DRAZIN INVERTIBILITY OF LINEAR OPERATORS ON QUATERNIONIC BANACH SPACES

EL HASSAN BENABDI AND MOHAMED BARRAA

Abstract

The paper studies the Drazin inverse for right linear operators on a quaternionic Banach space. Let A be a right linear operator on a two-sided quaternionic Banach space. It is shown that if A is Drazin invertible then the Drazin inverse of A is given by $f(A)$, where f is 0 in an axially symmetric neighborhood of 0 and $f(q)=q^{-1}$ in an axially symmetric neighborhood of the nonzero spherical spectrum of A. Some results analogous to the ones concerning the Drazin inverse of operators on complex Banach spaces are proved in the quaternionic context.

1. Introduction and preliminaries

We denote by \mathbb{H} the algebra of quaternions, introduced by Hamilton in 1843. An element q of \mathbb{H} is of the form

$$
q=a+b \mathbf{i}+c \mathrm{j}+d \mathrm{k}, \quad a, b, c, d \in \mathbb{R}
$$

where i, j and k are imaginary units. By definition, they satisfy

$$
\mathrm{i}^{2}=\mathrm{j}^{2}=\mathrm{k}^{2}=\mathrm{ijk}=-1
$$

Given $q=a+b \mathrm{i}+c \mathrm{j}+d \mathrm{k}$, we have:

- the conjugate quaternion of q is $\bar{q}:=a-b \mathrm{i}-c \mathrm{j}-d \mathrm{k}$;
- the norm of q is $|q|:=\sqrt{q \bar{q}}=\sqrt{a^{2}+b^{2}+c^{2}+d^{2}}$;
- the real and the imaginary parts of q are respectively $\operatorname{Re}(q):=\frac{1}{2}(q+\bar{q})=a$ and $\operatorname{Im}(q):=\frac{1}{2}(q-\bar{q})=b \mathrm{i}+c \mathrm{j}+d \mathrm{k}$.
The unit sphere of imaginary quaternions is given by

$$
\mathbb{S}:=\left\{q \in \mathbb{H}: q^{2}=-1\right\} .
$$

Let p and q be two quaternions; p and q are said to be conjugated if there is $s \in \mathbb{H} \backslash\{0\}$ such that $p=s q s^{-1}$. The set of all quaternions conjugated with q is equal to the 2 -sphere

$$
[q]=\{\operatorname{Re}(q)+|\operatorname{Im}(q)| j: j \in \mathbb{S}\}=\operatorname{Re}(q)+|\operatorname{Im}(q)| \mathbb{S}
$$

[^0]For every $j \in \mathbb{S}$, we denote by \mathbb{C}_{j} the real subalgebra of \mathbb{H} generated by j; that is,

$$
\mathbb{C}_{j}:=\{u+v j \in \mathbb{H}: u, v \in \mathbb{R}\}
$$

We say that $U \subseteq \mathbb{H}$ is axially symmetric if $[q] \subset U$ for every $q \in U$.
For a thorough treatment of the algebra of quaternions \mathbb{H}, the reader is referred, for instance, to [3].

Definition 1.1 (1, Definition 2.3.1]). Let $(X,+)$ be an abelian group. X is a twosided quaternionic vector space if it is endowed with left and right quaternionic multiplications such that, for all $u, v \in X$ and all $p, q \in \mathbb{H}$,

$$
\begin{array}{lll}
u(p+q)=u p+u q, & (u+v) q=u q+v q, & (u p) q=u(p q), \\
(p+q) u=p u+q u, & q(u+v)=q u+q v, & q(p u)=(q p) u, \\
(p+q) & 1 u=u, \\
(p u) q=p(u q), \quad r u=u r \text { for all } r \in \mathbb{R} .
\end{array}
$$

Definition 1.2. Let X be a two-sided quaternionic vector space. A function $\|\cdot\|: X \rightarrow[0 ;+\infty)$ is called a norm on X if it satisfies
(i) $\|u\|=0$ if and only if $u=0$;
(ii) $\|u q\|=\|q u\|=\|u\||q|$ for all $u \in X$ and all $q \in \mathbb{H}$;
(iii) $\|u+v\| \leq\|u\|+\|v\|$ for all $u, v \in X$.

