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THE EXT-ALGEBRA OF THE BRAUER TREE ALGEBRA
ASSOCIATED TO A LINE

OLIVIER DUDAS

Abstract. We compute the Ext-algebra of the Brauer tree algebra associated
to a line with no exceptional vertex.

Introduction

This note provides a detailed computation of the Ext-algebra for a very specific
finite dimensional algebra, namely a Brauer tree algebra associated to a line, with
no exceptional vertex. Such algebras appear for example as the principal p-block
of the symmetric group Sp, and in a different context, as blocks of the Verlinde
categories Verp2 studied by Benson and Etingof [2] (our computation is actually
motivated by [2, Conj. 1.3]).

Let us emphasise that Ext-algebras for more general biserial algebras were ex-
plicitly computed by Green, Schroll, Snashall, and Taillefer [4], but under some
assumption on the multiplicity of the vertices, assumption which is not satisfied for
the simple example treated in this note. Other general results relying on Auslander–
Reiten theory were obtained by Antipov and Generalov [1] and Brown [3]. However,
we did not manage to use their work to get an explicit description in our case.
Nevertheless, the simple structure of the projective indecomposable modules for
the line allows a straightforward approach using explicit projective resolutions of
simple modules. The Poincaré series for the Ext-algebra is given in Proposition 2.2
and its structure as a path algebra with relations is given in Proposition 3.2.

1. Notation

Let F be a field, and A be a self-injective finite dimensional F-algebra. All
A-modules will be assumed to be finitely generated. Given an A-module M , we
denote by Ω(M) the kernel of a projective cover P ↠ M . Up to isomorphism it
does not depend on the cover. We then define inductively Ωn(M) = Ω(Ωn−1(M))
for n ≥ 2.
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156 OLIVIER DUDAS

To compute the extension groups between simple modules we will use the prop-
erty that

Extn
A(M, S) ≃ HomA(Ωn(M), S)

for any simple A-module S and any n ≥ 1.
For computing the algebra structure on the various Ext-groups it will be conve-

nient to work in the homotopy category Ho(A) of the complexes of finitely generated
A-modules. If S (resp. S′) is a simple A-module, and P• → S (resp. P ′

• → S′) is a
projective resolution, then

Extn
A(S, S′) ≃ HomHo(A)(P•, P ′

•[n])
with the Yoneda product being given by the composition of maps in Ho(A).

Assume now that A is an F-algebra associated to the following Brauer tree with
N + 1 vertices:

S1 S2 SN

Here, unlike in [4], we assume that there is no exceptional vertex. The edges
are labelled by the simple A-modules S1, . . . , SN . We will denote by P1, . . . , PN

the corresponding indecomposable projective A-modules. The head and socle of
Pi are isomorphic to Si and rad(Pi)/Si ≃ Si−1 ⊕ Si+1 with the convention that
S0 = SN+1 = 0.

Given 1 ≤ i ≤ N −1, we fix non-zero maps fi : Pi −→ Pi+1 and f∗
i : Pi+1 −→ Pi

such that f∗
i ◦ fi + fi−1 ◦ f∗

i−1 = 0 for all 2 ≤ i ≤ N − 1. This is possible since
f∗

i ◦fi and fi−1 ◦f∗
i−1 are two non-zero elements of the Jacobson radical of End(Pi),

which is isomorphic to F. It follows that the algebra A is Morita equivalent to the
path algebra of the quiver

P1 P2 P3 · · · PN−2 PN−1 PN
f1
f∗

1

f2
f∗

2

fN−2

f∗
N−2

fN−1

f∗
N−1

subject to the relations f∗
i ◦ fi + fi−1 ◦ f∗

i−1 = 0 for all 2 ≤ i ≤ N − 1.

2. Ext-groups

Given 1 ≤ i ≤ j ≤ N with i − j even, there is, up to isomorphism, a unique
non-projective indecomposable module iXj such that

• rad(iXj) = Si+1 ⊕ Si+3 ⊕ · · · ⊕ Sj−1,
• hd(iXj) = Si ⊕ Si+2 ⊕ · · · ⊕ Sj .

