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PRIME-GENERATING QUADRATIC POLYNOMIALS

VÍCTOR JULIO RAMÍREZ VIÑAS

Abstract. Let a, b, c be integers. We provide a necessary condition for the
function |ax2 + bx + c| to generate only primes for consecutive integers. We
then apply this criterion to give sufficient conditions for the real quadratic field
K = Q(

√
d), d ∈ N, to have class number one, in terms of prime-producing

quadratic polynomials.

1. Introduction

For centuries there has been a fascination with prime-producing quadratic poly-
nomials. The best-known polynomial that generates (possibly in absolute value)
many consecutive primes is x2 − x + 41, due to Euler, which gives distinct primes
for the 40 consecutive integers 1 to 40, namely 41, 43, 47, 53, 61, 71, 83, 97, 113,
131, 151, 173, 197, 223, 251, 281, 313, 347, 383, 421, 461, 503, 547, 593, 641,
691, 743, 797, 853, 911, 971, 1033, 1097, 1163, 1231, 1301, 1373, 1447, 1523, and
1601. Polynomials like this, which generate long strings of primes, are called prime-
generating quadratic polynomials. Is there any incredible math hidden within these
polynomials? In fact, there is a strong relationship between these polynomials
and factorization in quadratic fields. At the 1912 International Congress of Math-
ematicians, Rabinowitsch gave a proof of the following for imaginary quadratic
fields: n2 + n + q is prime for n = 0, 1, . . . , q − 2 iff the imaginary quadratic field
Q(

√
1 − 4q) has class number equal to 1. By the Heegner–Baker–Stark theorem,

one now knows that there are exactly nine complex quadratic fields with class num-
ber one. They are Q(

√
d) for d ∈ {−1, −2, −3, −7, −11, −19, −43, −67, −163}. For

surveys of these and related results see, for instance, Mollin [4] and Ribenboim [10].
In 1980, applying Rabinowitsch’s method, Kutsuna obtained the following for

real quadratic fields: If −n2 + n + q is prime for all positive n <
√

q − 1, then
the class number of the field Q(

√
1 + 4q) must necessarily be one. Subsequently,

there have been many investigations of prime-producing polynomials and their
connection to the structure of real quadratic fields. For this matter, we suggest
reading Mollin’s book [3]. In recent years, Byeon, Lee, and Mollin [2, 5] proved an
analogue statement to the Rabinowitsch result for real quadratic fields. Let m be a
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positive integer and let fm(x) be a polynomial of the form fm(x) = x2 +x−m. We
call a polynomial fm(x) a Rabinowitsch polynomial if, for t = ⌊

√
m⌋ and consecutive

integers x = x0, x0 +1, . . . , x0 + t−1, |fm(x)| is either 1 or a prime for some integer
x0. They proved the following theorem: fm(x) is a Rabinowitsch polynomial iff
m ∈ {1, 2, 3, 4, 5, 7, 9, 13, 17, 19, 23, 25, 43, 49, 73, 103, 109, 169, 283}.

Let d > 1 be an integer; let α = −1+
√

d
2 if d ≡ 1 (mod 4) and α =

√
d otherwise.

It is straightforward to check that α2 ∈ Z + Zα, so that

Z[α] = Z + Zα = {u + vα : u, v ∈ Z}.

We give elementary proofs of the following criteria for unique factorization in
Z[α]. We remind the reader that if R is a domain then an irreducible element
in R is a nonzero, nonunit element q ∈ R that cannot be written as the product
of two non-units in R. A nonzero, nonunit element π ∈ R is called a prime if
π | αβ, where α, β ∈ R, implies that π | α or π | β. The ring R is said to
have the unique factorization property, or to be a unique factorization ring (unique
factorization domain, abbreviated UFD), if every nonzero, nonunit, element in R
can be expressed as a product of irreducible elements in exactly one way (where
two factorizations are counted as the same if one can be obtained from the other
by rearranging the order in which the irreducibles appear and multiplying them by
units).

