THE EXT-ALGEBRA OF THE BRAUER TREE ALGEBRA ASSOCIATED TO A LINE

OLIVIER DUDAS

Abstract

We compute the Ext-algebra of the Brauer tree algebra associated to a line with no exceptional vertex.

Introduction

This note provides a detailed computation of the Ext-algebra for a very specific finite dimensional algebra, namely a Brauer tree algebra associated to a line, with no exceptional vertex. Such algebras appear for example as the principal p-block of the symmetric group \mathfrak{S}_{p}, and in a different context, as blocks of the Verlinde categories Ver $_{p^{2}}$ studied by Benson and Etingof [2] (our computation is actually motivated by [2, Conj. 1.3]).

Let us emphasise that Ext-algebras for more general biserial algebras were explicitly computed by Green, Schroll, Snashall, and Taillefer [4, but under some assumption on the multiplicity of the vertices, assumption which is not satisfied for the simple example treated in this note. Other general results relying on AuslanderReiten theory were obtained by Antipov and Generalov [1] and Brown [3]. However, we did not manage to use their work to get an explicit description in our case. Nevertheless, the simple structure of the projective indecomposable modules for the line allows a straightforward approach using explicit projective resolutions of simple modules. The Poincaré series for the Ext-algebra is given in Proposition 2.2 and its structure as a path algebra with relations is given in Proposition 3.2

1. Notation

Let \mathbb{F} be a field, and A be a self-injective finite dimensional \mathbb{F}-algebra. All A-modules will be assumed to be finitely generated. Given an A-module M, we denote by $\Omega(M)$ the kernel of a projective cover $P \rightarrow M$. Up to isomorphism it does not depend on the cover. We then define inductively $\Omega^{n}(M)=\Omega\left(\Omega^{n-1}(M)\right)$ for $n \geq 2$.

[^0]To compute the extension groups between simple modules we will use the property that

$$
\operatorname{Ext}_{A}^{n}(M, S) \simeq \operatorname{Hom}_{A}\left(\Omega^{n}(M), S\right)
$$

for any simple A-module S and any $n \geq 1$.
For computing the algebra structure on the various Ext-groups it will be convenient to work in the homotopy category $\operatorname{Ho}(A)$ of the complexes of finitely generated A-modules. If S (resp. S^{\prime}) is a simple A-module, and $P_{\bullet} \rightarrow S$ (resp. $P_{\bullet}^{\prime} \rightarrow S^{\prime}$) is a projective resolution, then

$$
\operatorname{Ext}_{A}^{n}\left(S, S^{\prime}\right) \simeq \operatorname{Hom}_{H \circ(A)}\left(P_{\bullet}, P_{\bullet}^{\prime}[n]\right)
$$

with the Yoneda product being given by the composition of maps in $\mathrm{Ho}(A)$.
Assume now that A is an \mathbb{F}-algebra associated to the following Brauer tree with $N+1$ vertices:

Here, unlike in [4, we assume that there is no exceptional vertex. The edges are labelled by the simple A-modules S_{1}, \ldots, S_{N}. We will denote by P_{1}, \ldots, P_{N} the corresponding indecomposable projective A-modules. The head and socle of P_{i} are isomorphic to S_{i} and $\operatorname{rad}\left(P_{i}\right) / S_{i} \simeq S_{i-1} \oplus S_{i+1}$ with the convention that $S_{0}=S_{N+1}=0$.

Given $1 \leq i \leq N-1$, we fix non-zero maps $f_{i}: P_{i} \longrightarrow P_{i+1}$ and $f_{i}^{*}: P_{i+1} \longrightarrow P_{i}$ such that $f_{i}^{*} \circ f_{i}+f_{i-1} \circ f_{i-1}^{*}=0$ for all $2 \leq i \leq N-1$. This is possible since $f_{i}^{*} \circ f_{i}$ and $f_{i-1} \circ f_{i-1}^{*}$ are two non-zero elements of the Jacobson radical of $\operatorname{End}\left(P_{i}\right)$, which is isomorphic to \mathbb{F}. It follows that the algebra A is Morita equivalent to the path algebra of the quiver

$$
P_{1} \xlongequal[\substack{f_{1}}]{f_{1}^{*}} P_{2} \xlongequal[\substack{f_{2}}]{\substack{f_{2}^{*}}} P_{3}
$$

subject to the relations $f_{i}^{*} \circ f_{i}+f_{i-1} \circ f_{i-1}^{*}=0$ for all $2 \leq i \leq N-1$.

