigenvectors of A respectively associated to the eigen-

values λ and λ−1 then

v = (1, a, 0), w = (1, b, 0) and e = (0, 0,− log(λ)−1)

form a basis of g3 = Lie(G3), and we can check that

[v, w]g3 = 0, [e, v]g3 = −v and [e, w]g3 = w.
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Denote by X, Y and Z the left invariant vector fields on R2⋊φR associated to v, w
and e respectively; then {X,Y, Z} defines a parallelism on TA

3 . A direct calculation
leads to

X = λt

(
∂

∂x
+ a

∂

∂y

)
, Y = λ−t

(
∂

∂x
+ b

∂

∂y

)
and Z = − log(λ)−1 ∂

∂t
. (3.1)

Now denote by α, β and θ the dual forms associated to X, Y and Z respectively.
It is clear that the vector fields X and Y of T3

A are tangent to the fibers of the fiber
bundle T3

A

p−→ S1, and that θ = −(log λ)p∗(σ), where σ is the invariant volume
form on S1 satisfying

∫
S1 σ = 1.

The conditions A ∈ SL(2,Z) and tr(A) > 2 imply that λ is irrational, hence so
is a. Therefore, the orbits of the linear vector field v = (1, a) = ∂

∂x + a ∂
∂y on the

torus T2 are dense. So if f ∈ C∞(T2) satisfies v(f) = 0, it is constant on the orbits
of v and, by continuity, it is also constant on T2.

Now consider the vector field X = λt(v, 0) on T3
A, i.e., given by (3.1). Its

restriction to each fiber Ft := p−1(t) of the fibration T2 −→ T3
A

p−→ S1 is a
linear vector field whose direction is the vector v. From the preceding remark,
any function f ∈ C∞(T3

A) satisfying X(f) = 0 is constant on the fibers Ft. Thus
f = p∗(f̄) for some f̄ ∈ C∞(S1). Summarizing:

Proposition 3.1. The orbits of the vector field X defined in (3.1) are dense in the
fibers of the fiber bundle T3

A

p−→ S1. In particular, for any f ∈ C∞(T3
A), X(f) = 0

is equivalent to f = p∗(ϕ) for some ϕ ∈ C∞(S1). □

The following lemma is of central importance for the development of this para-
graph and for the computations of the next section.

Lemma 3.2. Let f ∈ C∞(T3
A). Then for every s ∈ R we have the formula

Z
(
(ΦX

s )∗(f)
)

= −s(ΦX
s )∗(

X(f)
)

+ (ΦX
s )∗(

Z(f)
)
.

In particular, Z(γ∗f) = −X(γ∗f) + γ∗(Z(f)) and iZ ◦ γ∗ = −γ∗ ◦ iX + γ∗ ◦ iZ ,
where γ := ΦX

1 .

Proof. For any (x, y, t) ∈ R3, a straightforward computation gives that

Z
(
(ΦX

s )∗(f)
)
(x, y, t) = − 1

log λd(f ◦ ΦX
s )(x,y,t)(0, 0, 1)

= − 1
log λ

d

du |u=0
(f ◦ ΦX

s )(x, y, t+ u)

= − 1
log λ

d

du |u=0
f(sλt+u + x, asλt+u + y, t+ u)

= − 1
log λ (df)ΦX

s (x,y,t)(s log(λ)λt, as log(λ)λt, 1)

= −s(df)ΦX
s (x,y,t)(λt, aλt, 0) − 1

log λ (df)ΦX
s (x,y,t)(0, 0, 1)

= −s(X(f) ◦ ΦX
s )(x, y, t) + (Z(f) ◦ ΦX

s )(x, y, t). □
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Given a compact smooth manifold M , we set, for any f ∈ C∞(M),
∥f∥∞:= sup

x∈M
|f(x)|;

it is straightforward to check that ∥·∥∞ defines a vector space norm on C∞(M);
moreover, for any g ∈ Diff(M), the composition C∞(M) −→ C∞(M), f 7→ f ◦ g is
an isometry relative to ∥·∥∞, i.e., ∥f ◦ g∥∞= ∥f∥∞.

Corollary 3.3. Let f ∈ C∞(T3
A) be such that f = γ∗f with γ := ΦX

1 . Then
X(f) = 0 and consequently f = p∗ψ with ψ ∈ C∞(S1).

Proof. Since f = γ∗f , we get that f = (γn)∗(f) for every n ∈ Z; thus the preceding
lemma gives that

Z(f) = −nX(f) + (γn)∗(Z(f)).
Consequently we obtain that, for every n ∈ Z,

|X(f)| ≤ 1
n

(
∥Z(f)∥∞+∥(γn)∗(Z(f))∥∞

)
≤ 2
n

∥Z(f)∥∞,

which leads to X(f) = 0. □

Corollary 3.4. Let f ∈ C∞(T3
A) be such that f−γ∗f = p∗ϕ for some ϕ ∈ C∞(S1).

Then f = p∗ψ with ψ ∈ C∞(S1).