If X is complete with respect to the metric induced by $\|\cdot\|$, we call X a two-sided quaternionic Banach space.
Definition 1.3. Let X be a two-sided quaternionic Banach space. A right linear operator on X is a map $T: X \rightarrow X$ such that

$$
T(u p+v)=(T u) p+T v \quad \text { for all } u, v \in X \text { and all } p \in \mathbb{H} .
$$

A right linear operator T on X is called bounded if

$$
\|T\|:=\sup \{\|T u\|: u \in X,\|u\|=1\}<\infty
$$

The set of all right linear bounded operators on X is denoted by $\mathcal{B}_{R}(X)$. The ring $\mathcal{B}_{R}(X)$ is viewed as a two-sided quaternionic vector space equipped with the metric $\mathcal{B}_{R}(X) \times \mathcal{B}_{R}(X) \ni(A, B) \mapsto\|A-B\|$.

In a two-sided quaternionic Banach space X, we can define a left and a right quaternionic multiplication on $\mathcal{B}_{R}(X)$ by
$(T q) u=T(q u) \quad$ and $\quad(q T) u=q(T u) \quad$ for all $q \in \mathbb{H}, u \in X$ and all $T \in \mathcal{B}_{R}(X)$.
Definition 1.4. Let $T \in \mathcal{B}_{R}(X)$. For $q \in \mathbb{H}$, we set

$$
Q_{q}(T):=T^{2}-2 \operatorname{Re}(q) T+|q|^{2} I
$$

where I is the identity operator on X. We define the S-resolvent set $\rho_{S}(T)$ of T as

$$
\rho_{S}(T):=\left\{q \in \mathbb{H}: Q_{q}(T) \text { is invertible in } \mathcal{B}_{R}(X)\right\},
$$

and we define the S-spectrum $\sigma_{S}(T)$ of T as

$$
\sigma_{S}(T):=\mathbb{H} \backslash \rho_{S}(T)
$$

Proposition 1.5 ([1, Proposition 3.1.8]). Let $T \in \mathcal{B}_{R}(X)$. The sets $\sigma_{S}(T)$ and $\rho_{S}(T)$ are axially symmetric.

Theorem 1.6 (Compactness of the S-spectrum, [1, Theorem 3.1.13]). Let $T \in$ $\mathcal{B}_{R}(X)$. The S-spectrum $\sigma_{S}(T)$ of T is a nonempty compact set contained in the closed ball $\{q \in \mathbb{H}:|q| \leq\|T\|\}$.

The spectral theory over quaternionic Hilbert spaces has been developed in [3] and [6].

2. Generalized and Drazin inverses

Let X be a two-sided quaternionic Banach space. In this section, we study the generalized and Drazin invertibility of right linear operators on X.

Definition 2.1. An operator $B \in \mathcal{B}_{R}(X)$ is called a generalized inverse of $A \in$ $\mathcal{B}_{R}(X)$ if $A B A=A$ and $B A B=B$.

The range and the kernel of an operator $T \in \mathcal{B}_{R}(X)$ are denoted by $\mathcal{R}(T)$ and $\mathcal{N}(T)$, respectively.

Theorem 2.2. Suppose $A \in \mathcal{B}_{R}(X)$ with generalized inverse B such that $A B=$ $B A$. Then

$$
\sigma_{S}(B) \backslash\{0\}=\left\{q^{-1}: q \in \sigma_{S}(A) \backslash\{0\}\right\}
$$

Proof. By 4, Theorem XI. 6.1], $X=\mathcal{R}(A) \oplus \mathcal{N}(A)$. Then $A=T \oplus 0$ on $\mathcal{R}(A) \oplus$ $\mathcal{N}(A)$ and $B=T^{-1} \oplus 0$. We have $Q_{q}(B)=Q_{q}\left(T^{-1}\right) \oplus Q_{q}(0)$ for all $q \in \mathbb{H}$. Then we have $\sigma_{S}(B)=\sigma_{S}\left(T^{-1}\right) \cup \sigma_{S}(0)$, since $Q_{q}(0)=|q|^{2} I$ is always invertible (when $q \neq 0$), where I is the identity operator on $\mathcal{N}(A)$, and so

$$
\sigma_{S}(B) \backslash\{0\}=\sigma_{S}\left(T^{-1}\right) \backslash\{0\}
$$