The distinction between primes and irreducibles is needed, because in a ring
which is not a UFD these notions are not equivalent. Prime elements are always
irreducible; the converse holds in a UFD, but not in general.

Theorem 1.1. Let d > 1, d ≡ 1 (mod 4) be an integer. Let a, b, c and x0 be
integers, with a > 0. Let Ω be the set of all primes p ∈ N satisfying p | a. Suppose
that b2 − 4ac = u2d for some integer u ≥ 1. Also suppose that, for every p ∈ Ω,
the equation

4p = |x2 − dy2|
is solvable in integers x, y. If |an2 + bn + c| is 1 or a prime for every integer n with
x0 ≤ n ≤ x0 +

√
d
5 − 1, then Z[ −1+

√
d

2 ] is a unique factorization domain.

Theorem 1.2. Let d ≡ 2, 3 (mod 4) be a positive integer. Let a, b, c and x0 be
integers, with a > 0. Let Ω be the set of all primes p ∈ N satisfying p | a. Suppose
that b2 − 4ac = v2d for some integer v ≥ 1. Also suppose that, for every p ∈ Ω, the
equation

4p = |x2 − dy2|
is solvable in integers x, y. If |an2 + bn + c| is 1 or a prime for every integer n with
x0 ≤ n ≤ x0 + 2

√
d
5 − 1, then Z[

√
d] is a unique factorization domain.

2. Some preliminaries

Lemma 2.1. Let d be an integer; let α = −1+
√

d
2 if d ≡ 1 (mod 4) and α =

√
d

otherwise. Let p, a, b, c and x0 be integers, with p prime. Suppose that b2−4ac = u2d
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for some integer u ≥ 1. If p is not prime in Z[α] and p ∤ a, then there exists n ∈ Z
such that

x0 ≤ n ≤ x0 + p − 1 and an2 + bn + c ≡ 0 (mod p).

Proof. Let f(x) = x2+x+ 1−d
4 if d ≡ 1 (mod 4) and f(x) = x2−d otherwise. Since

α is a root of the polynomial f(x) and p is not prime in Z[α], by [8, Lemma 2.3]
we get that there exists t ∈ Z such that

t2 ≡ d (mod p). (2.1)

Now, we distinguish these two cases: p ̸= 2 and p = 2. In the first case we get

p ∤ 2a; (2.2)

from (2.2) we deduce that there exists w ∈ Z such that

0 ≤ w ≤ p − 1 and 2aw ≡ ut − (b + 2ax0) (mod p). (2.3)

Let n = w + x0. Then, from (2.3) we obtain

x0 ≤ n ≤ x0 + p − 1 and 2an + b ≡ ut (mod p). (2.4)

Since b2 − 4ac = u2d, from (2.4) and (2.1), we deduce that

4a(an2 + bn + c) ≡ (2an + b)2 − (b2 − 4ac)
≡ (2an + b)2 − u2d ≡ (ut)2 − u2d ≡ 0 (mod p).

(2.5)

Combining (2.2) and (2.5), we get

an2 + bn + c ≡ 0 (mod p).

In the second case, when p = 2, we get that a is odd. As p is not prime in Z[α]
and p = 2, by [8, Lemma 2.3] we deduce that

d ̸≡ 5 (mod 8).

Since b2 −4ac = u2d, it follows that bc is even. Therefore ax2
0 +bx0 +c ≡ 0 (mod 2)

or a(x0 + 1)2 + b(x0 + 1) + c ≡ 0 (mod 2). □

Proposition 2.2. Let d ≡ 1 (mod 4) be a positive integer. Suppose that Z
[

−1+
√

d
2

]
is not a unique factorization domain. Then, there is a prime p which is irreducible
but not prime in Z

[
−1+

√
d

2

]
such that p ≤

√
d
5 .

Proof. Put α = −1+
√

d
2 . Suppose that Z[α] is not a unique factorization domain.