In particular we have iXi = Si. The structure of iXj can be represented by the
following diagram:

Si Si+2 Si+4 · · · Sj−2 Sj

iXj = · · ·

Si+1 Si+3 · · · Sj−1
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Similarly, we denote by iXj the unique indecomposable module with the following
structure:

Si+1 Si+3 · · · Sj−1

iXj = · · ·

Si Si+2 Si+4 · · · Sj−2 Sj

Note that iXi = Si = iXi. Finally, in the case where i − j is odd we define the
modules iXj and iXj as the indecomposable modules with the following respective
structures:

Si+1 Si+3 · · · Sj

iXj = · · ·

Si Si+2 Si+4 · · · Sj−1

Si Si+2 Si+4 · · · Sj−1

iXj = · · ·

Si+1 Si+3 · · · Sj

For convenience we will extend the notation iXj , iXj , iXj , and iXj to any integers
i, j ∈ Z (with the suitable parity condition on i − j) so that the following relations
hold:

iX = 1−iX, iXj = jXi,
i±2N X = iX. (2.1)

Note that this also implies Xj = X1−j , Xj±2N = Xj , and iXj = jXi.

Lemma 2.1. Let i, j ∈ Z with i − j even. Then

Ω(iXj) ≃ i−1Xj+1.

Proof. Since iXj ≃ i±2N Xj±2N , we can assume that both i and j are in {−N +
1, . . . , N}. If i ≤ 0 then 1 − i ∈ {1, . . . , N}, but 1 − (i − 1) = (1 − i) + 1. Similarly,
if j ≤ 0 then 1 − j ∈ {1, . . . , N}, but 1 − (j + 1) = (1 − j) − 1. Therefore using the
relations (2.1) it is enough to prove that for 1 ≤ k ≤ l ≤ N we have the following
isomorphisms:

Ω(kXl) ≃ k−1Xl+1, Ω(kXl) ≃ k+1Xl+1, Ω(kXl) ≃ k−1Xl−1, Ω(kXl) ≃ k+1Xl−1.

We only consider the first one; the others are similar. If 1 ≤ k ≤ l ≤ N , a projective
cover of kXl is given by Pk ⊕ Pk+2 ⊕ · · · ⊕ Pl ↠ kXl, whose kernel equals k−1Xl+1.
Note that this holds even when k = 1 since 0Xl+1 = 1Xl+1 or when l = N since
k−1XN+1 = k−1X−N+1 = k−1XN . □

We deduce from Lemma 2.1 that for any simple module Si and for all k ≥ 0 we
have

Ωk(Si) = Ωk(iXi) ≃ i−kXi+k
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as A-modules. Consequently, we have

Extk
A(Si, Sj) =

{
F if Sj appears in the head of i−kXi+k,

0 otherwise.
(2.2)

From this description one can compute explicitly the Poincaré series of the Ext-
groups.

Proposition 2.2. Given 1 ≤ i, j ≤ N , the Poincaré series of Ext•
A(Si, Sj) is given

by ∑
k≥0

dimF Extk
A(Si, Sj)tk = Qi,j(t) + t2N−1Qi,j(t−1)

1 − t2N
,

where Qi,j(t) = t|j−i| + t|j−i|+2 + · · · + tN−1−|N+1−j−i|.

Proof. First observe that
ΩN (Si) = i−N Xi+N = 1+N−iX1−N−i = 1+N−iX1+N−i = SN+1−i.

Then for all k ≥ 0 we have Extk
A(Si, Sj) = Extk

A(SN+1−i, SN+1−j). Moreover,
QN+1−i,N+1−j = Qi,j = Qj,i so it is enough to prove the lemma under the as-
sumption that i ≤ j.