The function $f: \mathbb{H} \backslash\{0\} \ni q \mapsto q^{-1}$ is intrinsic slice hyperholomorphic (because $\left.q^{-1}=\frac{\bar{q}}{|q|^{2}}\right)$; then by [1] Theorem 4.2.1], $\sigma_{S}\left(T^{-1}\right)=\sigma_{S}(f(T))=\left\{q^{-1}: q \in \sigma_{S}(T)\right\}$. Thus

$$
\sigma_{S}(B) \backslash\{0\}=\left\{q^{-1}: q \in \sigma_{S}(A) \backslash\{0\}\right\}
$$

Now, we study the Drazin invertibility of right linear operators acting on a two-sided quaternionic Banach space.

Definition 2.3 ([2]). Let $A \in \mathcal{B}_{R}(X)$. An element $B \in \mathcal{B}_{R}(X)$ is a Drazin inverse of A, written $B=A^{d}$, if

$$
\begin{equation*}
A B=B A, \quad A B^{2}=B, \quad A^{k+1} B=A^{k} \tag{2.1}
\end{equation*}
$$

for some nonnegative integer k. The least nonnegative integer k for which these equations hold is the Drazin index $i(A)$ of A.

Definition 2.4. An element A of $\mathcal{B}_{R}(X)$ is called quasinilpotent if $\sigma_{S}(A)=\{0\}$. The set of all quasinilpotent elements in $\mathcal{B}_{R}(X)$ will be denoted by $Q N\left(\mathcal{B}_{R}(X)\right)$.

Proposition 2.5. An element A of $\mathcal{B}_{R}(X)$ is quasinilpotent if and only if, for every T commuting with A, we have that $I-T A$ is invertible.

Proof. Let $A \in \mathcal{B}_{R}(X)$. Assume that for every $T \in \mathcal{B}_{R}(X)$ commuting with A, we have that $I-T A$ is invertible. Let $T=\frac{-1}{|q|^{2}} A+\frac{2 \operatorname{Re}(q)}{|q|^{2}} I$ with $q \in \mathbb{H} \backslash\{0\}$; clearly T commutes with A and $I-T A=\frac{1}{|q|^{2}}\left[A^{2}-2 \operatorname{Re}(q) A+|q|^{2} I\right]$ is invertible, hence $\sigma_{S}(A)=\{0\}$.

Conversely, if $\sigma_{S}(A)=\{0\}$, let $T \in \mathcal{B}_{R}(X)$ commuting with A; then by [1 Theorem 4.2.3], $r_{S}(T A) \leq r_{S}(T) r_{S}(A)=0$ and hence $\sigma_{S}(T A)=\{0\}$. Then by [1, Theorem 4.2.1], $\sigma_{S}(I-T A)=\{1\}$ and hence $I-T A$ is invertible.

An operator $A \in \mathcal{B}_{R}(X)$ is said to be nilpotent if there exists $k \in \mathbb{N}$ such that $A^{k}=0$. The least nonnegative integer k for which $A^{k}=0$ is called the nilpotency index of A and the set of all nilpotent elements in $\mathcal{B}_{R}(X)$ is denoted by $N\left(\mathcal{B}_{R}(X)\right)$.

Koliha [5] Definition 2.3] generalized the notion of Drazin invertibility in a complex Banach algebra. According to this definition one can generalize the notion of Drazin invertibility in $\mathcal{B}_{R}(X)$.
Definition 2.6. Let $A \in \mathcal{B}_{R}(X)$. An element $B \in \mathcal{B}_{R}(X)$ is a generalized Drazin inverse of A, written $B=A^{D}$, if

$$
\begin{equation*}
A B=B A, \quad A B^{2}=B, \quad A-A^{2} B \in Q N\left(\mathcal{B}_{R}(X)\right) \tag{2.2}
\end{equation*}
$$