2. EXt-GRoups

Given $1 \leq i \leq j \leq N$ with $i-j$ even, there is, up to isomorphism, a unique non-projective indecomposable module ${ }^{i} \mathrm{X}^{j}$ such that

- $\operatorname{rad}\left({ }^{i} X^{j}\right)=S_{i+1} \oplus S_{i+3} \oplus \cdots \oplus S_{j-1}$,
- $\mathrm{hd}\left({ }^{(} \mathrm{X}^{j}\right)=S_{i} \oplus S_{i+2} \oplus \cdots \oplus S_{j}$.

In particular we have ${ }^{i} \mathbf{X}^{i}=S_{i}$. The structure of ${ }^{i} \mathrm{X}^{j}$ can be represented by the following diagram:

Similarly, we denote by ${ }_{i} \mathrm{X}_{j}$ the unique indecomposable module with the following structure:

$$
{ }_{i} \mathrm{x}_{j}=/_{S_{i}}^{S_{i+1}}{\underset{S}{S_{i+2}}}_{S_{i+3}}^{S_{S_{i+4}}} \cdots{ }_{S_{j-2}}^{\omega_{j-1}} /_{S_{j}}^{S_{j-}}
$$

Note that ${ }_{i} \mathrm{X}_{i}=S_{i}={ }^{i} \mathrm{X}^{i}$. Finally, in the case where $i-j$ is odd we define the modules ${ }_{i} \mathrm{X}^{j}$ and ${ }^{i} \mathrm{X}_{j}$ as the indecomposable modules with the following respective structures:

For convenience we will extend the notation ${ }^{i} \mathrm{X}^{j},{ }_{i} \mathrm{X}_{j},{ }_{i} \mathrm{X}^{j}$, and ${ }^{i} \mathrm{X}_{j}$ to any integers $i, j \in \mathbb{Z}$ (with the suitable parity condition on $i-j$) so that the following relations hold:

$$
\begin{equation*}
{ }^{i} \mathrm{X}={ }_{1-i} \mathrm{X}, \quad{ }^{i} \mathrm{X}^{j}={ }_{j} \mathrm{X} \mathrm{X}_{i}, \quad{ }^{i \pm 2 N} \mathrm{X}={ }^{i} \mathrm{X} \tag{2.1}
\end{equation*}
$$

Note that this also implies $\mathrm{X}^{j}=\mathrm{X}_{1-j}, \mathrm{X}^{j \pm 2 N}=\mathrm{X}^{j}$, and ${ }^{i} \mathrm{X}_{j}={ }_{j} \mathrm{X}^{i}$.
Lemma 2.1. Let $i, j \in \mathbb{Z}$ with $i-j$ even. Then

$$
\Omega\left({ }^{i} X^{j}\right) \simeq{ }^{i-1} X^{j+1}
$$

Proof. Since ${ }^{i} X^{j} \simeq{ }^{i \pm 2 N} X^{j \pm 2 N}$, we can assume that both i and j are in $\{-N+$ $1, \ldots, N\}$. If $i \leq 0$ then $1-i \in\{1, \ldots, N\}$, but $1-(i-1)=(1-i)+1$. Similarly, if $j \leq 0$ then $1-j \in\{1, \ldots, N\}$, but $1-(j+1)=(1-j)-1$. Therefore using the relations (2.1) it is enough to prove that for $1 \leq k \leq l \leq N$ we have the following isomorphisms:
$\Omega\left({ }^{k} \mathrm{X}^{l}\right) \simeq{ }^{k-1} \mathrm{X}^{l+1}, \quad \Omega\left({ }_{k} \mathrm{X}^{l}\right) \simeq{ }_{k+1} \mathrm{X}^{l+1}, \quad \Omega\left({ }^{k} \mathrm{X}_{l}\right) \simeq{ }^{k-1} \mathrm{X}_{l-1}, \quad \Omega\left({ }_{k} \mathrm{X}_{l}\right) \simeq{ }_{k+1} \mathrm{X}_{l-1}$.
We only consider the first one; the others are similar. If $1 \leq k \leq l \leq N$, a projective cover of ${ }^{k} \mathrm{X}^{l}$ is given by $P_{k} \oplus P_{k+2} \oplus \cdots \oplus P_{l} \rightarrow{ }^{k} \mathrm{X}^{l}$, whose kernel equals ${ }^{k-1} \mathrm{X}^{l+1}$. Note that this holds even when $k=1$ since ${ }^{0} \mathrm{X}^{l+1}={ }_{1} \mathrm{X}^{l+1}$ or when $l=N$ since ${ }^{k-1} \mathrm{X}^{N+1}={ }^{k-1} \mathrm{X}^{-N+1}={ }^{k-1} \mathrm{X}_{N}$.