Proof. In view of Corollary 3.3, it suffices to show that ϕ = 0 to prove this result.
Using that p∗ϕ is γ-invariant, we can prove inductively that f = (γn)∗f +np∗ϕ for
any n ∈ Z, and thus, for n ̸= 0,

|p∗ϕ| ≤ 1
n

(∥f∥∞+∥(γn)∗f∥∞) ≤ 2
n

∥f∥∞,

which leads to ϕ = 0. □

In what follows we set M := T3
A. It is straightforward to check that

dα = −α ∧ θ, dβ = β ∧ θ, dθ = 0,
and that LXα = −θ and LXβ = LXθ = 0, thus LX(α ∧ β ∧ θ) = 0.

Let τ : R −→ X (M) be the Lie algebra homomorphism corresponding to the
vector field X and let ρ : Z −→ Diff(M) be the discrete action generated by
γ := ΦX

1 , where ΦX is the flow of X, that is, ρ(n)(x) = ΦX
n (x) for any n ∈ Z.

Theorem 3.5. The homomorphism I : Cτ (M) −→ Ω(M)ρ defined in (2.1) is an
isomorphism.

Proof. In view of Proposition 2.1 it only remains to prove that I is injective. Choose
η ∈ Cτ (M) and write η = LXω for some ω ∈ Ω(M). Assume that I(η) = 0; in view
of the previous computation this is equivalent to ω = γ∗ω.

If η ∈ C0
τ (M) then Corollary 3.3 gives that ω = p∗ϕ for some ϕ ∈ C∞(S1), thus

η = 0. On the other hand, if η ∈ C3
τ (M) we can write η = X(f)α ∧ β ∧ θ for some

f ∈ C∞(M) satisfying f = γ∗f and so by Corollary 3.3 we get η = 0.
Now for η ∈ C1

τ (M) we can write
ω = fα+ gβ + hθ, f, g, h ∈ C∞(M).
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Applying I to LXα = −θ leads to γ∗α = α − θ. Moreover, since θ and β are
ΦX -invariant, we get that β = γ∗β and θ = γ∗θ, thus

γ∗ω = (γ∗f)α+ (γ∗g)β + (γ∗h− γ∗f)θ,

and hence the relation ω = γ∗ω is equivalent to f = γ∗f , g = γ∗g and h = γ∗h−f .
Corollary 3.3 shows that X(g) = X(f) = 0, hence f ∈ p∗(C∞(S1)), and thus
Corollary 3.4 applied to h− γ∗h = f gives that f = 0 and h = γ∗h, which implies
that X(h) = 0 in view of Corollary 3.3. Now using that LXβ = 0 and LXθ = 0 it
follows that η = LXω = 0. Finally, let η ∈ C2

τ (M) and write

ω = fα ∧ β + gα ∧ θ + hβ ∧ θ, f, g, h ∈ C∞(M).

Then using γ∗α = α− θ we obtain that

γ∗ω = (γ∗f)α ∧ β + (γ∗g)α ∧ θ + (γ∗h+ γ∗f)β ∧ θ,

and so ω = γ∗ω is equivalent in this case to f = γ∗f , g = γ∗g and h = γ∗h+ γ∗f .
As before, this leads to f = 0, X(g) = 0 and X(h) = 0, and so

η = LXω = LX(gα ∧ θ + hβ ∧ θ) = gLX(α ∧ θ) = −gθ ∧ θ = 0.

Thus I : Cτ (M) −→ Ω(M)ρ is an isomorphism. □

This result gives in particular that H(Cτ (M)) ≃ H(Ω(M)ρ) and therefore we
only need to compute the cohomology of ρ-co-invariant forms in this case.

4. Cohomology computation

We now have all the necessary ingredients to perform our computation. Let M
denote the hyperbolic torus T3

A defined in the previous section with A ∈ SL(2,Z)
such that tr(A) > 2, and let X,Y, Z ∈ X (M) be the vector fields defined in (3.1)
with respective dual 1-forms α, β and θ. Define the action ρ : Z −→ Diff(M) to be
the discrete flow of the vector field X with γ := ρ(1). The main goal is to prove
that the first and second co-invariant cohomology groups are infinite dimensional;
however, we shall compute the whole cohomology in order to get a global picture.

Calculating H0(Ω(M)ρ). Choose f ∈ Ω0(M)ρ such that df = 0. Then f is a
constant function equal to g − γ∗g for some g ∈ C∞(M). Consequently we obtain
that∫

M

fα ∧ β ∧ θ =
∫

M

(g − γ∗g)α ∧ β ∧ θ =
∫

M

gα ∧ β ∧ θ −
∫

M

γ∗(gα ∧ β ∧ θ) = 0.

Thus f = 0, and we conclude that H0(Ω(M)ρ) = 0.

