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Abstract. Let {T (t)}t≥0 be an α-times integrated semigroup of bounded
linear operators on the Banach space X and let A be their generator. In
this paper, we study the uniform convergence of the Abel averages A(λ) =
λα+1

∫ ∞
0 e−λtT (t) dt as λ → 0+, with α ≥ 0. More precisely, we show that

the following conditions are equivalent: (i) T (t) is uniformly Abel ergodic;
(ii) X = R(A) ⊕ N (A), with R(A) closed; (iii) ∥λ2R(λ, A)∥ −→ 0 as λ → 0+,
and R(Ak) is closed for some integer k; (iv) A is a-Drazin invertible and R(Ak)
is closed for some k ≥ 1; where N (A), R(A) and R(λ, A) are the kernel, the
range, and the resolvent function of A, respectively. Additionally, we show that
if T (t) satisfies limt→∞ ∥T (t)∥/tα+1 = 0, then T (t) is uniformly Abel ergodic
if and only if 1

tα+1

∫ t

0 T (s) ds converges uniformly as t → +∞. Finally, we
examine simultaneously this theory with the uniform power convergence of
the Abel averages A(λ) for some λ > 0.

1. Introduction

Throughout this paper B(X ) denotes the Banach algebra of all bounded linear
operators on a Banach space X into itself. Let A be a closed linear operator in X
with domain D(A) ⊂ X ; we denote by N (A), R(A), σ(A), ρ(A), and R(., A) the
kernel, the range, the spectrum, the resolvent set, and the resolvent operator of A,
respectively.

The family {T (t)}t≥0 on B(X ) is called a strongly continuous semigroup
(C0-semigroup in short) if it has the following properties (see [18]):

(1) T (0) = I.
(2) T (t)T (s) = T (t + s).
(3) The map t → T (t)x from [0, +∞[ into X is continuous for all x ∈ X .

Their infinitesimal generator A is defined by

Ax = lim
t→0+

T (t)x − x

t
for all x ∈ D(A),
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where
D(A) =

{
x ∈ X : lim

t→0+

T (t)x − x

t
exists

}
.

The Laplace transformation Rλ of a C0-semigroup T (t) on B(X ) is defined as

Rλx =
∫ ∞

0
e−λtT (t)x dt,

which is exactly the resolvent function of A. Moreover, the infinitesimal generator
of a C0-semigroup is a linear closed densely defined operator on a Banach space X
(see, for instance, [8] and [18, p. 25]).

The α-times integrated semigroups, α ∈ R+, and n-times integrated semigroups,
n ∈ N, of operators in a Banach space were introduced by Arendt [1] and studied
by Arendt and Kellermann [2], Hieber [10], Thieme [24], and many others.

A relevant example is obtained if we assume that {T (t)}t≥0 is a C0-semigroup

of bounded linear operators on X ; then S(t) =
∫ t

0
T (r) dr defines an integrated

semigroup {S(t)}t≥0 having the following three properties:
(1) S(0) = 0.

(2) S(s)S(t) =
∫ s

0
S(r + t) − S(r) dr for t, s ≥ 0.

(3) The map t → S(t) from [0, +∞[ into X is strongly continuous.

Let α ≥ 0 and let A be a linear operator on a Banach space X . A is the generator
of an α-times integrated semigroup [10, Definition 2.2] if, for some ω ∈ R, we have
]ω, +∞[ ⊆ ρ(A) and there exists a strongly continuous mapping T : [0, +∞[ → B(X )
satisfying

∥T (t)∥ ≤ Meωt for all t ≥ 0 and some M > 0,

R(λ, A) = λα

∫ +∞

0
e−λtT (t) dt for all λ > max{ω, 0}.

In this case, {T (t)}t≥0 is called the α-times integrated semigroup, and the domain
of its generator A is defined by

D(A) =
{

x ∈ X :
∫ t

0
T (s)Ax ds = T (t)x − tαx

Γ(α + 1)

}
.

From the uniqueness theorem of Laplace transforms, {T (t)}t≥0 is uniquely deter-
mined. For convenience, we call a C0-semigroup also a 0-times integrated semigroup,
and the integrated semigroup is also a 1-times integrated semigroup.

Ergodic theorems [14] have a long tradition and are usually formulated via ex-
istence of the limits of the Cesàro averages:

C(t) := t−1
∫ t

0
T (s) ds for t ≥ 0,

where {T (t)}t≥0 is a C0-semigroup of bounded linear operators in a Banach space X .
The semigroup {T (t)}t≥0 is said to be uniformly (resp., mean) Cesàro ergodic if the
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Cesàro averages C(t) converge in the norm (resp., the strong) operator topology.
This notion is completely connected to studying the limit of the Abel averages of
T (t), defined by

A(λ) = λ

∫ ∞

0
e−λtT (t) dt, where λ > 0.

Recall that a semigroup T (t) is called uniformly Abel ergodic if the limit of the
Abel averages A(λ) when λ → 0+ exists in the norm operator topology.

We will denote the growth bound of a C0-semigroup {T (t)}t≥0 by
ω0 = inf

{
w ∈ R : there exists M such that ∥T (t)∥ ≤ Mewt, t ≥ 0

}
.

Usually one assumes ω0 ≤ 0 or the even stronger condition ∥T (t)∥/t −→ 0 as
t → ∞, to study the convergence of the Cesàro averages and the Abel averages
of {T (t)}t≥0. Generally, great attention has been focused on the study of the
relationship between Cesàro ergodicity and Abel ergodicity for different classes of
semigroups in B(X ). The result of Hille and Phillips [11, Theorem 18.8.4] deals with
the uniform Abel ergodicity of semigroups of class (A), a class slightly larger than
C0-semigroups, under the assumption ω0 ≤ 0. More precisely, they have shown
that T (t) is uniformly Abel ergodic if and only if λ2R(λ, A)x −→ 0 as λ → 0+

for every x ∈ X and X = R(A) ⊕ N (A). Furthermore, if T (t) is uniformly Abel
ergodic, then R(Am) = R(A) for all m ∈ N∗. A relevant result was obtained by
Shaw [19] for a locally integrated semigroup, under an assumption weaker than
ω0 ≤ 0, which means T (t) is uniformly Cesàro ergodic if and only if it satisfies the
following conditions:

(i) The Laplace transformation Rλ exists for every λ > 0.
(ii) ∥T (t)Rλ∥/t −→ 0 as t → ∞ for some λ > 0.
(iii) T (t) is uniformly Abel ergodic.