Now, assume that i ≤ j and let k ∈ {0, . . . , N − 1}. If i + j ≤ N + 1, the simple
module Sj appears in the head of i−kXi+k if and only if k = j−i, j−i+2, . . . , j+i−2.
The limit cases are indeed 2i−jXj for k = j − i and 2−jX2i+j−2 = j−1X2i+j−2 for
k = j + i − 2. Note that if j − i ≤ k ≤ i + j − 2 then j ≤ i + k and j ≤ 2N − i − k,
so Sj appears in the head of i−kXi+k = i−kX2N−i−k+1 whenever k has the suitable
parity. If i + j > N + 1, one must ensure that j ≤ 2N − i − k, and therefore Sj

appears in the head of i−kXi+k if and only if k = j − i, j − i + 2, . . . , 2N − i − j.
Consequently, using the description of the Ext-groups given in (2.2) we have

N−1∑
k=0

dimF Extk
A(Si, Sj)tk = tj−i + tj−i+2 + · · · + tN−1−|N+1−j−i|

= t|j−i| + t|j−i|+2 + · · · + tN−1−|N+1−j−i|

= Qi,j(t).

(2.3)

Using the relation ΩN (Si) = SN+1−i we obtain
2N−1∑
k=0

dimF Extk
A(Si, Sj)tk =

N−1∑
k=0

dimF Extk
A(Si, Sj)tk

+ tN
N−1∑
k=0

dimF Extk
A(SN+1−i, Sj)tk,

which by (2.3) equals Qi,j(t) + QN+1−i,j(t). Since QN+1−i,j(t) = tN−1Qi,j(t−1),
we finally get

2N−1∑
k=0

dimF Extk
A(Si, Sj)tk = Qi,j(t) + tN−1Qi,j(t−1),
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and we conclude using the fact that Extk+2N
A (Si, Sj) = Extk

A(Si, Sj). □

3. Algebra structure

We denote by E(A) the Ext-algebra of A, that is, the graded algebra

E(A) :=
⊕

1≤i,j≤N

Ext•
A(Si, Sj)

endowed with the Yoneda product. We will give in Proposition 3.2 a description
of E(A) as the path algebra of a quiver with relations.

3.1. Generation. Let 1 ≤ i, j ≤ N and let k ≥ 1. Assume that there is a non-zero
map between ΩkSi and Sj ; therefore Sj appears in the head of ΩkSi ≃ i−kXi+k. If
k ≥ N , any map between ΩkSi and Sj factors through the (unique up to a scalar)
isomorphism ΩN SN+1−j

∼−→ Sj . If 0 < k < N , one can use the relations (2.1) to
see that the module i−kXi+k is not simple. It follows from its structure that at
least one of Sj−1 and Sj+1 appears in the socle. Consequently, any map between
ΩkSi and Sj will factor through a map ΩSj−1 −→ Sj (if Sj−1 appears in the socle
of i−kXi+k) or ΩSj+1 −→ Sj (if Sj+1 appears in the socle of i−kXi+k). This shows
that E(A) is generated in degrees 1 and N as a left module over itself, hence as an
algebra.

3.2. Minimal resolution. Recall from §1 that we have chosen non-zero maps
fi : Pi −→ Pi+1 and f∗

i : Pi+1 −→ Pi such that f∗
i ◦ fi + fi−1 ◦ f∗

i−1 = 0 for all
2 ≤ i ≤ N −1. Given 1 ≤ i ≤ j ≤ N with j − i even we denote by iPj the following
projective A-module:

iPj := Pi ⊕ Pi+2 ⊕ · · · ⊕ Pj−2 ⊕ Pj .

For 1 ≤ i < j ≤ N with j − i even we let di,j : iPj −→ i+1Pj−1 be the morphism
of A-modules corresponding to the following matrix:

di,j =



fi f∗
i+1 0 · · · · · · 0

0 fi+2 f∗
i+3 0

...
... . . . . . . . . . . . . ...
... . . . . . . . . . 0
0 · · · · · · 0 fj−2 f∗

j−1


.