Then by [8, Lemma 2.2], there is a prime p which is not prime in Z[α] such that

ω ∈ Z[α] and p | N(ω) implies that p2 ≤ |N(ω)|, (2.6)

where N stands for the norm map. Since α is a root of the polynomial x2 +x+ 1−d
4

and p is not prime in Z[α], by [8, Lemma 2.3] we get that there exists a ∈ Z such
that

0 ≤ a ≤ (p − 1)/2 and a2 + a + 1 − d

4 ≡ 0 (mod p). (2.7)
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Let c = p − 1 − a. Then, from (2.7) we obtain

c2 + c + 1 − d

4 ≡ 0 (mod p),

p ≤ 2c + 1 ≤ 2p − 1. (2.8)
As

N(c − α) = c2 + c + 1 − d

4 ,

we get that
p | N(c − α).

From (2.6) we deduce that
4p2 ≤ 4|N(c − α)| = |(2c + 1)2 − d|. (2.9)

We now show that
|(2c + 1)2 − d| = d − (2c + 1)2, (2.10)

for otherwise |(2c + 1)2 − d| = (2c + 1)2 − d. From (2.9) and (2.8), we get
4p2 ≤ (2c + 1)2 − d < (2p)2 − d,

which is impossible. So
|(2c + 1)2 − d| = d − (2c + 1)2.

From (2.9), (2.10), and (2.8), we deduce that
4p2 ≤ d − (2c + 1)2 ≤ d − p2,

thus giving

p ≤
√

d

5 .

To show that p is irreducible in Z[α], first suppose that it is reducible, i.e.,
p = xy for some non-units x, y in Z[α]; then p2 = N(xy) = N(x)N(y) with
|N(x)|, |N(y)| > 1. Thus,

p = |N(x)|. (2.11)
Combining (2.6) and (2.11) we get p2 ≤ p, which is impossible. This contradiction
means that if p = xy in Z[α] then x or y is a unit in Z[α], i.e., p is irreducible in
Z[α]. □

Proposition 2.3. Let d be a positive integer. Suppose that Z[
√

d] is not a unique
factorization domain. Then, there is a prime p which is irreducible but not prime
in Z[

√
d] such that p ≤ 2

√
d
5 .

Proof. Put α =
√

d. Suppose that Z[α] is not a unique factorization domain. Then,
by [8, Lemma 2.2], there is a prime number p which is not prime in Z[α] such that

ω ∈ Z[α] and p | N(ω) implies that p2 ≤ |N(ω)|. (2.12)
Since α is a root of the polynomial x2 − d and p is not prime in Z[α], by [8,
Lemma 2.3] we get that there exists a ∈ Z such that

0 ≤ a ≤ p/2 and a2 − d ≡ 0 (mod p). (2.13)
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Let us see that

p ≤ 2
√

d

5 .

Let b = a − p. Then, from (2.13) we obtain

b2 − d ≡ 0 (mod p) (2.14)
and

p

2 ≤ −b ≤ p. (2.15)

As
N(b − α) = b2 − d,

from (2.14) and (2.12) we deduce that

p2 ≤ |N(b − α)| = |b2 − d|. (2.16)
Combining (2.16) and (2.15), we get

|b2 − d| = d − b2. (2.17)
From (2.16), (2.17), and (2.15), we deduce that

4p2 ≤ 4d − (2b)2 ≤ 4d − p2,

thus giving

p ≤ 2
√

d

5 .