Theorem 2.7 ([1, Theorem 4.1.5]). Let $A \in \mathcal{B}_{R}(X)$ and assume that $\sigma_{S}(A)=$ $\sigma_{1} \cup \sigma_{2}$ with

$$
\operatorname{dist}\left(\sigma_{1}, \sigma_{2}\right)>0
$$

We choose an open axially symmetric set O with $\sigma_{1} \subset O$ and $\bar{O} \cap \sigma_{2}=\emptyset$, and define a function $\chi_{\sigma_{1}}$ on \mathbb{H} by $\chi_{\sigma_{1}}(s)=1$ for $s \in O$ and $\chi_{\sigma_{1}}(s)=0$ for $s \notin O$. Then $\chi_{\sigma_{1}} \in \mathcal{N}\left(\sigma_{S}(A)\right)$, and for an arbitrary imaginary unit j in \mathbb{S} and an arbitrary bounded slice Cauchy domain $U \subset \mathbb{H}$ such that $\sigma_{1} \subset U \subset \bar{U} \subset O$, we have

$$
P_{\sigma_{1}}:=\chi_{\sigma_{1}}(A)=\frac{1}{2 \pi} \int_{\partial\left(U \cap \mathbb{C}_{j}\right)} S_{L}^{-1}(s, A) d s_{j}
$$

is a continuous projection that commutes with A. Hence $P_{\sigma_{1}}(X)$ is a right linear subspace of X that is invariant under A.
Remark 2.8. Let $q \in \mathbb{H}$. If $\sigma_{1}=\{q\}$, we say that the projection $P_{\sigma_{1}}$ is the Riesz projection of A corresponding to q.

We denote by $\operatorname{acc} U$ (resp., iso U) the set of all accumulation (resp., isolated) points of a set $U \subseteq \mathbb{H}$.
Theorem 2.9. Let $A \in \mathcal{B}_{R}(X)$. Then $0 \notin \operatorname{acc} \sigma_{S}(A)$ if and only if there is a projection $P \in \mathcal{B}_{R}(X)$ commuting with A such that

$$
\begin{equation*}
A P \in Q N\left(\mathcal{B}_{R}(X)\right) \quad \text { and } \quad A+P \text { is invertible in } \mathcal{B}_{R}(X) . \tag{2.3}
\end{equation*}
$$

Moreover, $0 \in \operatorname{iso} \sigma_{S}(A)$ if and only if $P \neq 0$, in which a case P is the Riesz projection of A corresponding to $q=0$.

Proof. Clearly, $0 \notin \sigma_{S}(A)$ if and only if (2.3) holds with $P=0$.
Assume that $0 \in$ iso $\sigma_{S}(A)$. Let P be the spectral projection of A corresponding to $q=0$; then $P \neq 0$, commutes with A and $A P=i d(A) \chi_{\{0\}}(A)=\left(i d \chi_{\{0\}}\right)(A)$, where $i d: \mathbb{H} \rightarrow \mathbb{H}, q \mapsto q$. Hence $\sigma_{S}(A P)=i d \chi_{\{0\}}\left(\sigma_{S}(A)\right)=\{0\}$, thus $A P \in$ $Q N\left(\mathcal{B}_{R}(X)\right)$. Similarly, $A+P=i d(A)+\chi_{\{0\}}(A)=\left(i d+\chi_{\{0\}}\right)(A)$; then $0 \notin$ $\sigma_{S}(A+P)=\left(i d+\chi_{\{0\}}\right) \sigma_{S}(A)$, and therefore $A+P$ is invertible.

Conversely, assume that there is a nonzero projection P commuting with A such that 2.3 holds. For any $q \in \mathbb{H}$, we have

$$
\begin{aligned}
A^{2}-2 \operatorname{Re}(q) A+|q|^{2} I= & P\left((A P)^{2}-2 \operatorname{Re}(q) A P+|q|^{2} I\right) \\
& +(I-P)\left((A+P)^{2}-2 \operatorname{Re}(q)(A+P)+|q|^{2} I\right)
\end{aligned}
$$

There is an $r>0$ such that if $|q|<r$ then $(A+P)^{2}-2 \operatorname{Re}(q)(A+P)+|q|^{2} I$ is invertible. Since $A P \in Q N\left(\mathcal{B}_{R}(X)\right),(A P)^{2}-2 \operatorname{Re}(q) A P+|q|^{2} I$ is invertible for all $q \neq 0$. Hence, for all $0<|q|<r$, it is easy to check that $A^{2}-2 \operatorname{Re}(q) A+|q|^{2} I$ is invertible and

$$
\begin{aligned}
\left(A^{2}-2 \operatorname{Re}(q) A+|q|^{2} I\right)^{-1}= & P\left((A P)^{2}-2 \operatorname{Re}(q) A P+|q|^{2} I\right)^{-1} \\
& +(I-P)\left((A+P)^{2}-2 \operatorname{Re}(q)(A+P)+|q|^{2} I\right)^{-1}
\end{aligned}
$$

