ON CERTAIN REGULAR NICELY DISTANCE-BALANCED GRAPHS

BLAS FERNÁNDEZ, ŠTEFKO MIKLAVIČ, AND SAFET PENJIĆ

Abstract

A connected graph Γ is called nicely distance-balanced, whenever there exists a positive integer $\gamma=\gamma(\Gamma)$ such that, for any two adjacent vertices u, v of Γ, there are exactly γ vertices of Γ which are closer to u than to v, and exactly γ vertices of Γ which are closer to v than to u. Let denote the diameter of Γ. It is known that $d \leq \gamma$, and that nicely distance-balanced graphs with $\gamma=d$ are precisely complete graphs and cycles of length $2 d$ or $2 d+1$. In this paper we classify regular nicely distance-balanced graphs with $\gamma=d+1$.

1. Introduction

Let Γ be a finite, undirected, connected graph with diameter d, and let $V(\Gamma)$ and $E(\Gamma)$ denote the vertex set and the edge set of Γ, respectively. For $u, v \in V(\Gamma)$, let $\Gamma(u)$ be the set of neighbors of u, and let $d(u, v)=d_{\Gamma}(u, v)$ denote the minimal path-length distance between u and v. For a pair of adjacent vertices u, v of Γ we let

$$
W_{u, v}=\{x \in V(\Gamma) \mid d(x, u)<d(x, v)\} .
$$

We say that Γ is distance-balanced (DB for short) whenever for an arbitrary pair of adjacent vertices u and v of Γ we have that

$$
\left|W_{u, v}\right|=\left|W_{v, u}\right| .
$$

The investigation of distance-balanced graphs was initiated in 1999 by Handa [10], although the name distance-balanced was coined nine years later by Jerebic, Klavžar, and Rall [13]. The family of distance-balanced graphs is very rich and its study is interesting from various purely graph-theoretic aspects where one focuses on particular properties such as symmetry [15], connectivity [10, 17] or complexity aspects of algorithms related to such graphs [6]. However, the balancedness property of these graphs makes them very appealing also in areas such as mathematical

[^0]chemistry and communication networks. For instance, the investigation of such graphs is highly related to the well-studied Wiener index and Szeged index (see [2, 12, 13, 19]), and they present very desirable models in various real-life situations related to (communication) networks [2]. Recently, the relations between distance-balanced graphs and the traveling salesman problem were studied in [7]. It turns out that these graphs can be characterized by properties that at first glance do not seem to have much in common with the original definition from [13]. For example, in [3] it was shown that the distance-balanced graphs coincide with the self-median graphs, that is, graphs for which the sum of the distances from a given vertex to all other vertices is independent of the chosen vertex. Other such examples are equal opportunity graphs (see [2] for the definition). In [2] it is shown that even order distance-balanced graphs are also equal to opportunity graphs. Finally, let us also mention that various generalizations of the distance-balanced property were defined and studied in the literature (see, for example, [1, 8, [1], 14, 18]).

The notion of nicely distance-balanced graphs appears quite naturally in the context of DB graphs. We say that Γ is nicely distance-balanced (NDB for short) whenever there exists a positive integer $\gamma=\gamma(\Gamma)$ such that, for an arbitrary pair of adjacent vertices u and v of Γ,

$$
\left|W_{u, v}\right|=\left|W_{v, u}\right|=\gamma
$$

holds. Clearly, every NDB graph is also DB, but the opposite is not necessarily true. For example, if $n \geq 3$ is an odd positive integer, then the prism graph on $2 n$ vertices is DB , but not NDB.

Assume now that Γ is NDB. Let us denote the diameter of Γ by d. In [16], where these graphs were first defined, it was proved that $d \leq \gamma$, and NDB graphs with $d=\gamma$ were classified. It turns out that Γ is NDB with $d=\gamma$ if and only if Γ is either isomorphic to a complete graph on $n \geq 2$ vertices, or to a cycle on $2 d$ or $2 d+1$ vertices. In this paper we study NDB graphs for which $\gamma=d+1$. The situation in this case is much more complex than in the case $\gamma=d$. Therefore, we will concentrate our study on the class of regular graphs (recall that Γ is said to be regular with valency k if $|\Gamma(u)|=k$ for every $u \in V(\Gamma)$). Our main result is the following theorem.

Theorem 1.1. Let Γ be a regular NDB graph with valency k and diameter d. Then $\gamma=d+1$ if and only if Γ is isomorphic to one of the following graphs:
(1) the Petersen graph (with $k=3$ and $d=2$);
(2) the complement of the Petersen graph (with $k=6$ and $d=2$);
(3) the complete multipartite graph $K_{t \times 3}$ with t parts of cardinality $3, t \geq 2$ (with $k=3(t-1)$ and $d=2$);
(4) the Möbius ladder graph on eight vertices (with $k=3$ and $d=2$);
(5) the Paley graph on 9 vertices (with $k=4$ and $d=2$);
(6) the 3 -dimensional hypercube Q_{3} (with $k=3$ and $d=3$);
(7) the line graph of the 3 -dimensional hypercube Q_{3} (with $k=4$ and $d=3$);
(8) the icosahedron (with $k=5$ and $d=3$).