The condition (i) holds whenever ω0 ≤ 0. Let us also mention that somewhat
different necessary and sufficient conditions are obtained in [4, 20]. Clearly, if T (t)
is uniformly Cesàro ergodic, then it is uniformly Abel ergodic, but the reverse is
not true; for more information see [14, Chapter 2]. It is useful to mention that the
limits of Cesàro averages and of Abel averages of the C0-semigroup {T (t)}t≥0 are
the same, namely, the projection P of X onto N (A) parallel to R(A), corresponding
to the ergodic decomposition

X = R(A) ⊕ N (A).
The classical uniform ergodic theorem for C0-semigroups of bounded linear op-

erators on a Banach space X goes back to Lin [16]. He treats the uniform ergodicity
of a C0-semigroup {T (t)}t≥0 under the assumption lim

t→∞
∥T (t)∥/t = 0. It showed

that T (t) is uniformly ergodic if and only if its infinitesimal generator A has a
closed range if and only if T (t) is uniformly Abel ergodic. In this case, and under
this latter assumption, we can easily check that T (t) is uniformly Abel ergodic if
and only if X = R(A) ⊕ N (A). Furthermore, this theory also plays an important
role in the study of power convergence of linear operators. Recall that an oper-
ator T ∈ B(X ) is called uniformly power convergent if there exists an operator
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P ∈ B(X ) such that lim
n→∞

∥T n − P∥ = 0. Recently, Lin, Shoikhet, and Suciu [17]
showed that, for a C0-semigroup {T (t)}t≥0 on B(X ) satisfying lim

t→∞
∥T (t)∥/t = 0,

T (t) is uniformly ergodic if and only if there exists some λ > 0 such that the Abel
average A(λ) of T (t) is uniformly power convergent on B(X ). Kozitsky, Shoikhet,
and Zemànek [13] obtained a necessary and sufficient condition for which the Abel
average of {T (t)}t≥0 can be uniformly power convergent. Further conditions have
been obtained more recently by several authors [7, 17, 22].

In our paper [3], we studied the convergence of the Cesàro averages and the
Abel averages of an integrated semigroup {S(t)}t≥0 ⊂ B(X ). More precisely, we
have shown that, if S(t) satisfies S(t)/t2 −→ 0 as t → ∞, then S(t) is uniformly
Cesàro ergodic if and only if S(t) is uniformly Abel ergodic, if and only if R(Ak) is
closed for some integer k ≥ 1. In the same direction, we continue the development
of ergodic theory in this class of α-times integrated semigroup {T (t)}t≥0 ⊂ B(X ).
The purpose of this paper is to give necessary and sufficient conditions for the
Abel averages of an α-times integrated semigroup to converge in the norm operator
topology. If A is the generator of an α-times integrated semigroup {T (t)}t≥0 on
B(X ), we show that the following conditions are equivalent:

(i) T (t) is uniformly Abel ergodic.
(ii) X = R(A) ⊕ N (A), with R(A) closed.
(iii) ∥λ2R(λ, A)∥ −→ 0 as λ → 0+ and R(A) is closed.
(iv) ∥λ2R(λ, A)∥ −→ 0 as λ → 0+ and R(Ak) is closed for some integer k;
(v) A is a-Drazin invertible and R(Ak) is closed for some k ≥ 1.
(vi) A is group invertible in the sense of Definition 2.1 with Ad = Aad.

Also, we show that if T (t) satisfies lim
t→∞

∥T (t)∥/tα+1 = 0, then T (t) is uniformly

Abel ergodic if and only if 1
tα+1

∫ t

0
T (s) ds converges in B(X ) as t → ∞.

Additionally, we examine this theory with the uniform power convergence of the
Abel average A(λ) for some λ > 0, until we prove that T (t) is uniformly Abel
ergodic if and only if the Abel average A(λ) for some λ > 0 is uniformly power
convergent.

2. Preliminaries

We start by recalling an interesting concept in operator theory that we need
in what follows. Let A be a closed linear operator with domain D(A) ⊂ X ; the
smallest non-negative integer p such that N (Ap) = N (Ap+1) is called the ascent
of A and denoted by asc(A). If such an integer does not exist, we set asc(A) = ∞.
Likewise, the smallest integer q such that R(Aq) = R(Aq+1) is called the descent
of A and denoted by des(A). If such an integer does not exist, we set des(A) = ∞.
Let A be a bounded linear operator on a Banach space X . If asc(A) and des(A)
are both finite, then asc(A) = des(A), which is not true if A is an operator (see [23,
Theorem 6.2]). Generally, if A is a closed linear operator, we have the following
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equivalence:

asc(A) = p < ∞ ⇐⇒ R(Ap) ∩ N (Aj) = {0}, j = 1, 2, . . . .

But the equivalence below is satisfied only if A belongs to B(X ):

des(A) = q < ∞ ⇐⇒ X = R(Aj) + N (Aq), j = 1, 2, . . . .

The first implication is not satisfied when A is a closed linear operator.

Recall that, for A a closed linear operator with domain D(A) ⊂ X , if there is
an operator S ∈ B(X ) with R(S) ⊆ D(A) such that SAS = S, ASx = SAx for all
x ∈ D(A), and Ak(I − AS) = 0 for some k ∈ N, then S is called a Drazin inverse
of A. Note that a closed linear operator A has a Drazin inverse if and only if there
exists k ∈ N such that a(A) = d(A) = k and X = R(Ak) ⊕N (Ak); for more details
we refer the reader to [5, 12].

The operator A has the conventional Drazin inverse if and only if 0 is at most a
pole of the resolvent function of A; this occurs if and only if, for some m ∈ N,

R(Am+1) = R(Am) and N (Am+1) = N (Am).

A special case of the Drazin inverse is the group inverse, defined as follows.

Definition 2.1 ([6, Definition 1.1]). Let A be a closed linear operator with domain
D(A) ⊂ X . We say that A is group invertible with the group inverse Ad ∈ B(X ) if

(i) R(Ad) ∪ R(I − AAd) ⊂ D(A),
(ii) for all x ∈ D(A), AAdx = AdAx, AdAAd = Ad, and AAdAx = Ax.

The definition was later extended by Butzer and Koliha [6] to introduce the
a-Drazin inverse of a closed linear operator A defined as follows.

Definition 2.2 ([6, Definition 2.5]). Let A be a closed linear operator with domain
D(A) ⊂ X . Then A is called a-Drazin invertible if

(i) R(A) ∩ N (A) = {0} and the space R(A) ⊕ N (A) is closed in X ,
(ii) R(A) ⊂ R(A2).

The a-Drazin inverse of A, denoted by Aad, is unique if it exists, and it is given
by

Aad = (I − P )(A + P )−1,

where P is the spectral projection of A at 0.
Generally, one of the main reasons for our interest in the a-Drazin inverse Aad of

the infinitesimal generator A of an operator semigroup is that, at least in the case of
holomorphic semigroups, Aad acts as the infinitesimal generator for an associated
semigroup. For basic concepts of operator theory of closed linear operators, we
refer the reader to [6, 9].