The definition of iPj extends to any integers i, j ∈ Z with the convention that

iPj = j+1Pi−1, iP−j = iPj , iPj±2N = iPj . (3.1)
Note that these relations imply 1−iPj = 1+iPj and i±2N Pj = iPj . Furthermore,
the definition of di,j extends naturally to any pair i, j if we set in addition

di,i = (−1)if∗
i ◦ fi = (−1)i−1fi−1 ◦ f∗

i−1,

a map from iPi = Pi to i+1Pi−1 = Pi. With this notation one checks that for
all k > 0 the image of the map di−k,i+k : i−kPi+k −→ i−k+1Pi+k−1 is isomorphic
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to i−kXi+k ≃ Ωk(Si) and its kernel to i−k−1Xi+k+1 ≃ Ωk+1(Si), so the bounded
above complex

Ri := · · · di−k−1,i+k+1−−−−−−−−→ i−kPi+k
di−k,i+k−−−−−→ · · · di−2,i+2−−−−−→ i−1Pi+1

di−1,i+1−−−−−→ Pi −→ 0

forms a minimal projective resolution of Si.

3.3. Generators and relations. We have seen in Section 3.1 that the Ext-algebra
is generated in degrees 1 and N . Here we will construct explicit generators using
the minimal resolutions defined above.

We start by defining a map zi ∈ HomHo(A)(Ri, Ri+1[1]) for any 1 ≤ i ≤ N −
1. Let k be a positive integer. If k /∈ NZ, the projective modules i−kPi+k and
i+1−(k−1)Pi+1+(k−1) = i−k+2Pi+k have at least one indecomposable summand in
common and we can consider the map Zi,k : i−kPi+k −→ i−k+2Pi+k given by
the identity map on the common factors, followed by multiplication by (−1)k. If
k ∈ N + 2NZ, then from the relations (3.1) we have

i−kPi+k = i−N Pi+N = i+N+1Pi−N−1 = −i−N+1P−i+N+1 = PN+1−i

and
i−k+2Pi+k = i−N+2Pi+N = N−iP−N−i = PN−i.

In that case we set Zi,k := (−1)if∗
N−i. If k ∈ 2NZ then i−kPi+k = Pi, i−k+2Pi+k =

i+2Pi = Pi+1 and we set Zi,k := (−1)ifi. If k ≥ 0 we set Zi,k := 0. Then the family
of morphisms of A-modules Zi := (Zi,k)k∈Z defines a morphism of complexes of A-
modules from Ri to Ri+1[1] and we denote by zi its image in Ho(A). Note that zi is
non-zero; indeed, the composition of Zi with the natural map Ri+1[1] −→ Si+1[1]
is already not null-homotopic since Ext1

A(Si, Si+1) ̸= 0.
Similarly, we define a map Z∗

i : Ri+1 −→ Ri[1] by exchanging the roles of f
and f∗. More precisely, we consider in that case Z∗

i,−N := (−1)ifN−i and Z∗
i,−2N :=

(−1)if∗
i . We denote by z∗

i the image of Z∗
i in Ho(A).

Assume now that 1 ≤ i ≤ N . The modules

i−kPi+k and (N+1−i)−(k−N)P(N+1−i)+(k−N)

are equal, which means that starting from the degree −N the terms of the com-
plexes Ri and RN+1−i[N ] coincide. In addition, the differentials only differ by
(−1)N . We denote by Yi : Ri −→ RN+1−i[N ] the natural projection between Ri

and its obvious truncation at degrees ≤ −N , followed by the multiplication by
(−1)Nk in each degree k. We will write yi for its image in Ho(A). Again, yi is
non-zero since ExtN

A (Si, SN+1−i) ̸= 0.

Lemma 3.1. The following relations hold in End•
Ho(A)(

⊕
Ri):

(a) z∗
1 [1] ◦ z1 = 0, zN−1[1] ◦ z∗

N−1 = 0;
(b) zi[1] ◦ z∗

i = z∗
i+1[1] ◦ zi+1 for all i = 1, . . . , N − 2;

(c) yi+1[1] ◦ zi = z∗
N−i[N ] ◦ yi for all i = 1, . . . , N − 1;

(d) yi[1] ◦ z∗
i = zN−i[N ] ◦ yi+1 for all i = 1, . . . , N − 1.
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Proof. If N = 1, there are no relations to check. Note that in that case the algebra
A is isomorphic to F[t]/(t2). It is a Koszul algebra whose dual is isomorphic to
F[t]. Therefore we assume N ≥ 2. The relations in (a) follow from the fact
that Ext2

A(S1, S1) = Ext2
A(SN , SN ) = 0, which is for example a consequence of

Proposition 2.2.