To show that p is irreducible in Z[α], first suppose that it is reducible, i.e.,
p = xy for some non-units x, y in Z[α]; then p2 = N(xy) = N(x)N(y) with
|N(x)|, |N(y)| > 1. Thus,

p = |N(x)|. (2.18)
Combining (2.12) and (2.18) we get p2 ≤ p, which is impossible. This contradiction
means that if p = xy in Z[α], then either x or y is a unit in Z[α], i.e., p is irreducible
in Z[α]. □

3. Proof of Theorem 1.1

Put α = −1+
√

d
2 . Let us see that Z[α] is a unique factorization domain. Assume

otherwise. Then, by Proposition 2.2, there is a prime p which is irreducible but
not prime in Z[α] such that

p ≤
√

d

5 . (3.1)

We claim that p ∤ a. Indeed, suppose that p ∈ Ω. Then according to our hypothesis
there exist integers r and s such that

4p = |r2 − ds2|. (3.2)
Now, let t = r−s

2 and let β = t − sα. Then from (3.2) we get that t is an integer
and

p = |N(β)|,
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which is impossible because p is irreducible in Z[α]. We thus have that
p ∤ a.

Since b2 − 4ac = u2d and p is not prime in Z[α], by Lemma 2.1 we get that there
exists n ∈ Z such that

x0 ≤ n ≤ x0 + p − 1 (3.3)
and

an2 + bn + c ≡ 0 (mod p). (3.4)
From (3.1) and (3.3), we get

x0 ≤ n ≤ x0 +
√

d

5 − 1,

and so, according to our hypotheses, |an2 + bn + c| is 1 or prime. Thus, from (3.4)
we get

p = |an2 + bn + c|. (3.5)
From (3.5) we deduce that

4ap = |(2an + b)2 − (b2 − 4ac)| = |(2an + b)2 − du2|,
hence we get that there exists β ∈ Z[α] such that

ap = |N(β)|.
As for every q ∈ Ω the equation 4q = |x2 − dy2| is solvable in integers x, y, we
get that the equation q = |N(z)| is solvable in Z[α]. Proceeding by induction we
deduce, by [9, Theorem 3], that there exists γ ∈ Z[α] such that

p = |N(γ)|,
which is impossible because p is irreducible in Z[α]. Thus, Z[α] must be a unique
factorization domain. This completes the proof.

4. Proof of Theorem 1.2

Put α =
√

d. Let us see that Z[α] is a unique factorization domain. Assume
otherwise. Then, by Proposition 2.3, there is a prime p which is irreducible but
not prime in Z[α] such that

p ≤ 2
√

d

5 . (4.1)

We claim that p ∤ a. Indeed, suppose that p ∈ Ω. Then according to our hypothesis
there exist integers r and s such that

4p = |r2 − ds2|. (4.2)
Now, let u = r

2 and v = s
2 . Then, since d ≡ 2, 3 (mod 4), from (4.2) we get that

u, v ∈ Z and
p = |N(γ)|,

where γ = u + vα, which is impossible because p is irreducible in Z[α]. So
p ∤ a.
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Since b2 − 4ac = u2d and p is not prime in Z[α], by Lemma 2.1 we get that there
exists n ∈ Z such that

x0 ≤ n ≤ x0 + p − 1 (4.3)
and

an2 + bn + c ≡ 0 (mod p). (4.4)
From (4.1) and (4.3), we get

x0 ≤ n ≤ x0 + 2
√

d

5 − 1,

and so, according to our hypotheses, |an2 + bn + c| is 1 or prime. Thus, from (4.4)
we get

p = |an2 + bn + c|. (4.5)
From (4.5) we deduce that

4ap = |(2an + b)2 − (b2 − 4ac)| = |(2an + b)2 − du2|.

Since d ≡ 2, 3 (mod 4) we get that β ∈ Z[α] and ap = |N(β)|, where β = 2an+b
2 +

u
2 α. As for every q ∈ Ω the equation q = |x2 − dy2| = |N(x + yα)| is solvable
in integers x, y, proceeding by induction we deduce, by [9, Theorem 3], that there
exists γ ∈ Z[α] such that

p = |N(γ)|,
which is impossible because p is irreducible in Z[α]. Thus, Z[α] must be a unique
factorization domain, which completes the proof.