Now, we recall the notion of α-times integrated semigroup, which is a general-
ization of the C0-semigroup. Let β ≥ −1 and f be a continuous function. The
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convolution jβ ∗ f is defined, for all t ≥ 0, by

jβ ∗ f(t) =


∫ t

0

(t − s)β

Γ(β + 1) f(s) ds if β > −1,∫ t

0
f(t − s) dδ0(s) if β = −1,

where Γ is the Euler integral given by Γ(β + 1) =
∫ +∞

0
xβe−x dx, j−1 = δ0 the

Dirac measure, and, for all β > −1,

jβ : ]0, +∞[ → R

t 7→ tβ

Γ(β + 1) .

A strongly continuous semigroup {T (t)}t≥0 on B(X ) is called an α-times inte-
grated semigroup [10], where α > 0, if T (0) = 0 and, for all t, s ≥ 0,

Tn(t)Tn(s) =
∫ t+s

t

(s + t − r)n−1

Γ(n) Tn(r) dr −
∫ s

0

(s + t − r)n−1

Γ(n) Tn(r) dr, (2.1)

where n − 1 < α ≤ n and Tn(t)(x) = (jn−α−1 ∗ T )(x) for all x ∈ X .
By the identity (2.1) the following equality holds for all t, s ≥ 0:

T (t)T (s) = T (s)T (t).

Conversely, let α ≥ 0 and let A be a linear operator on a Banach space X . A is
the generator of an α-times integrated semigroup [10, Definition 2.2] if, for some
ω ∈ R, we have ]ω, +∞[ ⊆ ρ(A) and there exists a strongly continuous mapping
T : [0, +∞[ → B(X ) satisfying

∥T (t)∥ ≤ Meωt for all t ≥ 0 and some M > 0,

R(λ, A) = λα

∫ +∞

0
e−λtT (t) dt for all λ > max{ω, 0}.

In this case, {T (t)}t≥0 is called the α-times integrated semigroup, and the domain
of its generator A is defined by

D(A) =
{

x ∈ X :
∫ t

0
T (s)Ax ds = T (t)x − tαx

Γ(α + 1)

}
.

For convenience we call a C0-semigroup also 0-times integrated semigroup and
the integrated semigroup is also a 1-times integrated semigroup. Recall that, if
R(λ0, A) exists for a number λ0, then R(λ, A) exists for all λ with Re λ > Re λ0.

Let us denote

S(A) := inf{u ∈ (∞, ∞) : R(λ, A) exists for all λ with Re λ > u}.

Example 2.3. (1) An important example of generators of an α-times inte-
grated semigroup, with α > 0, is the adjoint A∗ on X ∗, where A is the
infinitesimal generator of a C0-semigroup on a Banach space X .
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In particular [10, Examples 3.8], we consider X = L1(R) and we define
the linear operator by

Af = −f ′ for all f ∈ D(A),

with D(A) := {f ∈ X : f is continuous and f ′ ∈ X }. Since X ∗ = L∞(R),
the adjoint A∗ of A is defined by

A∗f = f ′ for all f ∈ D(A∗),

where D(A∗) = {f ∈ X ∗ : f continuous and f ′ ∈ X ∗}. Therefore, A∗ is a
generator of an α-times integrated semigroup and R(λ, A∗) exists for all λ
with Re λ ≥ 0, which means that S(A∗) < 0.

(2) We consider X = ℓ2 and the family {T (t)}t≥0 of bounded linear operators
on X defined by

T (t)(xn)n∈N∗ =
(∫ t

0
eans dsxn

)
n∈N∗

.

Then {T (t)}t≥0 is an integrated semigroup on X .
(3) Let X = C([0, ∞]) and consider the derivation operator Af = −f ′ for all

f ∈ D(A), with D(A) = {f ∈ C1([0, 1]) : f(0) = 0}. Since the domain
D(A) is not dense in X , A cannot be an infinitesimal generator of a C0-
semigroup. Furthermore, the semigroup T (t) generated by A is given by

(
T (t)f

)
(x) =


−

∫ x−t

x

f(s) ds if x > t,∫ 0

x

f(s) ds if 0 ≤ x ≤ t.

Note that T (t) is an integrated semigroup of type S(A) < 0, which means
that R(λ, A) exists for all λ with Re λ ≥ 0.

Definition 2.4. Let {T (t)}t≥0 be an integrated semigroup on B(X ). We say that
{T (t)}t≥0 is uniformly Abel ergodic if the Abel average of T (t) defined by

A(λ) = λα+1
∫ ∞

0
e−λtT (t) dt for t ≥ 0

converges in the norm operator topology as λ → 0+.

The next two propositions were investigated by Arendt [1] in the case of an
n-times integrated semigroup on B(X ), where n ∈ N. These results have been
generalized by Hieber [10] to the α-times integrated semigroup with α ∈ R+.

Proposition 2.5 ([10, Proposition 2.4]). Let A be the generator of an α-times
integrated semigroup {T (t)}t≥0 on B(X ), where α ≥ 0. Then for all x ∈ D(A) and
all t ≥ 0:

(1) T (t)x ∈ D(A) and AT (t)x = T (t)Ax.

(2) T (t)x = tα

Γ(α + 1)x +
∫ t

0
T (s)Ax ds.
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(3) For all x ∈ X ,
∫ t

0
T (s)x ds ∈ D(A), and

A

∫ t

0
T (s)x ds = T (t)x − tα

Γ(α + 1)x.

Theorem 2.6 ([21, Theorem 2.7]). Let A be the generator of an α-times integrated
semigroup {T (t)}t≥0 in B(X ), where α ≥ 0. If lim

t→∞
∥T (t)∥/t = 0 and R(A) is

closed, then 1
tα+1

∫ t

0
T (s) ds converges uniformly for all α ≥ 0.

3. Main results

The following lemmas are among the most widely used results of this paper.
The first lemma was proved in our paper [21] and the second is obviously derived
from the first.

Lemma 3.1 ([21, Lemma 2.3]). Let A be the generator of an α-times integrated
semigroup {T (t)}t≥0 on B(X ) with α ≥ 0. Then we have the following assertions:

(1) R(A) =
(
λR(λ, A) − I

)
X .

(2) N (A) =
{

x ∈ X : T (t)x = tα

Γ(α+1) x for all t ≥ 0
}

= {x ∈ X : λR(λ, A)x = x}.

Lemma 3.2. Let A be the generator of an α-times integrated semigroup {T (t)}t≥0
on B(X ) with α ≥ 0. Let X0 be a closed subspace of X defined by X0 = N (A) ⊕
R(A) and P be the projection operator of X0 onto N (A) parallel to R(A). Then

λR(λ, A)x − Px = λR(λ, A)(I − P )x for all x ∈ X0.