To show (c), we observe that the morphism of complexes Zi : Ri −→ Ri+1[1]
defined above coincides with Z∗

N−i[N ] : RN+1−i[N ] −→ RN−i[N + 1] in degrees
less than −N . Since Yi and Yi+1 are just obvious truncations with suitable signs
we actually have Yi+1[1] ◦ Zi = Z∗

N−i[N ] ◦ Yi. The relation (d) is obtained by a
similar argument.

We now consider (b). The morphisms of complexes Zi[1] ◦ Z∗
i and Z∗

i+1[1] ◦ Zi+1
coincide at every degree k except when k is congruent to 0 or −1 modulo N . Let
us first look in detail at the degrees −N and −N − 1. The map Zi[1] ◦ Z∗

i is as
follows:

· · · PN−1−i ⊕ PN+1−i PN−i PN−i

PN−i ⊕ PN+2−i PN+1−i PN+1−i PN−i ⊕ PN+2−i

PN−i PN−i PN−1−i ⊕ PN+1−i · · ·

[
fN−1−i f∗

N−i

]
[

0 (−1)N+1
]

(−1)N−if∗
N−i◦fN−i

(−1)ifN−i

[
(−1)N−1

0

]
−

[
fN−i f∗

N+1−i

]
[

(−1)N+1 0
]

(−1)N−i+1fN−i◦f∗
N−i

(−1)if∗
N−i

−

[
f∗

N−i

fN+1−i

]

[
0

(−1)N−1

]
(−1)N−if∗

N−i◦fN−i

[
f∗

N−1−i

fN−i

]

whereas the map Z∗
i+1[1] ◦ Zi+1 corresponds to the following composition:

· · · PN−1−i ⊕ PN+1−i PN−i PN−i

PN−2−i ⊕ PN−i PN−1−i PN−1−i PN−2−i ⊕ PN−i

PN−i PN−i PN−1−i ⊕ PN+1−i · · ·

[
fN−1−i f∗

N−i

]
[

(−1)N+1 0
]

(−1)N−if∗
N−i◦fN−i

(−1)i+1f∗
N−1−i

[
0

(−1)N−1

]
−

[
fN−2−i f∗

N−1−i

]
[

0 (−1)N+1
]

(−1)N−if∗
N−1−i◦fN−1−i

(−1)i+1fN−1−i

−

[
f∗

N−2−i

fN−1−i

]

[
(−1)N−1

0

]
(−1)N−if∗

N−i◦fN−i

[
f∗

N−1−i

fN−i

]
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We deduce that at the degrees −N and −N − 1 the map Zi[1] ◦ Z∗
i − Z∗

i+1[1] ◦ Zi+1
is given by

PN−1−i ⊕ PN+1−i PN−i

PN−i PN−1−i ⊕ PN+1−i

[
fN−1−i f∗

N−i

]

(−1)N+1−i
[

fN−1−i f∗
N−i

]
(−1)N+1−i

[
f∗

N−1−i

fN−i

]
[

f∗
N−1−i

fN−i

]

A similar picture holds at the degrees −2N and −2N − 1:

Pi ⊕ Pi+2 Pi+1

Pi+1 Pi ⊕ Pi+2

[
fi f∗

i+1

]

(−1)i+1
[

fi f∗
i+1

]
(−1)i+1

[
f∗

i

fi+1

]
[

f∗
i

fi+1

]

Using the map s : Ri+1 → Ri+1[1] defined by

sk :=


(−1)N+1−iIdPN−i

if −k ∈ N + 2NN,

(−1)i+1IdPi+1 if −k ∈ 2N + 2NN,

0 otherwise,

we see that Zi[1] ◦ Z∗
i − Z∗

i+1[1] ◦ Zi+1 is null-homotopic, which proves that zi[1] ◦
z∗

i − z∗
i+1[1] ◦ zi+1 is zero in HomHo(A)(Ri+1, Ri+1[2]). □

The next proposition shows that the relations given in Lemma 3.1 are actu-
ally enough to describe the Ext-algebra. We use here the concatenation of paths
as opposed to the composition of arrows, which explains the discrepancy in the
relations.
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Proposition 3.2. The Ext-algebra of A is isomorphic to the path algebra associ-
ated with the following quiver:

S1 S2 S3 · · · SN−2 SN−1 SN
z1

y1

z∗
1

z2

y2

z∗
2

y3

yN−2

zN−2

z∗
N−2

yN−1

zN−1

z∗
N−1

yN

with zi’s of degree 1 and yi’s of degree N , subject to the relations
(a) z1z∗

1 = z∗
N−1zN−1 = 0;

(b) z∗
i zi = zi+1z∗

i+1 for all i = 1, . . . , N − 2;
(c) ziyi+1 = yiz

∗
N−i for all i = 1, . . . , N − 1;

(d) z∗
i yi = yi+1zN−i for all i = 1, . . . , N − 1.

Proof. Let Q (resp. I) be the quiver (resp. the ideal generated by the set of rela-
tions) given in the proposition. Let Γ = FQ/I be the corresponding path algebra.
By Section 3.1 and Lemma 3.1, the Ext-algebra E(A) of A is a quotient of Γ. To
show that E(A) ≃ Γ it is enough to show that the graded dimension of Γ is smaller
than that of E(A).

Let 1 ≤ i, j ≤ N and γ be a path between Si and Sj in Q containing only zl’s
and z∗

l ’s. Let k be the length of γ. We have k ≥ |i − j|, which is the length of
the minimal path from Si to Sj . Using the relations, there exist cycles γ1 and γ2
around Si and Sj respectively such that

γ =
{

γ1zizi+1 · · · zj−1 = zizi+1 · · · zj−1γ2 if i ≤ j,

γ1z∗
i−1z∗

i−2 · · · z∗
j = z∗

i−1z∗
i−2 · · · z∗

j γ2 otherwise.

Maximal non-zero cycles starting and ending at Si are either z∗
i−1z∗

i−2 · · · z∗
1z1z2

· · · zi−1 or zizi+1 · · · zN−1z∗
N−1 · · · z∗

i+1 · · · z∗
i depending on whether Si is closer to

S1 or SN . Indeed, any longer cycle will involve z1z∗
1 or z∗

N−1zN−1, which are zero
by (a). Therefore if deg(γ1) > 2(i − 1) or deg(γ1) > 2(N − i) then γ1 = 0. Using a
similar argument for cycles around Sj we deduce that γ is zero whenever

k = deg(γ) > |i − j| + 2 min(i − 1, j − 1, N − i, N − j),

which is equivalent to k = deg(γ) > N − 1 − |N + 1 − j − i|. This proves that γ is
zero unless |i − j| ≤ k ≤ N − 1 − |N + 1 − j − i|, in which case we have

γ = zizi+1 · · · zr−1z∗
r−1z∗

r−2 · · · z∗
j ,
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where k = 2r − i − j. In particular, k − |i − j| must be even. Consequently,
the subspace of Γ spanned by such paths has graded dimension at most equal to
t|i−j| + t|i−j|+2 + · · · + tN−1−|N+1−j−i| = Qi,j(t).

Assume now that γ is any path of length k between Si and Sj in Q. Using the
relations one can write γ as γ = ya

i γ1γ2, where γ2 is a cycle around Sj containing
only yl’s (therefore a power of yjyN−j), γ1 is a product of zl’s, and a ∈ {0, 1}. Note
that deg(γ2) is a multiple of 2N and γ1 is either a path from Si to Sj if a = 0 or a
path from SN+1−i to Sj if a = 1. From the previous discussion and Proposition 2.2
we conclude that γ is zero if dimF Extk

A(Si, Sj) = 0 or unique modulo I otherwise.
By (2.2) and §3.1 this shows that the projection of Γ to the Ext-algebra of A must
be an isomorphism. □
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