Our paper is organized as follows. After some preliminaries in Section 2 we prove certain structural results about NDB graphs with $\gamma=d+1$ in Section 3 In Section 4 we show that if Γ is a regular NDB graph with $\gamma=d+1$, then $d \leq 5$ and the valency of Γ is either 3,4 or 5 . In Sections 56 and 7 we consider each of these three cases separately.

2. Preliminaries

In this section we recall some preliminary results that we will find useful later in the paper. Let Γ be a simple, finite, connected graph with vertex set $V(\Gamma)$ and edge set $E(\Gamma)$. If $u, v \in V(\Gamma)$ are adjacent, then we simply write $u \sim v$ and we denote the corresponding edge by $u v=v u$. For $u \in V(\Gamma)$ and an integer i, we let $\Gamma_{i}(u)$ denote the set of vertices of $V(\Gamma)$ that are at distance i from u. We abbreviate $\Gamma(u)=\Gamma_{1}(u)$. We set $\epsilon(u)=\max \{d(u, z) \mid z \in V(\Gamma)\}$ and we call $\epsilon(u)$ the eccentricity of u. Let $d=\max \{\epsilon(u) \mid u \in V(\Gamma)\}$ denote the diameter of Γ. Pick adjacent vertices u, v of Γ. For any two non-negative integers i, j we let

$$
D_{j}^{i}(u, v)=\Gamma_{i}(u) \cap \Gamma_{j}(v) .
$$

By the triangle inequality we observe that only the sets $D_{i}^{i-1}(u, v), D_{i}^{i}(u, v)$, and $D_{i-1}^{i}(u, v)(1 \leq i \leq d)$ can be nonempty. Moreover, the next result holds.

Lemma 2.1. With the above notation, abbreviate $D_{j}^{i}=D_{j}^{i}(u, v)$. Then the following statements hold for $1 \leq i \leq d$:
(i) If $w \in D_{i-1}^{i}$ then $\Gamma(w) \subseteq D_{i-2}^{i-1} \cup D_{i-1}^{i-1} \cup D_{i}^{i-1} \cup D_{i-1}^{i} \cup D_{i}^{i} \cup D_{i}^{i+1}$.
(ii) If $w \in D_{i}^{i}$ then $\Gamma(w) \subseteq D_{i-1}^{i-1} \cup D_{i}^{i-1} \cup D_{i-1}^{i} \cup D_{i}^{i} \cup D_{i+1}^{i} \cup D_{i}^{i+1} \cup D_{i+1}^{i+1}$.
(iii) If $w \in D_{i}^{i-1}$ then $\Gamma(w) \subseteq D_{i-1}^{i-2} \cup D_{i-1}^{i-1} \cup D_{i}^{i-1} \cup D_{i-1}^{i} \cup D_{i}^{i} \cup D_{i+1}^{i}$.
(iv) If $D_{i+1}^{i} \neq \emptyset$ (resp., $\left.D_{i}^{i+1} \neq \emptyset\right)$ then $D_{j+1}^{j} \neq \emptyset$ (resp., $\left.D_{j}^{j+1} \neq \emptyset\right)$ for every $0 \leq j \leq i$.

Proof. Straightforward (see also Figure 1).

Figure 1. Graphical representation of the sets $D_{j}^{i}(u, v)$. The line between D_{j}^{i} and D_{m}^{n} indicates possible edges between vertices of D_{j}^{i} and D_{m}^{n}.

Let us recall the definition of the NDB graphs. For an edge $u v$ of Γ we let

$$
W_{u, v}=\{x \in V(\Gamma) \mid d(x, u)<d(x, v)\} .
$$

We say that Γ is NDB whenever there exists a positive integer $\gamma=\gamma(\Gamma)$ such that, for any edge $u v$ of Γ,

$$
\left|W_{u, v}\right|=\left|W_{v, u}\right|=\gamma
$$

holds. One can easily see that Γ is NDB if and only if, for every edge $u v \in E(\Gamma)$, we have

$$
\begin{equation*}
\sum_{i=1}^{d}\left|D_{i-1}^{i}(u, v)\right|=\sum_{i=1}^{d}\left|D_{i}^{i-1}(u, v)\right|=\gamma \tag{2.1}
\end{equation*}
$$

Pick adjacent vertices u, v of Γ. For the purposes of this paper we say that the edge $u v$ is balanced if (2.1) holds for vertices u, v with $\gamma=d+1$.

A graph Γ is said to be regular if there exists a non-negative integer k such that $|\Gamma(u)|=k$ for every vertex $u \in V(\Gamma)$. In this case we also say that Γ is regular with valency k (or k-regular for short). The following simple observation about regular graphs will be very useful in the rest of the paper.