We deduce from Lemma 2.1 that for any simple module S_{i} and for all $k \geq 0$ we have

$$
\Omega^{k}\left(S_{i}\right)=\Omega^{k}\left({ }^{i} \mathbf{X}^{i}\right) \simeq{ }^{i-k} \mathbf{X}^{i+k}
$$

as A-modules. Consequently, we have

$$
\operatorname{Ext}_{A}^{k}\left(S_{i}, S_{j}\right)= \begin{cases}\mathbb{F} & \text { if } S_{j} \text { appears in the head of }{ }^{i-k} X^{i+k} \tag{2.2}\\ 0 & \text { otherwise }\end{cases}
$$

From this description one can compute explicitly the Poincaré series of the Extgroups.

Proposition 2.2. Given $1 \leq i, j \leq N$, the Poincaré series of $\operatorname{Ext}_{A}^{\bullet}\left(S_{i}, S_{j}\right)$ is given by

$$
\sum_{k \geq 0} \operatorname{dim}_{\mathbb{F}} \operatorname{Ext}_{A}^{k}\left(S_{i}, S_{j}\right) t^{k}=\frac{Q_{i, j}(t)+t^{2 N-1} Q_{i, j}\left(t^{-1}\right)}{1-t^{2 N}}
$$

where $Q_{i, j}(t)=t^{|j-i|}+t^{|j-i|+2}+\cdots+t^{N-1-|N+1-j-i|}$.
Proof. First observe that

$$
\Omega^{N}\left(S_{i}\right)={ }^{i-N} \mathrm{X}^{i+N}={ }_{1+N-i} \mathrm{X}_{1-N-i}={ }_{1+N-i} \mathrm{X}_{1+N-i}=S_{N+1-i}
$$

Then for all $k \geq 0$ we have $\operatorname{Ext}_{A}^{k}\left(S_{i}, S_{j}\right)=\operatorname{Ext}_{A}^{k}\left(S_{N+1-i}, S_{N+1-j}\right)$. Moreover, $Q_{N+1-i, N+1-j}=Q_{i, j}=Q_{j, i}$ so it is enough to prove the lemma under the assumption that $i \leq j$.

Now, assume that $i \leq j$ and let $k \in\{0, \ldots, N-1\}$. If $i+j \leq N+1$, the simple module S_{j} appears in the head of ${ }^{i-k}$ Х $^{i+k}$ if and only if $k=j-i, j-i+2, \ldots, j+i-2$. The limit cases are indeed ${ }^{2 i-j} \mathrm{X}^{j}$ for $k=j-i$ and ${ }^{2-j} \mathrm{X}^{2 i+j-2}={ }_{j-1} \mathrm{X}^{2 i+j-2}$ for $k=j+i-2$. Note that if $j-i \leq k \leq i+j-2$ then $j \leq i+k$ and $j \leq 2 N-i-k$, so S_{j} appears in the head of ${ }^{i-k} \mathrm{X}^{i+k}={ }^{i-k} \mathrm{X}_{2 N-i-k+1}$ whenever k has the suitable parity. If $i+j>N+1$, one must ensure that $j \leq 2 N-i-k$, and therefore S_{j} appears in the head of ${ }^{i-k} X^{i+k}$ if and only if $k=j-i, j-i+2, \ldots, 2 N-i-j$. Consequently, using the description of the Ext-groups given in (2.2) we have

$$
\begin{align*}
\sum_{k=0}^{N-1} \operatorname{dim}_{\mathbb{F}} \operatorname{Ext}_{A}^{k}\left(S_{i}, S_{j}\right) t^{k} & =t^{j-i}+t^{j-i+2}+\cdots+t^{N-1-|N+1-j-i|} \tag{2.3}\\
& =t^{|j-i|}+t^{|j-i|+2}+\cdots+t^{N-1-|N+1-j-i|} \\
& =Q_{i, j}(t)
\end{align*}
$$