Next, we need the following auxiliary results to prove our main theorem.

Lemma 3.3. Let A be the generator of an α-times integrated semigroup {T (t)}t≥0
on B(X ) with α ≥ 0. If ∥λ2R(λ, A)∥ −→ 0 as λ → 0+, then R(A) ∩ N (A) = {0},
which yields asc(A) ≤ 1.

Proof. We assume that ∥λ2R(λ, A)∥ −→ 0 as λ → 0+. Let y ∈ R(A) ∩ N (A). It
follows from the second assertion of Lemma 3.1 that

λR(λ, A)y = y for all λ ∈ ρ(A).

Since R(A) = R
(
λR(λ, A) − I

)
, there exist x ∈ X and M > 0 such that

y =
(
λR(λ, A) − I

)
x and ∥x∥ ≤ M∥y∥.

By the resolvent equation,
R(λ, A) − R(µ, A) = (µ − λ)R(λ, A)R(µ, A) for all λ ̸= µ ∈ ρ(A).

We get the following inequality for all λ, µ > 0:
∥λR(λ, A)y∥ ≤ |µ − λ|−1[

∥λ2R(λ, A)∥ + |λ|∥µR(µ, A)∥
]
∥x∥

≤ M |µ − λ|−1[
∥λ2R(λ, A)∥ + |λ|∥µR(µ, A)∥

]
∥y∥.

Rev. Un. Mat. Argentina, Vol. 65, No. 2 (2023)



ABEL ERGODIC THEOREMS FOR α-TIMES INTEGRATED SEMIGROUPS 575

Therefore, λR(λ, A)y −→ 0 as λ → 0+. Since λR(λ, A)y = y for λ > 0, we have
y = 0. Consequently, R(A) ∩ N (A) = {0}, which yields asc(A) ≤ 1. □

The first main result of this paper is the following theorem.

Theorem 3.4. Let A be the generator of an α-times integrated semigroup {T (t)}t≥0
on B(X ), where α ≥ 0. Then the following assertions are equivalent:

(1) T (t) is uniformly Abel ergodic.
(2) X = R(A) ⊕ N (A), with R(A) closed.
(3) ∥λ2R(λ, A)∥ −→ 0 as λ → 0+ and R(A) is closed.

Proof. (1) =⇒ (2) It is known from the mean ergodic theorem [25, p. 217] that if
there exists an operator P ∈ B(X ) such that ∥λR(λ, A) − P∥ −→ 0 as λ → 0+,
then P is the projection onto N

(
λR(λ, A) − I

)
along

(
λR(λ, A) − I

)
X , and by

Lemma 3.1, we get
X = R(A) ⊕ N (A).

(2) =⇒ (3) Assume that X = R(A) ⊕ N (A), where R(A) is closed in X . It is
easy to show that ∥λ2R(λ, A)|N (A)∥ −→ 0 when λ → 0+. So, to complete the proof
we show that ∥λ2R(λ, A)|R(A)∥ −→ 0 when λ → 0+. Set Y = R(A) and let A1
be the generator of the restriction of T (t) to Y , which is equal to the restriction of
A to Y ∩ D(A). It is shown in Lemma 3.1 that Y = R

(
λR(λ, A) − I

)
and by the

decomposition, the operator
(
λR(λ, A) − I

)
is invertible on Y . Let y ∈ Y ∩ D(A)

such that A1y = 0, hence

y = R(λ, A)(λ − A)y
= λR(λ, A)y − R(λ, A)Ay

= λR(λ, A)y − R(λ, A)A1y

= λR(λ, A)y.

Then y ∈ N
(
λR(λ, A) − I

)
, which implies that y = 0. Thus A1 is one-to-one.

Clearly, we have R(λ, A)Y ⊂ Y ; hence we obtain that
(
λR(λ, A) − I

)
Y ⊂ R(A1).

Then, we get the following:

Y ⊃ R(A1) ⊃
(
λR(λ, A) − I

)
Y =

(
λR(λ, A) − I

)
X = R(A) = Y.

Hence Y = R(A1), so A−1
1 is defined on all Y ; since A1 is closed, A−1

1 is also closed,
and by the closed graph theorem A−1

1 is continuous.
Let 0 < λ < δ <

1
∥A−1

1 ∥
and y ∈ Y ; we get

∥λ2R(λ, A)y∥ = ∥λ2R(λ, A)A1A−1
1 y∥

≤ ∥λ2(
λR(λ, A) − I

)
∥ ∥A−1

1 ∥ ∥y∥.

Hence

∥λ2R(λ, A)y∥ ≤ λ2(
∥λR(λ, A)∥ + 1

)
∥A−1

1 ∥ ∥y∥.
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Also, we have
∥λR(λ, A)∥ ≤ δ

(
∥λR(λ, A)∥ + 1

)
∥A−1

1 ∥.

Then, we get

∥λR(λ, A)∥ ≤ δ∥A−1
1 ∥

1 − δ∥A−1
1 ∥

= M.

Therefore,
∥λ2R(λ, A)y∥ ≤ ∥λ2(

λR(λ, A) − I
)
∥ ∥A−1

1 ∥ ∥y∥
≤ λ2(

∥λR(λ, A)∥ + 1
)

∥A−1
1 ∥ ∥y∥

≤ λ2(M + 1) ∥A−1
1 ∥ ∥y∥,

which implies that ∥λ2R(λ, A)|Y ∥ −→ 0 as λ → 0+. Hence the assertion (3) holds.
(3) =⇒ (1) We suppose that ∥λ2R(λ, A)∥ −→ 0 as λ → 0+, and R(A) is closed.

By Lemma 3.1, we have R(A) =
(
λR(λ, A) − I

)
X , which means that, for all

λ > 0, the operator λR(λ, A) − I has a closed range. Fix µ > 0 such that, for each
y ∈

(
µR(µ, A)−I

)
X , there exists M > 0 and x ∈ X such that y =

(
µR(µ, A)−I

)
x

and ∥x∥ ≤ M∥y∥. So we have
λR(λ, A)

(
µR(µ, A) − I

)
= λµR(λ, A)R(µ, A) − λR(λ, A).

By the resolvent equation, we obtain
λR(λ, A)

(
µR(µ, A) − I

)
= λµR(λ, A)R(µ, A) − λ(µ − λ)R(λ, A)R(µ, A) − λR(µ, A)
= λ2R(λ, A)R(µ, A) − λR(µ, A)
= λ2(µ − λ)−1[

R(λ, A) − R(µ, A)
]

− λR(µ, A)
= (µ − λ)−1[

λ2R(λ, A) − λµR(µ, A)
]
.