5. Applications

To show that our conditions are not impossible to use, we present easy proofs of
the following seven propositions, which generalize and refine Mollin–Williams’ [7,
Theorems 3.2, 3.3, and 3.4] and [6, Conjectures 2 and 4]. We remind the reader
that the class number of a number field is by definition the order of the ideal class
group of its ring of integers. Let K be a number field which is a finite extension
field of the rational field Q. If an element α of C satisfies an algebraic equation
αn + an−1αn−1 + · · · + a1α + a0 = 0, where a0, a1, . . . , an−1 ∈ Z, then α is called
an algebraic integer. The set of all algebraic integers in K forms a ring, which is
called the ring of integers in K. In general, it is not a unique factorization domain.
Now let h be the class number of the number field K. It is now well known (see
[1, Theorem 12.1.1, p. 300]) that the condition h = 1 is equivalent to the unique
factorization property on the ring R of integers in K.

Proposition 5.1. Let u and x0 be integers, with u odd. Suppose that d = 2q,
where q is a prime congruent to 3 (mod 4), and that |2n2 − u2q| is prime or equal
to 1 whenever x0 ≤ n ≤ x0 + 2

√
d
5 − 1. Then the class number of the real quadratic

field Q(
√

d) is equal to one.
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Proof. Clearly d ≡ 2 (mod 4). Also we shall prove that the equation
2 = |x2 − dy2|

is solvable in integers x, y. Since |2n2 −u2q| is 1 or a prime number for every integer
n with x0 ≤ n ≤ x0 + 2

√
d
5 − 1, by Theorem 1.2 we conclude that the class number

of the real quadratic field Q(
√

d) is equal to 1. Now, since q is a prime congruent
to 3 (mod 4), according to Walsh [11, Lemma 2.3] we get that the equation

1 = |2x2 − qy2| (5.1)
is solvable in integers x, y. Multiplying both sides of (5.1) by 2 we get

2 = 2|2x2 − qy2| = |(2x)2 − dy2|,
and therefore the assertions above follow. □

Proposition 5.2. Let u and x0 be integers, with u odd. Suppose that d is a
prime congruent to 3 (mod 4), and that

∣∣∣2n2 + 2n + 1−u2d
2

∣∣∣ is prime or equal to 1

whenever x0 ≤ n ≤ x0 + 2
√

d
5 − 1. Then the class number of the real quadratic

field Q(
√

d) is equal to one.

Proof. By [11, Lemma 2.2] we get that the equation 2 = |x2 − dy2| is solvable
in integers x, y. Thus, by Theorem 1.2, we get that the class number of the real
quadratic field Q(

√
d) is equal to one. □

Proposition 5.3. Let u, x0 be integers, with u odd. Suppose that d = pq, where
p ̸= q are primes congruent to 3 (mod 4), and that

∣∣∣pn2 + pn + p−u2q
4

∣∣∣ is prime

or equal to 1 whenever x0 ≤ n ≤ x0 +
√

d
5 − 1. Then the class number of the real

quadratic field Q(
√

d) is equal to one.

Proof. By [11, Lemma 2.4] we get that the equation p = |x2 − dy2| is solvable
in integers x, y. Thus, by Theorem 1.1, we get that the class number of the real
quadratic field Q(

√
d) is equal to 1. □

Lemma 5.4. Let α1, . . . , αn ∈ C be algebraic integers. If Z[α1, . . . , αn] is a UFD,
then the class number of the number field Q(α1, . . . , αn) is equal to one.