Using the relation $\Omega^{N}\left(S_{i}\right)=S_{N+1-i}$ we obtain

$$
\begin{aligned}
\sum_{k=0}^{2 N-1} \operatorname{dim}_{\mathbb{F}} \operatorname{Ext}_{A}^{k}\left(S_{i}, S_{j}\right) t^{k}= & \sum_{k=0}^{N-1} \operatorname{dim}_{\mathbb{F}} \operatorname{Ext}_{A}^{k}\left(S_{i}, S_{j}\right) t^{k} \\
& +t^{N} \sum_{k=0}^{N-1} \operatorname{dim}_{\mathbb{F}} \operatorname{Ext}_{A}^{k}\left(S_{N+1-i}, S_{j}\right) t^{k}
\end{aligned}
$$

which by 2.3) equals $Q_{i, j}(t)+Q_{N+1-i, j}(t)$. Since $Q_{N+1-i, j}(t)=t^{N-1} Q_{i, j}\left(t^{-1}\right)$, we finally get

$$
\sum_{k=0}^{2 N-1} \operatorname{dim}_{\mathbb{F}} \operatorname{Ext}_{A}^{k}\left(S_{i}, S_{j}\right) t^{k}=Q_{i, j}(t)+t^{N-1} Q_{i, j}\left(t^{-1}\right)
$$

and we conclude using the fact that $\operatorname{Ext}_{A}^{k+2 N}\left(S_{i}, S_{j}\right)=\operatorname{Ext}_{A}^{k}\left(S_{i}, S_{j}\right)$.

3. Algebra structure

We denote by $\mathrm{E}(A)$ the Ext-algebra of A, that is, the graded algebra

$$
\mathrm{E}(A):=\bigoplus_{1 \leq i, j \leq N} \operatorname{Ext}_{A}^{\bullet}\left(S_{i}, S_{j}\right)
$$

endowed with the Yoneda product. We will give in Proposition 3.2 a description of $\mathrm{E}(A)$ as the path algebra of a quiver with relations.
3.1. Generation. Let $1 \leq i, j \leq N$ and let $k \geq 1$. Assume that there is a non-zero map between $\Omega^{k} S_{i}$ and S_{j}; therefore S_{j} appears in the head of $\Omega^{k} S_{i} \simeq{ }^{i-k}$ X $^{i+k}$. If $k \geq N$, any map between $\Omega^{k} S_{i}$ and S_{j} factors through the (unique up to a scalar) isomorphism $\Omega^{N} S_{N+1-j} \xrightarrow{\sim} S_{j}$. If $0<k<N$, one can use the relations (2.1) to see that the module ${ }^{i-k} \mathrm{X}^{i+k}$ is not simple. It follows from its structure that at least one of S_{j-1} and S_{j+1} appears in the socle. Consequently, any map between $\Omega^{k} S_{i}$ and S_{j} will factor through a map $\Omega S_{j-1} \longrightarrow S_{j}$ (if S_{j-1} appears in the socle of ${ }^{i-k} \mathrm{X}^{i+k}$) or $\Omega S_{j+1} \longrightarrow S_{j}$ (if S_{j+1} appears in the socle of ${ }^{i-k} \mathrm{X}^{i+k}$). This shows that $\mathrm{E}(A)$ is generated in degrees 1 and N as a left module over itself, hence as an algebra.
3.2. Minimal resolution. Recall from $\S 1$ that we have chosen non-zero maps $f_{i}: P_{i} \longrightarrow P_{i+1}$ and $f_{i}^{*}: P_{i+1} \longrightarrow P_{i}$ such that $f_{i}^{*} \circ f_{i}+f_{i-1} \circ f_{i-1}^{*}=0$ for all $2 \leq i \leq N-1$. Given $1 \leq i \leq j \leq N$ with $j-i$ even we denote by ${ }_{i} P_{j}$ the following projective A-module:

$$
{ }_{i} P_{j}:=P_{i} \oplus P_{i+2} \oplus \cdots \oplus P_{j-2} \oplus P_{j} .
$$