Calculating H1(Ω(M)ρ). We prove that H1(Ω(M)ρ) is infinite dimensional. In
order to do so, we prove that the map p∗ : Ω1(S1) −→ H1(Ω(M)ρ) is well defined
and injective, or equivalently we can show that p∗(Ω1(S1)) ⊂ Z1(Ω(M)ρ) and
p∗(Ω1(S1)) ∩ B1(Ω(M)ρ) = 0.
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An element η ∈ p∗(Ω1(S1)) can always be written as η = p∗(ϕ)θ, where ϕ ∈
C∞(S1). Since LXθ = 0 and LXα = −θ, by applying I to LXα we get that
θ = α− γ∗α; therefore

η = p∗(ϕ)θ = p∗(ϕ)α− γ∗(p∗(ϕ)α).
Moreover, observe that dη = 0, hence we deduce that p∗(Ω1(S1)) ⊂ Z1(Ω(M)ρ).
Now suppose η = d(g− γ∗g), then clearly X(g− γ∗g) = 0 and Z(g− γ∗g) = p∗(ϕ);
thus, according to Proposition 3.1, g − γ∗g = p∗ψ for some ψ ∈ C∞(S1). Using
Corollary 3.4 we obtain that g − γ∗g = 0 and so η = 0. Thus p∗(Ω1(S1)) ∩
B1(Ω(M)Z) = 0.

Calculating H2(Ω(M)ρ). We will show that p∗(Ω1(S1)) ∧β ⊂ H2(Ω(M)ρ). To do
this, we fix a 2-form η = p∗(ϕ)θ ∧ β such that ϕ ∈ C∞(S1). We can easily check
that dη = 0; moreover, from the previous calculations and the fact that LXβ = 0
we get that β = γ∗β, and therefore

p∗(ϕ)θ ∧ β = (p∗ϕα ∧ β) − γ∗(p∗(ϕ)α ∧ β).
Hence p∗(Ω1(S1)) ∧ β ⊂ Z2(Ω(M)ρ). Now assume that η = d(ω − γ∗ω); the
expression of η along with the fact that θ(X) = θ(Y ) = 0 gives that iY iX(η) = 0.
Furthermore, it is clear that iX ◦ γ∗ = γ∗ ◦ iX , and since [X,Y ] = 0 we get that
iY ◦ γ∗ = γ∗ ◦ iY as well. By combining these facts we get that

iY iX(dω) = γ∗(iY iXdω).
Hence, according to Corollary 3.3, we can write iX iY dω = p∗ψ for some ψ ∈
C∞(S1). On the other hand, by applying Lemma 3.2 to iY iZη = p∗ϕ, we obtain
that

p∗ϕ− iY iX(dω) = γ∗(iZiY dω) − iZiY dω.

It follows from these remarks that p∗(ϕ − ψ) = γ∗(iZiY dω) − iZiY dω; thus by
Corollary 3.4 we get p∗(ϕ−ψ) = 0, and so we deduce that p∗ϕ = p∗ψ = iY iX(dω).
Now if we write ω = fα+gβ+hθ, then we get that p∗ϕ = X(g)−Y (f). Moreover,
from X(p∗ϕ) = Y (p∗ϕ) = 0 we get that, for every s ∈ R,

s2p∗ϕ =
∫ s

0

∫ s

0
(ΦX

t )∗(ΦY
u )∗(p∗ϕ) du dt

=
∫ s

0

∫ s

0
(ΦX

t )∗(ΦY
u )∗(X(g)) du dt−

∫ s

0

∫ s

0
(ΦX

t )∗(ΦY
u )∗(Y (f)) du dt

=
∫ s

0
(ΦX

t )∗X

(∫ s

0
(ΦY

u )∗(g) du
)
dt−

∫ s

0
(ΦY

u )∗Y

(∫ s

0
(ΦX

t )∗(f) dt
)
du

= (ΦX
s )∗

(∫ s

0
(ΦY

u )∗(g) du
)

−
∫ s

0
(ΦY

u )∗(g) du− (ΦY
s )∗

(∫ s

0
(ΦX

t )∗(f) dt
)

+
∫ s

0
(ΦX

t )∗(f) dt.

It follows that

s2|p∗ϕ| ≤ 2
∥∥∥∥∫ s

0
(ΦY

u )∗(g) du
∥∥∥∥

∞
+ 2

∥∥∥∥∫ s

0
(ΦX

t )∗(f) dt
∥∥∥∥

∞
≤ 2|s|(∥g∥∞+∥f∥∞).
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Hence |p∗ϕ| ≤ 2
|s|

(∥g∥∞+∥f∥∞) −→
s→+∞

0.

We conclude that η = 0 and p∗(Ω1(S1)) ∧β∩ B2(Ω(M)ρ) = 0; in particular, this
proves that H2(Ω(M)ρ) is infinite dimensional.

Calculating H3(Ω(M)ρ). The elements of Ω3(M)ρ are of the form
(f − γ∗f)α ∧ β ∧ θ

for some f ∈ C∞(M). Put

c =
∫

M
fα ∧ β ∧ θ∫

M
α ∧ β ∧ θ

;

then ∫
M

(f − c)α ∧ β ∧ θ = 0.

Thus (f−c)α∧β∧θ = dω, and since LX(α∧β∧θ) = 0, we get (γ∗f−c)α∧β∧θ =
d(γ∗ω) and therefore it follows that

(f − γ∗f)α ∧ β ∧ θ = d(ω − γ∗ω),
i.e., H3(Ω(M)ρ) = 0.
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