This gives
∥λR(λ, A)y∥ = ∥λR(λ, A)

(
µR(µ, A) − I

)
x∥

=
∥∥(µ − λ)−1[

λ2R(λ, A) − λµR(µ, A)
]
x

∥∥
≤ |µ − λ|−1[

∥λ2R(λ, A)∥ + |λ| ∥µR(µ, A)∥
]

M∥y∥.

Hence ∥λR(λ, A)|(λR(λ,A)−I)X ∥ −→ 0 as λ → 0+. Then for a small λ > 0, the
operator λR(λ, A) − I is invertible on

(
λR(λ, A) − I

)
X ; therefore,(

λR(λ, A) − I
)2X =

(
λR(λ, A) − I

)
X ,

which yields X =
(
λR(λ, A) − I

)
X + N

(
λR(λ, A) − I

)
, and the summation is

direct by Lemma 3.3. Since λR(λ, A)|N (λR(λ,A)−I) converge to the identity I when
λ → 0+, λR(λ, A) converges uniformly. Hence the assertion (1) holds. □

Now, we recall the following lemma.

Lemma 3.5 ([4, Lemma 3.10]). Let A ∈ C(X ) with domain D(A) ⊂ X such that
asc(A) = d < ∞. If either of the following hold,
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(i) R(An) is closed for some n > d, or
(ii) R(Aj) + N (Ak) is closed for some positive integers j, k with j + k = n ≥ d,

then R(An) is closed for all n ≥ d, and R(Aj) + N (Ak) is closed for all integers
j, k with j + k ≥ d.

From the previous lemma and Theorem 3.4, we infer the following corollary.
Corollary 3.6. Let A be the generator of an α-times integrated semigroup {T (t)}t≥0
on B(X ), where α ≥ 0. Then the following assertions are equivalent:

(1) T (t) is uniformly Abel ergodic.
(2) ∥λ2R(λ, A)∥ −→ 0 as λ → 0+, and R(Ak) is closed for some integer k.
(3) ∥λ2R(λ, A)∥ −→ 0 as λ → 0+, and R(Ak) + N (Aj) is closed for some

integers k and j.
The second main result of this paper can be stated as follows.

Theorem 3.7. Let A be the generator of an α-times integrated semigroup {T (t)}t≥0
on B(X ), where α ≥ 0. Then T (t) is uniform Abel ergodic if and only if the a-Drazin
inverse Aad of A exists and is bounded, with

Aadx = lim
λ→0+

λ−2Px − R(λ2, A) for all x ∈ X .

Proof. By means of Theorem 3.4, T (t) is uniformly Abel ergodic; then there exists
an operator P ∈ B(X ) such that ∥A(λ) − P∥ −→ 0 as λ → 0+, where P is the
projection onto N (A) along R(A) corresponding to the ergodic decomposition

X = R(A) ⊕ N (A).
From Definition 2.2, we easily check that A is a-Drazin invertible and

Aad = (I − P )(A + P )−1.

Let us show that Aad is bounded. Indeed, let x ∈ D(Aad); then x = Ag + Px for
some g ∈ R(A) ∩ D(A), and Aadx = g. Moreover, if x ∈ N (A), then x = Px,
so we get Ag = 0, which means that g ∈ N (A). Since g ∈ R(A) ∩ D(A) and
R(A)∩N (A) = {0}, we have g = 0. Consequently, N (A) ⊂ N (Aad). On the other
hand, if x ∈ R(A), then Px = 0, which gives x = Ag. Since R(A) is closed, there
exists M > 0 such that ∥g∥ ≤ M∥x∥. Therefore,

∥Aadx∥ = ∥g∥ ≤ ∥g +
(
R(λ, A)x − λ−1Px

)
∥

≤ ∥g + R(λ, A)Ag∥
≤ ∥g +

(
λR(λ, A)g − g

)
∥

≤ ∥λR(λ, A)g∥
≤ M∥λR(λ, A)∥∥x∥.

Then, from the decomposition of X , it follows that Aad is bounded.
Next, we show that Aadx = lim

λ→0+
λ−1Px − R(λ, A)x. Indeed, let x ∈ D(Aad),

where D(Aad) is the domain of Aad; then we have
x = Ag + Px for some g ∈ R(A) ∩ D(A) and Aadx = g.
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From Lemma 3.2, we get
R(λ, A)x − λ−1Px + Aadx = R(λ, A)(I − P )x + Ax

= R(λ, A)Ag + g.

Using the identity AR(λ, A)x =
(
λR(λ, A) − I

)
, we get

R(λ, A)x − λ−1Px + Aadx =
(
λR(λ, A)g − Ig

)
+ g

= λR(λ, A)g.

Since R(A) = N (P ) and g ∈ R(A)∩D(A), λR(λ, A)g −→ 0 as λ → 0+. Therefore,
Aadx = lim

λ→0+
λ−1Px − R(λ, A).

Conversely, suppose that the a-Drazin inverse Aad of A exists and is bounded,
which means D(Aad) = X ; then by Definition 2.2, we get

X = R(A) + N (A) and R(A) ⊆ R(A2). (3.1)

Then, for any x ∈ X , we have x = Ay + Px with Aadx = y and P is the spectral
projection of A on 0, corresponding to the above decomposition. Then, we can write
x = x1 + x2 such that x1 ∈ R(A) and x2 ∈ N (A). Since N (A) = N (λR(λ, A) − I)
which coincides with the set of fixed points of T (t), λR(λ, A) converges to I on
N (A). To complete the proof, let us show that λR(λ, A) converges to 0 on R(A).
Indeed, let x ∈ X ; then there exists x1 ∈ R(A) and x2 ∈ N (A) such that x =
x1 + x2. So, we get x = Ay + Px = Ay + Px2 with Aadx = y, hence we obtain
x1 = Ay and y = Aadx1.

Now, let 0 < λ < δ <
1

∥Aad∥
; then

∥λR(λ, A)x1∥ = ∥λR(λ, A)Ay∥
≤ ∥λ

(
λR(λ, A)y − Iy

)
∥

≤ ∥λ
(
λR(λ, A) − I

)
∥∥Aad∥∥x1∥

≤ λ
(
∥λR(λ, A)∥ + 1

)
∥Aad∥∥x1∥.

So, we get ∥λR(λ, A)∥ ≤ δ∥
(
λR(λ, A)∥ + 1

)
∥Aad∥.

It follows that
∥λR(λ, A)∥ ≤ δ

(
∥λR(λ, A)∥ + 1

)
∥Aad∥.