For $1 \leq i<j \leq N$ with $j-i$ even we let $d_{i, j}:{ }_{i} P_{j} \longrightarrow{ }_{i+1} P_{j-1}$ be the morphism of A-modules corresponding to the following matrix:

$$
d_{i, j}=\left[\begin{array}{cccccc}
f_{i} & f_{i+1}^{*} & 0 & \cdots & \cdots & 0 \\
0 & f_{i+2} & f_{i+3}^{*} & 0 & & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & \ddots & \ddots & 0 \\
0 & \cdots & \cdots & 0 & f_{j-2} & f_{j-1}^{*}
\end{array}\right]
$$

The definition of ${ }_{i} P_{j}$ extends to any integers $i, j \in \mathbb{Z}$ with the convention that

$$
\begin{equation*}
{ }_{i} P_{j}={ }_{j+1} P_{i-1}, \quad{ }_{i} P_{-j}={ }_{i} P_{j}, \quad{ }_{i} P_{j \pm 2 N}={ }_{i} P_{j} . \tag{3.1}
\end{equation*}
$$

Note that these relations imply ${ }_{1-i} P_{j}={ }_{1+i} P_{j}$ and ${ }_{i \pm 2 N} P_{j}={ }_{i} P_{j}$. Furthermore, the definition of $d_{i, j}$ extends naturally to any pair i, j if we set in addition

$$
d_{i, i}=(-1)^{i} f_{i}^{*} \circ f_{i}=(-1)^{i-1} f_{i-1} \circ f_{i-1}^{*},
$$

a map from ${ }_{i} P_{i}=P_{i}$ to ${ }_{i+1} P_{i-1}=P_{i}$. With this notation one checks that for all $k>0$ the image of the map $d_{i-k, i+k}:{ }_{i-k} P_{i+k} \longrightarrow{ }_{i-k+1} P_{i+k-1}$ is isomorphic
to ${ }^{i-k} \mathrm{X}^{i+k} \simeq \Omega^{k}\left(S_{i}\right)$ and its kernel to ${ }^{i-k-1} \mathrm{X}^{i+k+1} \simeq \Omega^{k+1}\left(S_{i}\right)$, so the bounded above complex

$$
R_{i}:=\cdots{\xrightarrow{d_{i-k-1, i+k+1}}}_{i-k} P_{i+k} \xrightarrow{d_{i-k, i+k}} \cdots \xrightarrow{d_{i-2, i+2}}{ }_{i-1} P_{i+1} \xrightarrow{d_{i-1, i+1}} P_{i} \longrightarrow 0
$$

forms a minimal projective resolution of S_{i}.
3.3. Generators and relations. We have seen in Section 3.1]that the Ext-algebra is generated in degrees 1 and N. Here we will construct explicit generators using the minimal resolutions defined above.

We start by defining a map $z_{i} \in \operatorname{Hom}_{H \circ(A)}\left(R_{i}, R_{i+1}[1]\right)$ for any $1 \leq i \leq N-$ 1. Let k be a positive integer. If $k \notin N \mathbb{Z}$, the projective modules ${ }_{i-k} P_{i+k}$ and ${ }_{i+1-(k-1)} P_{i+1+(k-1)}={ }_{i-k+2} P_{i+k}$ have at least one indecomposable summand in common and we can consider the map $Z_{i, k}:{ }_{i-k} P_{i+k} \longrightarrow{ }_{i-k+2} P_{i+k}$ given by the identity map on the common factors, followed by multiplication by $(-1)^{k}$. If $k \in N+2 N \mathbb{Z}$, then from the relations (3.1) we have

$$
{ }_{i-k} P_{i+k}={ }_{i-N} P_{i+N}={ }_{i+N+1} P_{i-N-1}={ }_{-i-N+1} P_{-i+N+1}=P_{N+1-i}
$$