Proof. Let K = Q(α1, . . . , αn) be the number field and let R be the ring of integers
in K. It is straightforward to check that Z[α1, . . . , αn] ⊆ R, because α1, . . . , αn ∈ C
are algebraic integers. Now, assume Z[α1, . . . , αn] is a UFD; by [1, Theorem 4.2.5,
p. 84], we deduce that Z[α1, . . . , αn] ⊇ R, hence we get that R = Z[α1, . . . , αn].
Consequently, the class number of K is equal to 1. □

Proposition 5.5. Let x0 and d be integers, with d > 1, d ≡ 1 (mod 4). Suppose
that d = t2 ± p, where p is an odd prime dividing t. If

∣∣∣pn2 + pn − d−p2

4p

∣∣∣ is 1 or

prime for every integer n with x0 ≤ n ≤ x0 +
√

d
5 − 1, then the class number of the

real quadratic field Q(
√

d) is equal to 1.
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Proof. Let K = Q(
√

d) be the quadratic field. It is easily checked that 4p =∣∣(2t)2 − d(2)2
∣∣. Thus, by Theorem 1.1, we deduce that Z

[
−1+

√
d

2

]
is a UFD.

Therefore, it follows by Lemma 5.4 that the class number of K is equal to 1. □

Proposition 5.6. Let x0 and d be integers, with d > 1, d ≡ 1 (mod 4). Suppose
that d = t2 ± 4p, where p is an odd prime dividing t. If

∣∣∣pn2 + pn − d−p2

4p

∣∣∣ is 1 or

prime for every integer n with x0 ≤ n ≤ x0 +
√

d
5 − 1, then the class number of the

real quadratic field Q(
√

d) is equal to 1.

Proof. Let K = Q(
√

d) be the quadratic field. It is readily seen that 4p =∣∣t2 − d(1)2
∣∣. Thus, by Theorem 1.1, we deduce that Z

[
−1+

√
d

2

]
is a UFD. There-

fore, it follows by Lemma 5.4 that the class number of K is equal to 1. □

Proposition 5.7. Let x0 and d be integers, with d > 1, d ≡ 1 (mod 4). If
∣∣∣n2 +

n + 1−d
4

∣∣∣ is 1 or prime for every integer n with x0 ≤ n ≤ x0 +
√

d
5 − 1, then the

class number of the real quadratic field Q(
√

d) is equal to 1.

Proof. By Theorem 1.1, we deduce that Z
[

−1+
√

d
2

]
is a UFD. Therefore, it follows

by Lemma 5.4 that the class number of Q(
√

d) is equal to 1. □

Remark 5.8. There exist nineteen values of d smaller than 6000 which satisfy
the assumption of Proposition 5.7: (d, x0) = (5, 1), (9, 0), (13, 1), (17, 1), (21, 1),
(29, 1), (37, 1), (53, 1), (69, 2), (77, 1), (93, 2), (101, 1), (173, 1), (197, 1), (293, 1),
(413, 4), (437, 1), (677, 1), (1133, 6).

(a) By the nature of Proposition 5.7, this list may not be exhaustive (since any
computer search can only cover finitely many possible values of x0).

(b) These values of x0 are not uniquely determined. For example, if we consider
the case d = 677, and f(x) = x2 + x − 169 = x2 + x + 1−d

4 , then |f(n)|
is prime for all integers n ∈ [x0, x0 + 10] = [x0, x0 + ⌊

√
d
5 − 1⌋], where

x0 ∈ {1, 12, 27}.

Proposition 5.9. Let d > 1, d ≡ 1 (mod 4) be an integer. If
∣∣n2 + n + 1−d

4
∣∣ is 1

or prime for every integer n with 0 ≤ n ≤ 1
2

(√
d
5 −1

)
, then Z

[
−1+

√
d

2

]
is a unique

factorization domain.

Proof. An easy check shows that

(x − 1)2 + (x − 1) + 1 − d

4 = (−x)2 + (−x) + 1 − d

4
and

x0 +
√

d

5 − 1 ≤ 1
2

(√
d

5 − 1
)

,
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with x0 = −
⌊

1
2

(√
d
5 −1

)⌋
−1. Therefore, the proposition follows from Theorem 1.1

and Lemma 5.4. □

Remark 5.10. There are exactly ten values of d smaller than 6000 which satisfy
the assumption of Proposition 5.9:

d = 5, 9, 13, 21, 29, 53, 77, 173, 293, 437.
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