Then, we obtain ∥λR(λ, A)∥ ≤ δ∥Aad∥
1 − δ∥Aad∥

. Therefore,

∥λR(λ, A)x1∥ ≤ ∥λ
(
λR(λ, A) − I

)
∥ ∥Aad∥ ∥x1∥

≤ λ

(
1 + δ∥Aad∥

1 − δ∥Aad∥

)
∥Aad∥ ∥x1∥,

which implies that λR(λ, A) −→ 0 as λ → 0+ on R(A).
Finally, by the decomposition (3.1), we get that T (t) is uniformly Abel ergodic.

□
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The following corollary is an immediate consequence of Theorem 3.4, Theo-
rem 3.7, and Lemma 3.5.

Corollary 3.8. Let {T (t)}t≥0 be an α-times integrated semigroup on B(X ) gener-
ated by A, with α ≥ 0. The following conditions are equivalent:

(1) T (t) is uniformly Abel ergodic.
(2) The point 0 is a simple pole of the resolvent R(λ, A) of A.
(3) A is a-Drazin invertible and R(A) is closed.
(4) A is a-Drazin invertible and R(Ak) is closed for some k ≥ 1.
(5) A is a-Drazin invertible and R(A) + N (A) is closed.
(6) A is a-Drazin invertible and the descent d(A) of A is finite.
(7) A is group invertible in the sense of Definition 2.1 with Ad = Aad.

Next, we give the following result which proves that the study of the convergence
of Abel averages A(λ) of an α-times integrated semigroup {T (t)}t≥0 can be limited
to studying the convergence ∥A(λ)|R(A)∥ −→ 0 as λ → 0+, where R(A) is closed.

Proposition 3.9. Let A be the generator of an α-times integrated semigroup
{T (t)}t≥0 on B(X ), with α ≥ 0. Then, T (t) is uniformly Abel ergodic if and
only if R(A) is closed and ∥A(λ)|R(A)∥ −→ 0 as λ → 0+.

Proof. The necessary part of this proposition is obvious.
Conversely, let R(A) be closed and ∥λR(λ, A)|R(A)∥ −→ 0 as λ → 0+, where

R(λ, A)|R(A) is the restriction of R(λ, A) to R(A). Since R(A) =
(
λR(λ, A)−I

)
X ,∥∥λR(λ, A)|(λR(λ,A)−I)X

∥∥ −→ 0 as λ → 0+. Then, for a small λ, the operator(
λR(λ, A) − I

)
|(λR(λ,A)−I)X is invertible. Therefore,

R
(
λR(λ, A) − I

)
= R

(
(λR(λ, A) − I)|R(A)

)
= R

[(
λR(λ, A) − I

)2]
.

Hence
X = R

(
λR(λ, A) − I

)
+ N

(
λR(λ, A) − I

)
. (3.2)

Now, let y ∈ R
(
λR(λ, A) − I

)
∩ N

(
λR(λ, A) − I

)
, so λR(λ, A)y = y for all λ > 0,

and by assumption λR(λ, A)y −→ 0 as λ → 0+; hence y = 0, which means that
R

(
λR(λ, A) − I

)
∩ N

(
λR(λ, A) − I

)
= {0}.

Then, the summation in (3.2) is direct. Finally, Theorem 3.4 implies that T (t) is
uniformly Abel ergodic. □

Now, we present our third main result as follows. Theorems of this nature are
referred to in the literature as ergodic theorems.

Theorem 3.10. Let A be the generator of an α-times integrated semigroup
{T (t)}t≥0 on B(X ), with α ≥ 0. Assume that lim

t→∞
∥T (t)∥/tα+1 = 0. Then the

following assertions are equivalent:
(1) T (t) is uniformly Abel ergodic.
(2) R(Ak) is closed for some integer k ≥ 1.

(3) There exists P ∈ B(X ) such that lim
t→∞

∥∥∥ 1
tα+1

∫ t

0
T (s) ds − P

∥∥∥ = 0.

Rev. Un. Mat. Argentina, Vol. 65, No. 2 (2023)



580 FATIH BARKI AND ABDELAZIZ TAJMOUATI

We need the following auxiliary result to prove this theorem.

Lemma 3.11. Let A be the generator of an α-times integrated semigroup {T (t)}t≥0
on B(X ), with α ≥ 0. If T (t) satisfies lim

t→∞
∥T (t)∥/tα+1 = 0, then

lim
λ→0+

∥λ2R(λ, A)∥ = 0.

Proof. Let {T (t)}t≥0 be an α-times integrated semigroup on B(X ), where α ≥ 0
such that lim

t→∞
∥T (t)∥/tα+1 = 0. Then, there exist ε > 0 and a > 0 such that

∥T (t)∥ ≤ εtα+1 for all t > a.

Using the resolvent equation, we obtain, for all x ∈ X ,
∥λ2R(λ, A)x∥ =

∥∥λ2[
R(µ, A) + (µ − λ)R(λ, A)R(µ, A)

]
x

∥∥
≤ ∥λ2R(µ, A)

∥∥∥x∥ + |µ − λ|λ2∥∥R(λ, A)R(µ, A)x
∥∥

≤ ∥λ2R(µ, A)
∥∥∥x∥ + |µ − λ|λα+2

∫ ∞

0
e−λt

∥∥T (t)R(µ, A)x
∥∥ dt

≤ ∥λ2R(µ, A)
∥∥∥x∥ + |µ − λ|

[
λα+2

∫ a

0
e−λt

∥∥T (t)R(µ, A)x
∥∥ dt

+ ελα+2
∫ ∞

a

e−λttα+1∥R(µ, A)x∥ dt
]
.

It is known that, for any operator P ∈ B(X ) and all λ ∈ C,

λα+2
∫ ∞

0
e−λttα+1P dt = (α + 1)!P for all α, t ≥ 0.

Therefore,

∥λ2R(λ, A)x∥ ≤ ∥λ2R(µ, A)
∥∥∥x∥ + |µ − λ|

[
λα+2a

(
sup
t≤a

∥T (t)∥∥R(µ, A)∥
)

+ ε(α + 1)!∥R(µ, A)∥
]
∥x∥.

It is easily seen from the above estimate that ∥λ2R(λ, A)∥ −→ 0 when λ → 0+. □

Proof of Theorem 3.10. (1) ⇐⇒ (2) It follows from Lemma 3.11 and Corollary 3.6.
(1) =⇒ (3) Assume that T (t) is uniformly Abel ergodic. Then by Theorem 3.4,

we obtain the decomposition X = R(A) ⊕ N (A), with R(A) closed, and from
Lemma 3.1, we have

(i) R(A) =
(
λR(λ, A) − I

)
X .