and

$$
{ }_{i-k+2} P_{i+k}={ }_{i-N+2} P_{i+N}={ }_{N-i} P_{-N-i}=P_{N-i} .
$$

In that case we set $Z_{i, k}:=(-1)^{i} f_{N-i}^{*}$. If $k \in 2 N \mathbb{Z}$ then ${ }_{i-k} P_{i+k}=P_{i},{ }_{i-k+2} P_{i+k}=$ ${ }_{i+2} P_{i}=P_{i+1}$ and we set $Z_{i, k}:=(-1)^{i} f_{i}$. If $k \geq 0$ we set $Z_{i, k}:=0$. Then the family of morphisms of A-modules $Z_{i}:=\left(Z_{i, k}\right)_{k \in \mathbb{Z}}$ defines a morphism of complexes of A modules from R_{i} to $R_{i+1}[1]$ and we denote by z_{i} its image in $\operatorname{Ho}(A)$. Note that z_{i} is non-zero; indeed, the composition of Z_{i} with the natural map $R_{i+1}[1] \longrightarrow S_{i+1}[1]$ is already not null-homotopic since $\operatorname{Ext}_{A}^{1}\left(S_{i}, S_{i+1}\right) \neq 0$.

Similarly, we define a map $Z_{i}^{*}: R_{i+1} \longrightarrow R_{i}[1]$ by exchanging the roles of f and f^{*}. More precisely, we consider in that case $Z_{i,-N}^{*}:=(-1)^{i} f_{N-i}$ and $Z_{i,-2 N}^{*}:=$ $(-1)^{i} f_{i}^{*}$. We denote by z_{i}^{*} the image of Z_{i}^{*} in $\operatorname{Ho}(A)$.

Assume now that $1 \leq i \leq N$. The modules

$$
{ }_{i-k} P_{i+k} \quad \text { and } \quad(N+1-i)-(k-N), P_{(N+1-i)+(k-N)}
$$

are equal, which means that starting from the degree $-N$ the terms of the complexes R_{i} and $R_{N+1-i}[N]$ coincide. In addition, the differentials only differ by $(-1)^{N}$. We denote by $Y_{i}: R_{i} \longrightarrow R_{N+1-i}[N]$ the natural projection between R_{i} and its obvious truncation at degrees $\leq-N$, followed by the multiplication by $(-1)^{N k}$ in each degree k. We will write y_{i} for its image in $\operatorname{Ho}(A)$. Again, y_{i} is non-zero since $\operatorname{Ext}_{A}^{N}\left(S_{i}, S_{N+1-i}\right) \neq 0$.
Lemma 3.1. The following relations hold in $\operatorname{End}_{\mathrm{Ho}_{\mathrm{o}}(A)}^{\bullet}\left(\oplus R_{i}\right)$:
(a) $z_{1}^{*}[1] \circ z_{1}=0, z_{N-1}[1] \circ z_{N-1}^{*}=0$;
(b) $z_{i}[1] \circ z_{i}^{*}=z_{i+1}^{*}[1] \circ z_{i+1}$ for all $i=1, \ldots, N-2$;
(c) $y_{i+1}[1] \circ z_{i}=z_{N-i}^{*}[N] \circ y_{i}$ for all $i=1, \ldots, N-1$;
(d) $y_{i}[1] \circ z_{i}^{*}=z_{N-i}[N] \circ y_{i+1}$ for all $i=1, \ldots, N-1$.

Proof. If $N=1$, there are no relations to check. Note that in that case the algebra A is isomorphic to $\mathbb{F}[t] /\left(t^{2}\right)$. It is a Koszul algebra whose dual is isomorphic to $\mathbb{F}[t]$. Therefore we assume $N \geq 2$. The relations in (a) follow from the fact that $\operatorname{Ext}_{A}^{2}\left(S_{1}, S_{1}\right)=\operatorname{Ext}_{A}^{2}\left(S_{N}, S_{N}\right)=0$, which is for example a consequence of Proposition 2.2

To show (c), we observe that the morphism of complexes $Z_{i}: R_{i} \longrightarrow R_{i+1}[1]$ defined above coincides with $Z_{N-i}^{*}[N]: R_{N+1-i}[N] \longrightarrow R_{N-i}[N+1]$ in degrees less than $-N$. Since Y_{i} and Y_{i+1} are just obvious truncations with suitable signs we actually have $Y_{i+1}[1] \circ Z_{i}=Z_{N-i}^{*}[N] \circ Y_{i}$. The relation (d) is obtained by a similar argument.