That is,

$$
\begin{equation*}
Q_{q}(A)^{-1}=P Q_{q}(A P)^{-1}+(I-P) Q_{q}(A+P)^{-1} \tag{2.4}
\end{equation*}
$$

Hence $0 \in$ iso $\sigma_{S}(A)$.
Now, we show that P is the Riesz projection of A corresponding to $q=0$. Since $S_{L}^{-1}(q, A)=-Q_{q}(A)^{-1}(A-\bar{q} I)$, because of 2.4 we have

$$
\begin{equation*}
S_{L}^{-1}(q, A)=P S_{L}^{-1}(q, A P)+(I-P) S_{L}^{-1}(q, A+P) \tag{2.5}
\end{equation*}
$$

Let j and U be as in Theorem 2.7, then

$$
\chi_{\{0\}}(A)=\frac{1}{2 \pi} \int_{\partial\left(U \cap \mathbb{C}_{j}\right)} S_{L}^{-1}(s, A) d s_{j} .
$$

If we take $U=\left\{q \in \mathbb{H}:|q|<\frac{r}{2}\right\}$, then by (2.5)

$$
\begin{aligned}
\chi_{\{0\}}(A) & =\frac{1}{2 \pi} \int_{\partial\left(U \cap \mathbb{C}_{j}\right)} S_{L}^{-1}(s, A) d s_{j} \\
& =\frac{1}{2 \pi} \int_{\partial\left(U \cap \mathbb{C}_{j}\right)} P S_{L}^{-1}(s, A P)+(I-P) S_{L}^{-1}(s, A+P) d s_{j} \\
& =\frac{1}{2 \pi} \int_{\partial\left(U \cap \mathbb{C}_{j}\right)} P S_{L}^{-1}(s, A P) d s_{j}+\frac{1}{2 \pi} \int_{\partial\left(U \cap \mathbb{C}_{j}\right)}(I-P) S_{L}^{-1}(s, A+P) d s_{j} \\
& =P \frac{1}{2 \pi} \int_{\partial\left(U \cap \mathbb{C}_{j}\right)} S_{L}^{-1}(s, A P) d s_{j}+(I-P) \frac{1}{2 \pi} \int_{\partial\left(U \cap \mathbb{C}_{j}\right)} S_{L}^{-1}(s, A+P) d s_{j} .
\end{aligned}
$$

Since $S_{L}^{-1}(\cdot, A+P)$ is a right slice hyperholomorphic function on U (see [1, Lemma 3.1.11]),

$$
\int_{\partial\left(U \cap \mathbb{C}_{j}\right)} S_{L}^{-1}(s, A+P) d s_{j}=0
$$

On the other hand,

$$
\frac{1}{2 \pi} \int_{\partial\left(U \cap \mathbb{C}_{j}\right)} S_{L}^{-1}(s, A P) d s_{j}=I
$$

because $\sigma_{S}(A P)=\{0\} \subset U$. Hence $\chi_{\{0\}}(A)=P$. This completes the proof.
Theorem 2.10. Let $A \in \mathcal{B}_{R}(X)$. If $0 \in$ iso $\sigma_{S}(A)$, then

$$
A^{D}=f(A),
$$

where $f \in \mathcal{N}\left(\sigma_{S}(A)\right)$ is such that f is 0 in an axially symmetric neighborhood of 0 and $f(q)=q^{-1}$ in an axially symmetric neighborhood of $\sigma_{S}(A) \backslash\{0\}$, and

$$
\sigma_{S}\left(A^{D}\right) \backslash\{0\}=\left\{q^{-1}: q \in \sigma_{S}(A) \backslash\{0\}\right\}
$$

Proof. Let O_{1} be an axially symmetric open neighborhood of 0 and let O_{2} be an axially symmetric open neighborhood of $\sigma_{S}(A) \backslash\{0\}$ with $\overline{O_{1}} \cap \overline{O_{2}}=\emptyset$. Define f by $f(q)=0$ if $q \in O_{1}$ and $f(q)=q^{-1}$ if $q \in O_{2}$; clearly $f \in \mathcal{N}\left(\sigma_{S}(A)\right)$. By [1] Theorems 4.1.3 and 4.2.1], it is easy to see that (2.2) holds for A and $f(A)$.