(ii) N (A) =
{

x ∈ X : T (t)x = tα

Γ(α + 1)x for all t ≥ 0
}

= {x ∈ X : λR(λ, A)x = x}.
By hypothesis and through a simple calculation, we get

lim
t→∞

∥∥∥ 1
tα+1

∫ t

0
T (s)x ds − Ix

(α + 1)Γ(α + 1)

∥∥∥ = 0 for all x ∈ N (A).
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So, to complete the proof, we show that
∥∥∥ 1

tα+1

∫ t

0
T (s)y ds

∥∥∥ −→ 0 when t → ∞

for all y ∈ R(A). Let A1 be the generator of the restriction of T (t) to R(A),
which is equal to the restriction of A to R(A) ∩ D(A). It was shown in the proof of
Theorem 3.4 that A−1

1 is defined on all R(A) and continuous, then for all y ∈ R(A),
there exists x ∈ D(A) such that y = A1x and ∥x∥ ≤ ∥A−1

1 ∥∥y∥. The second
assertion of Proposition 2.5 implies that, for all x ∈ D(A), we have∫ t

0
T (s)Ax ds = T (t)x − tα

Γ(α + 1)x.

It follows that we get∥∥∥ 1
tα+1

∫ t

0
T (s)y ds

∥∥∥ =
∥∥∥ 1

tα+1

[
T (t)x − tα

Γ(α + 1)x
]∥∥∥

≤
∥∥A−1

1
∥∥[∥∥∥ T (t)

tα+1

∥∥∥ +
∥∥∥ 1

tΓ(α + 1)

∥∥∥]
∥y∥.

Then lim
t→∞

∥∥∥ 1
tα+1

∫ t

0
T (s)y ds

∥∥∥ = 0 for all y ∈ R(A). Hence the assertion (3) holds.

(3) =⇒ (1) Let I(t) =
∫ t

0
T (s) ds for all t ≥ 0, and C(t) = 1

tα+1

∫ t

0
T (s) ds. We

assume that there exists an operator P ∈ B(X ) such that lim
t→∞

∥C(t) − P∥ = 0. So,
there exist ε > 0 and a > 0 such that ∥C(t) − P∥ ≤ ε for all t > a.

Now, we use integration by parts to get the following identity:

R(λ, A) = λα+1
∫ ∞

0
e−λtI(t) dt for all λ > 0 and t ≥ 0.

Then for every x ∈ X , we have∥∥∥λR(λ, A)x − (α + 1)!Px
∥∥∥ =

∥∥∥λR(λ, A) − λα+2
∫ ∞

0
e−λttα+1P dt

∥∥∥
=

∥∥∥λα+2
∫ ∞

0
eλtI(t) dt − λα+2

∫ ∞

0
e−λttα+1E dt

∥∥∥
= λα+2

∥∥∥ ∫ ∞

0
e−λt

(
I(t) − tα+1P

)
dt

∥∥∥
≤

[∣∣λα+2∣∣ ∫ a

0
e−λt

(∥∥I(t)
∥∥ + tα+1∥∥P

∥∥)
dt

+
∣∣λα+2∣∣ ∫ ∞

a

e−λttα+1∥∥C(t) − P
∥∥ dt

]
∥x∥

≤
[∣∣λα+2∣∣a(

sup
t≤a

∥∥I(t)
∥∥ + aα+1∥∥P

∥∥)
+ (α + 1)!ε

]
∥x∥.

Then the above estimate implies that
∥∥λR(λ, A) − (α + 1)!P

∥∥ −→ 0 when λ → 0+,
which means that T (t) is uniformly Abel ergodic, and the proof is finished. □
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Remark 3.12. Let A be the generator of an α-times integrated semigroup {T (t)}t≥0
on B(X ), where α ≥ 0.

(1) If we assume that α = 0 in Theorem 3.10, we get the uniform ergodic
theorem proved by Lin in [16].

(2) If T (t) is of type α ≥ 1 satisfying lim
t→∞

∥T (t)∥/t = 0, then it follows from
Lemma 3.1 that A is one-to-one. In this case, if the Abel average is con-
vergent, it will converge to zero.

(3) If T (t) is of type α > 0 satisfying lim
t→∞

∥T (t)∥/t = 0 and their genera-
tor A has a closed range, the strong limit of Cesàro averages C(t) :=
1
t

∫ t

0
T (s) ds may be divergent, as the following example shows.

Example. Hieber showed in [10] that if an operator A generates a C0-semigroup on
a Banach space X , then its adjoint A∗ generates an α-times integrated semigroup
on X ∗ for all α > 0. In particular, let X be the set of all Lebesgue measurable
functions and let f : X → [0, ∞] such that

∥f∥ :=
(∫ ∞

0
eps2

|f(s)|p ds

) 1
p

+
(∫ ∞

0
|f(s)|q ds

) 1
q

< ∞ for 1 ≤ p < q < ∞.

Then (X , ∥.∥) is a reflexive Banach space whenever p > 1.
Now, let {T (t)}t≥0 be the C0-semigroup defined by(

T (t)f
)
(s) := f(t + s) for all f ∈ X and s, t ≥ 0.

Hence T (t) is of type ω0 = 0 and ∥T (t)∥ = 1 for all t ≥ 0, where ω0 is the growth
bound of T (t). Thus lim

t→∞
∥T (t)∥/t = 0. Further, their infinitesimal generator is

defined by A = d/dt and has empty spectrum. Then∥∥λR(λ, A)
∥∥ =

∥∥λ(λ − A)−1∥∥ → 0 as λ → 0+.

Hence T (t) is uniformly Abel ergodic to 0. Since T (t) are positive operators for all
t ≥ 0, we have, for every function f ∈ X ,

1
t

∫ t

0
T (s)f ds ≤ 1

t

∫ t

0
e1−s/tT (s)f ds

≤ eµ

∫ ∞

0
e−µsT (s)f ds with µ = 1

t
.

Then, ∥∥∥1
t

∫ t

0
T (s) ds

∥∥∥ ≤
∥∥eµR(µ, A)

∥∥.

Consequently, it follows from the above estimate that T (t) is uniformly Cesàro
ergodic to 0 when t → ∞, and the ergodic decomposition is given by X = R(A).

By Hieber’s remark, the adjoint A∗ generates an α-times integrated semigroup
{T ∗(t)}t≥0 on (X ∗, ∥.∥), where α ≥ 1. Thus R(A∗) is closed and lim

t→∞
∥T ∗(t)∥/t =

0. Hence Theorem 3.10 implies that T ∗(t) is uniformly Abel ergodic but is not mean
Cesàro ergodic. Indeed, assume that T ∗(t) is mean Cesàro ergodic; then there exists
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an operator P such that lim
t→∞

∥∥∥1
t

∫ t

0
T ∗(s)g ds − Pg

∥∥∥ = 0 for all g ∈ X ∗. Hence

P 2 = P and X ∗ = R(X ∗) ⊕ N (A∗), with P (X ∗) = N (A∗) and N (P ) = R(A∗)
by the mean ergodic decomposition. Since lim

t→∞
∥T ∗(t)∥/t = 0, A∗ is one-to-one.