We now consider (b). The morphisms of complexes $Z_{i}[1] \circ Z_{i}^{*}$ and $Z_{i+1}^{*}[1] \circ Z_{i+1}$ coincide at every degree k except when k is congruent to 0 or -1 modulo N. Let us first look in detail at the degrees $-N$ and $-N-1$. The map $Z_{i}[1] \circ Z_{i}^{*}$ is as follows:

whereas the map $Z_{i+1}^{*}[1] \circ Z_{i+1}$ corresponds to the following composition:

We deduce that at the degrees $-N$ and $-N-1$ the map $Z_{i}[1] \circ Z_{i}^{*}-Z_{i+1}^{*}[1] \circ Z_{i+1}$ is given by

$$
P_{N-1-i} \oplus P_{N+1-i} \xrightarrow{\left[f_{N-1-i} f_{N-i}^{*}\right]} P_{N-i}
$$

A similar picture holds at the degrees $-2 N$ and $-2 N-1$:

Using the map $s: R_{i+1} \rightarrow R_{i+1}[1]$ defined by

$$
s_{k}:= \begin{cases}(-1)^{N+1-i} \operatorname{Id}_{P_{N-i}} & \text { if }-k \in N+2 N \mathbb{N} \\ (-1)^{i+1} \operatorname{Id}_{P_{i+1}} & \text { if }-k \in 2 N+2 N \mathbb{N} \\ 0 & \text { otherwise }\end{cases}
$$

we see that $Z_{i}[1] \circ Z_{i}^{*}-Z_{i+1}^{*}[1] \circ Z_{i+1}$ is null-homotopic, which proves that $z_{i}[1] \circ$ $z_{i}^{*}-z_{i+1}^{*}[1] \circ z_{i+1}$ is zero in $\operatorname{Hom}_{\mathrm{Ho}(A)}\left(R_{i+1}, R_{i+1}[2]\right)$.

The next proposition shows that the relations given in Lemma 3.1 are actually enough to describe the Ext-algebra. We use here the concatenation of paths as opposed to the composition of arrows, which explains the discrepancy in the relations.

Proposition 3.2. The Ext-algebra of A is isomorphic to the path algebra associated with the following quiver:

with z_{i} 's of degree 1 and y_{i} 's of degree N, subject to the relations
(a) $z_{1} z_{1}^{*}=z_{N-1}^{*} z_{N-1}=0$;
(b) $z_{i}^{*} z_{i}=z_{i+1} z_{i+1}^{*}$ for all $i=1, \ldots, N-2$;
(c) $z_{i} y_{i+1}=y_{i} z_{N-i}^{*}$ for all $i=1, \ldots, N-1$;
(d) $z_{i}^{*} y_{i}=y_{i+1} z_{N-i}$ for all $i=1, \ldots, N-1$.

Proof. Let Q (resp. I) be the quiver (resp. the ideal generated by the set of relations) given in the proposition. Let $\Gamma=\mathbb{F} Q / I$ be the corresponding path algebra. By Section 3.1 and Lemma 3.1, the Ext-algebra $\mathrm{E}(A)$ of A is a quotient of Γ. To show that $\mathrm{E}(A) \simeq \Gamma$ it is enough to show that the graded dimension of Γ is smaller than that of $\mathrm{E}(A)$.

Let $1 \leq i, j \leq N$ and γ be a path between S_{i} and S_{j} in Q containing only z_{l} 's and z_{l}^{*} 's. Let k be the length of γ. We have $k \geq|i-j|$, which is the length of the minimal path from S_{i} to S_{j}. Using the relations, there exist cycles γ_{1} and γ_{2} around S_{i} and S_{j} respectively such that

$$
\gamma= \begin{cases}\gamma_{1} z_{i} z_{i+1} \cdots z_{j-1}=z_{i} z_{i+1} \cdots z_{j-1} \gamma_{2} & \text { if } i \leq j \\ \gamma_{1} z_{i-1}^{*} z_{i-2}^{*} \cdots z_{j}^{*}=z_{i-1}^{*} z_{i-2}^{*} \cdots z_{j}^{*} \gamma_{2} & \text { otherwise }\end{cases}
$$