By [1, Theorem 4.2.1], it follows that $\sigma_{S}\left(A^{D}\right) \backslash\{0\}=\sigma_{S}(f(A)) \backslash\{0\}=\{f(q):$ $\left.q \in \sigma_{S}(A) \backslash\{0\}\right\}=\left\{q^{-1}: q \in \sigma_{S}(A) \backslash\{0\}\right\}$.

Theorem 2.11. Let $A \in \mathcal{B}_{R}(X)$. The following conditions are equivalent:
(i) A is generalized Drazin invertible;
(ii) $0 \notin \operatorname{acc} \sigma_{S}(A)$;
(iii) $A=A_{1} \oplus A_{2}$, where A_{1} is invertible on some closed subspace X_{1} of X and A_{2} is quasinilpotent on some complemented subspace X_{1} of X.

Proof. (i) \Leftrightarrow (ii) Already proved in [5] Lemma 2.4] and Theorem 2.9 .
(i) \Rightarrow (iii) Set the projection $P:=I-A A^{D}$; then $A P$ is quasinilpotent and $A P=P A$. Hence $\mathcal{R}(P)$ and $\mathcal{N}(P)$ are invariant under A, that is, $A \mathcal{R}(P) \subset \mathcal{R}(P)$ and $A \mathcal{N}(P) \subset \mathcal{N}(P)$. Let $u \in \mathcal{N}(P)$; then $u=A A^{D} u$, thus the restriction of A to the kernel of P is injective and surjective, and so invertible. If we write $A=A_{1} \oplus A_{2}$ on $X=\mathcal{N}(P) \oplus \mathcal{R}(P)$, then $A_{2} \in \mathcal{B}_{R}\left(X_{1}\right)$ is quasinilpotent and $A_{1} \in \mathcal{B}_{R}\left(X_{2}\right)$ is invertible.
(iii) \Rightarrow (i) It is easy to check that $A^{D}=A_{1}^{-1} \oplus 0$.

Corollary 2.12. Let $A \in \mathcal{B}_{R}(X)$. The following conditions are equivalent:
(i) A is Drazin invertible;
(iii) $A=A_{1} \oplus A_{2}$, where A_{1} is invertible on some closed subspace X_{1} of X, A_{2} is nilpotent on some complemented subspace X_{1} of X and the nilpotency index of A_{2} is the Drazin index of A.

Proof. Assume that A is Drazin invertible; then by Theorem2.11(iii), $A=A_{1} \oplus A_{2}$ and $A^{d}=A_{1}^{-1} \oplus 0$. Hence, by (2.1), $A^{k+1} A^{d}=A^{k}$, then $A_{1}^{k} \oplus 0=A_{1}^{k} \oplus A_{2}^{k}$, thus $A_{2}^{k}=0$, so that the nilpotency index of A_{2} is less than the Drazin index of A.

Conversely, let $B=A_{1}^{-1} \oplus 0$, where A_{1} is invertible and A_{2} is nilpotent; then (2.1) holds for A, B and the nilpotency index of A_{2}. Hence A is Drazin invertible and the Drazin index of A is less than the nilpotency index of A_{2}.

Definition 2.13. A two-sided quaternionic Banach algebra is a two-sided quaternionic Banach space \mathcal{A} that is endowed with a product $\mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$ such that:
(i) The product is associative and distributive over the sum in \mathcal{A};
(ii) $(q x) y=q(x y)$ and $x(y q)=(x y) q$ for all $x, y \in \mathcal{A}$ and all $q \in \mathbb{H}$;
(iii) $\|x y\| \leq\|x\|\|y\|$ for all $x, y \in \mathcal{A}$.

If in addition there exists $e \in \mathcal{A}$ such that $e x=x e=x$ for all $x \in \mathcal{A}$, then \mathcal{A} is called a two-sided quaternionic Banach algebra with unit.