Therefore, P (X ∗) = {0}, X ∗ = R(A∗), and

lim
t→+∞

∥∥∥1
t

∫ t

0
T ∗(s)g ds

∥∥∥ = 0 for all g ∈ X ∗.

Let g ∈ X ∗\{0}; applying Proposition 2.5, we get

A∗ 1
t

∫ t

0
T ∗(s)g ds = T ∗(t)g

t
− tα−1g

Γ(α + 1) .

Since A∗ is invertible, we get the following inequality:∥∥∥ tα−1g

Γ(α + 1)

∥∥∥ ≤ 1
∥(A∗)−1∥

∥∥∥1
t

∫ t

0
T ∗(s)g ds

∥∥∥ +
∥∥T ∗(t)g

∥∥
t

.

It follows that
lim

t→+∞

tα−1g

Γ(α + 1) = 0.

Since α ≥ 1, we get g = 0, absurd. Hence T ∗(t) is not mean Cesàro ergodic.

Proposition 3.13. Let A be the generator of an α-times integrated semigroup

{T (t)}t≥0 on B(X ) with α ≥ 0. If sup
t≥0

∥∥∥ 1
tα+1

∫ t

0
T (s) ds

∥∥∥ ≤ M for some M > 0,

then S(A) ≤ 0, which means that R(λ, A) exists for all λ ∈ C with Re λ > 0.

Proof. Assume that there exists M > 0 such that

sup
t≥0

∥∥∥ 1
tα+1

∫ t

0
T (s) ds

∥∥∥ ≤ M for all α ≥ 0.

Set I(t) =
∫ t

0
T (s) ds for all t ≥ 0, and let λ ∈ C such that Re λ > 0. Then, for all

0 < u < v and x ∈ X , we have∥∥∥λα

∫ v

u

e−λtT (t)x dt
∥∥∥ =

∥∥∥λα
[
e−λtI(t)x

]v

u
+ λα+1

∫ v

u

e−λtI(t)x dt
∥∥∥

≤ M
∥∥∥λα

[
e−λttα+1]v

u
+ λα+1

∫ v

u

e−λttα+1 dt
∥∥∥∥x∥

≤ M
[∣∣λα

∣∣(e−λvvα+1 + e−λuuα+1)
+

∣∣λα+1∣∣ ∫ v

u

e− Re λ ttα+1 dt
]
∥x∥.

Hence, for all α ≥ 0, we get
∥∥∥λα

∫ v

u

e−λtT (t) dt
∥∥∥ −→ 0 when u → ∞. Therefore,

R(λ, A) exists for all λ ∈ C with Re λ > 0, which means that S(A) ≤ 0. □
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The power convergence of the Abel average A(λ) has been studied by several au-
thors for the class of C0-semigroups acting on B(X ) (see, for instance, [13] and [17]).
In the same direction, we obtain the following results.

Theorem 3.14. Let {T (t)}t≥0 be an α-times integrated semigroup on B(X ), with
α ≥ 0. If T (t) is uniformly Abel ergodic, then, for small enough λ > 0, the sequence
{A(λ)n}n∈N converges in B(X ).

Proof. We assume that T (t) is uniformly Abel ergodic; then there exists P ∈ B(X )
such that lim

λ→0+
∥A(λ) − P∥ = 0, with P = P 2 = T (t)P = PT (t) for all t ≥ 0,

which is equivalent to ∥λ2R(λ, A)∥ −→ 0 as λ → 0+, and X = R(A) ⊕ N (A) by
Theorem 3.4.

Moreover, we have from Lemma 3.1 R(P ) = N (A) = N
(
λR(λ, A) − I

)
; hence,

for λ > 0 and each n ∈ N, we get
λR(λ, A) P = P and

(
λR(λ, A)

)n
P = P.

Clearly, I − P is the projection of X onto R(A) along N (A). Then, we have
R(I − P ) = R(A) = R

(
λR(λ, A) − I

)
.

So, for x ∈ X and n ∈ N, we obtain∥∥[(
λR(λ, A)

)n − P
]
x

∥∥ =
∥∥[(

λR(λ, A)
)n −

(
λR(λ, A)

)n
P

]
x

∥∥
=

∥∥(
λR(λ, A)

)n(I − P )x
∥∥

≤
∥∥(

λR(λ, A)
)n|R(A)

∥∥ ∥∥I − P
∥∥ ∥∥x

∥∥.

As mentioned in Proposition 3.9, T (t) is uniformly Abel ergodic if and only if
R(A) is closed and ∥λR(λ, A)|R(A)∥ −→ 0 as λ → 0+. Then, for a small enough
λ > 0, the operator λR(λ, A) is a strict contraction on R(A), which means that
∥λR(λ, A)|R(A)∥ < 1. Consequently,∥∥(

λR(λ, A)
)n|R(A)

∥∥ −→ 0 as n → ∞.

Then, it is easy to see from the above estimate that, for such fixed λ, where
0 < λ < δ, the sequence {A(λ)n}n∈N converges in B(X ). □

Corollary 3.15. Let {T (t)}t≥0 be an α-times integrated semigroup on B(X ), with
α ≥ 0. T (t) is uniformly Abel ergodic if and only if the sequence {A(λ)n}n∈N for
some λ > 0 converges in B(X ).

Proof. The first implication follows from Theorem 3.14.
Conversely, we assume that there exists λ > 0 such that the Abel average A(λ) is

uniformly power convergent; then the discrete Cesàro mean Mn

(
λR(λ, A)

)
defined

by

Mn

(
λR(λ, A)

)
= 1

n

n−1∑
k=0

(
λR(λ, A)

)k

converges uniformly in B(X ), and by the uniform ergodic theorem [15], we have
X = (λR(λ, A) − I)X ⊕ N (λR(λ, A) − I).
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It follows that X = R(A) ⊕ N (A) by Lemma 3.1. Therefore, Theorem 3.4 implies
that T (t) is uniformly Abel ergodic. □

Corollary 3.16. Let {T (t)}t≥0 be an α-times integrated semigroup on B(X ), with
α ≥ 0. The following statements are equivalent:

(1) T (t) is uniformly Abel ergodic.
(2) The sequence {A(λ)n}n∈N, for some λ > 0, converges in B(X ).
(3) The sequence {A(λ)n}n∈N, for all λ > 0, converges in B(X ).
(4) The discrete Cesàro mean Mn

(
λR(λ, A)

)
, for some λ > 0, converges in

B(X ).
(5) The discrete Cesàro mean Mn

(
λR(λ, A)

)
, for all λ > 0, converges in B(X ).
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