Maximal non-zero cycles starting and ending at S_{i} are either $z_{i-1}^{*} z_{i-2}^{*} \cdots z_{1}^{*} z_{1} z_{2}$ $\cdots z_{i-1}$ or $z_{i} z_{i+1} \cdots z_{N-1} z_{N-1}^{*} \cdots z_{i+1}^{*} \cdots z_{i}^{*}$ depending on whether S_{i} is closer to S_{1} or S_{N}. Indeed, any longer cycle will involve $z_{1} z_{1}^{*}$ or $z_{N-1}^{*} z_{N-1}$, which are zero by (a). Therefore if $\operatorname{deg}\left(\gamma_{1}\right)>2(i-1)$ or $\operatorname{deg}\left(\gamma_{1}\right)>2(N-i)$ then $\gamma_{1}=0$. Using a similar argument for cycles around S_{j} we deduce that γ is zero whenever

$$
k=\operatorname{deg}(\gamma)>|i-j|+2 \min (i-1, j-1, N-i, N-j),
$$

which is equivalent to $k=\operatorname{deg}(\gamma)>N-1-|N+1-j-i|$. This proves that γ is zero unless $|i-j| \leq k \leq N-1-|N+1-j-i|$, in which case we have

$$
\gamma=z_{i} z_{i+1} \cdots z_{r-1} z_{r-1}^{*} z_{r-2}^{*} \cdots z_{j}^{*}
$$

where $k=2 r-i-j$. In particular, $k-|i-j|$ must be even. Consequently, the subspace of Γ spanned by such paths has graded dimension at most equal to $t^{|i-j|}+t^{|i-j|+2}+\cdots+t^{N-1-|N+1-j-i|}=Q_{i, j}(t)$.

Assume now that γ is any path of length k between S_{i} and S_{j} in Q. Using the relations one can write γ as $\gamma=y_{i}^{a} \gamma_{1} \gamma_{2}$, where γ_{2} is a cycle around S_{j} containing only y_{l} 's (therefore a power of $y_{j} y_{N-j}$), γ_{1} is a product of z_{l} 's, and $a \in\{0,1\}$. Note that $\operatorname{deg}\left(\gamma_{2}\right)$ is a multiple of $2 N$ and γ_{1} is either a path from S_{i} to S_{j} if $a=0$ or a path from S_{N+1-i} to S_{j} if $a=1$. From the previous discussion and Proposition 2.2 we conclude that γ is zero if $\operatorname{dim}_{\mathbb{F}} \operatorname{Ext}_{A}^{k}\left(S_{i}, S_{j}\right)=0$ or unique modulo I otherwise. By (2.2) and $\$ 3.1$ this shows that the projection of Γ to the Ext-algebra of A must be an isomorphism.

Acknowledgments

We thank Raphaël Rouquier and Rachel Taillefer for providing helpful references. We also thank the anonymous referees for their valuable comments and for pointing out a gap in the proof of Proposition 3.2

References

[1] M. A. Antipov and A. I. Generalov, The Yoneda algebras of symmetric special biserial algebras are finitely generated, St. Petersburg Math. J. 17 (2006), no. 3, 377-392. MR 2167841.
[2] D. Benson and P. Etingof, On cohomology in symmetric tensor categories in prime characteristic, Homology Homotopy Appl. 24 (2022), no. 2, 163-193. MR 4467023
[3] P. Brown, The Ext-algebra of a representation-finite biserial algebra, J. Algebra 221 (1999), no. 2, 611-629. MR 1728400
[4] E. L. Green, S. Schroll, N. Snashall, and R. Taillefer, The Ext algebra of a Brauer graph algebra, J. Noncommut. Geom. 11 (2017), no. 2, 537-579. MR 3669112

Olivier Dudas
Université de Paris and Sorbonne Université, CNRS, IMJ-PRG, F-75006 Paris, France olivier.dudas@imj-prg.fr

[^0]: 2020 Mathematics Subject Classification. 16G30, 20Cxx.
 The author gratefully acknowledges financial support by the ANR, Project ANR-16-CE40-0010-01.