One can prove that $\mathcal{B}_{R}(X)$ is a two-sided quaternionic Banach algebra with unit.
Definition 2.14. Let \mathcal{A} be a two-sided quaternionic Banach algebra and $a \in \mathcal{A}$. An element $b \in \mathcal{A}$ is a Drazin inverse of a, written $b=a^{d}$, if

$$
a b=b a, \quad a b^{2}=b, \quad a^{k+1} b=a^{k}
$$

for some nonnegative integer k. The least nonnegative integer k for which these equations hold is the Drazin index $i(a)$ of a.

Let \mathcal{A} be a two-sided quaternionic Banach algebra and $a \in \mathcal{A}$. For any $a \in \mathcal{A}$ we define the left multiplication of a by $L_{a}(b)=a b$, for all $b \in \mathcal{A}$. Then $L_{a} \in \mathcal{B}_{R}(\mathcal{A})$, and we have $\left\|L_{a}\right\|=\|a\|$.
Theorem 2.15. Let \mathcal{A} be a two-sided quaternionic Banach algebra and let $a \in \mathcal{A}$ with unit. Then a is Drazin invertible if and only if L_{a} is Drazin invertible. In such a case, $L_{a}^{d}=L_{a^{d}}$ and $i\left(L_{a}\right)=i(a)$.

Proof. Let $a \in \mathcal{A}$ such that a is Drazin invertible. For every $b \in \mathcal{A}$, we have $L_{a} L_{b}=L_{a b}$, hence it is easy to check that $L_{a^{d}}=L_{a}^{d}$ and then $i\left(L_{a}\right) \leq i(a)$.

Conversely, assume that L_{a} is Drazin invertible and let $b=L_{a}^{d}(e)$. Since $L_{a}^{k+1} L_{a}^{d}=L_{a}^{k}, a^{k+1} b=a^{k}$. Hence $L_{a}^{k+1} L_{b}=L_{a}^{k}=L_{a}^{d} L_{a}^{k+1}$, and then by [2, Theorem 4] and its proof, $L_{a}^{d}=L_{a}^{k} L_{b}^{k+1}=L_{a^{k} b^{k+1}}$. Let $c=a^{k} b^{k+1}$; then $L_{a} L_{c}=L_{c} L_{a}$, $L_{a} L_{c}^{2}=L_{c}, L_{a}^{k+1} L_{c}=L_{a}^{k}$, hence $a c=c a, a c^{2}=c, a^{k+1} c=a^{k}$. Thus a is Drazin invertible and therefore $i(a) \leq i\left(L_{a}\right)$.

References

[1] F. Colombo, J. Gantner, and D. P. Kimsey, Spectral Theory on the S-Spectrum for Quaternionic Operators, Operator Theory: Advances and Applications 270, Birkhäuser/Springer, Cham, 2018. DOI MR Zbl
[2] M. P. Drazin, Pseudo-inverses in associative rings and semigroups, Amer. Math. Monthly 65 (1958), 506-514. DOI MR Zbl
[3] R. Ghiloni, V. Moretti, and A. Perotti, Continuous slice functional calculus in quaternionic Hilbert spaces, Rev. Math. Phys. 25 no. 4 (2013), 1350006, 83 pp. DOI MR Zbl
[4] I. Gohberg, S. Goldberg, and M. A. Kaashoek, Classes of Linear Operators. Vol. I, Operator Theory: Advances and Applications 49, Birkhäuser Verlag, Basel, 1990. DOI MR Zbl
[5] J. J. Koliha, A generalized Drazin inverse, Glasgow Math. J. 38 no. 3 (1996), 367-381. DOI MR Zbl
[6] B. Muraleetharan and K. Thirulogasanthar, Weyl and Browder S-spectra in a right quaternionic Hilbert space, J. Geom. Phys. 135 (2019), 7-20. DOI MR Zbl

El Hassan Benabdi ${ }^{\boxtimes}$

Department of Mathematics, Laboratory of Mathematics, Statistics and Applications, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
elhassan.benabdi@gmail.com
Mohamed Barraa
Department of Mathematics, Faculty of Sciences Semlalia, University Cadi Ayyad, Marrakesh, Morocco
barraa@uca.ac.ma

Received: May 22, 2021
Accepted: March 8, 2022

[^0]: 2020 Mathematics Subject Classification. 46S05, 47A60, 47C15, 30G35.
 Key words and phrases. Drazin inverse, quaternionic Banach space, slice function, S-spectrum.