Lemma 2.2. Let Γ be a connected regular graph. Then for every edge uv of Γ we have

$$
\left|D_{2}^{1}(u, v)\right|=\left|D_{1}^{2}(u, v)\right|
$$

Proof. Note that $\Gamma(u)=\{v\} \cup D_{1}^{1}(u, v) \cup D_{2}^{1}(u, v)$ and $\Gamma(v)=\{u\} \cup D_{1}^{1}(u, v) \cup$ $D_{1}^{2}(u, v)$. As Γ is regular, the claim follows.

Assume Γ is regular with valency k. If there exists a non-negative integer λ such that every pair u, v of adjacent vertices of Γ has exactly λ common neighbors (that is, if $\left|D_{1}^{1}(u, v)\right|=\lambda$), then we say that Γ is edge-regular (with parameter λ). Before we start with our study of regular NDB graphs with $\gamma=d+1$ we have a remark.

Remark 2.3. Let Γ be a regular NDB graph with diameter d and $\gamma=d+1$. Observe first that $d \geq 2$. Moreover, if $d=2$ then it follows from [16, Theorem 5.2] that Γ is one of the following graphs:
(1) the Petersen graph,
(2) the complement of the Petersen graph,
(3) the complete multipartite graph $K_{t \times 3}$ with t parts of cardinality $3(t \geq 2)$,
(4) the Möbius ladder graph on eight vertices,
(5) the Paley graph on 9 vertices.

In what follows we will therefore assume that $d \geq 3$.
Let Γ be an NDB graph with diameter $d \geq 3$ and with $\gamma=\gamma(\Gamma)=d+1$. Pick vertices x_{0}, x_{d} of Γ such that $d\left(x_{0}, x_{d}\right)=d$, and let $x_{0}, x_{1}, \ldots, x_{d}$ be a shortest path between x_{0} and x_{d}. Consider the edge $x_{0} x_{1}$ and note that

$$
\left\{x_{1}, x_{2}, \ldots, x_{d}\right\} \subseteq W_{x_{1}, x_{0}}
$$

It follows that there is a unique vertex $u \in W_{x_{1}, x_{0}} \backslash\left\{x_{1}, x_{2}, \ldots, x_{d}\right\}$. Let $\ell=$ $\ell\left(x_{0}, x_{1}\right)(2 \leq \ell \leq d)$ be such that $u \in D_{\ell}^{\ell-1}\left(x_{1}, x_{0}\right)$, and so $D_{\ell}^{\ell-1}\left(x_{1}, x_{0}\right)=\left\{u, x_{\ell}\right\}$ and $D_{i}^{i-1}\left(x_{1}, x_{0}\right)=\left\{x_{i}\right\}$ for $2 \leq i \leq d, i \neq \ell$.

3. Some structural results

Let Γ be an NDB graph with diameter $d \geq 3$ and $\gamma=\gamma(\Gamma)=d+1$. In this section we prove certain structural results about Γ. To do this, let us pick arbitrary vertices x_{0}, x_{d} of Γ with $d\left(x_{0}, x_{d}\right)=d$, and let us pick a shortest path $x_{0}, x_{1}, \ldots, x_{d}$ between x_{0} and x_{d}. Set $D_{j}^{i}=D_{j}^{i}\left(x_{1}, x_{0}\right)$ and $\ell=\ell\left(x_{0}, x_{1}\right)$. Recall that the unique vertex $u \in W_{x_{1}, x_{0}} \backslash\left\{x_{1}, x_{2}, \ldots, x_{d}\right\}$ is contained in $D_{\ell}^{\ell-1}$. Observe that

$$
\begin{equation*}
\left\{x_{0}, x_{1}, \ldots, x_{d-1}\right\} \subseteq W_{x_{d-1}, x_{d}} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\{x_{2}, x_{3}, \ldots, x_{d}\right\} \subseteq W_{x_{2}, x_{1}} \tag{3.2}
\end{equation*}
$$

Note that if $\ell \geq 3$, then also $u \in W_{x_{2}, x_{1}}$. In addition, we will use the following abbreviations:

$$
\begin{aligned}
& A=\bigcup_{i=2}^{d}\left(\Gamma\left(x_{i}\right) \cap D_{i}^{i}\right) \\
& B=\left(\Gamma\left(x_{2}\right) \cap D_{1}^{2}\right) \cup\left(\Gamma\left(x_{d}\right) \cap D_{d-1}^{d}\right) .
\end{aligned}
$$

Proposition 3.1. With the notation above, the following statements hold:
(i) There are no edges between x_{i} and $D_{i-1}^{i} \cup D_{i-1}^{i-1}$ for $3 \leq i \leq d-1$.
(ii) $\left|\Gamma\left(x_{2}\right) \cap\left(D_{1}^{1} \cup D_{1}^{2}\right)\right| \leq 1$.

Proof. (i) Assume that for some $3 \leq i \leq d-1$ we have that z is a neighbor of x_{i} contained in $D_{i-1}^{i} \cup D_{i-1}^{i-1}$. Let $x_{0}, y_{1}, \ldots, y_{i-2}, z$ be a shortest path between x_{0} and z. Observe that $\left\{y_{1}, \ldots, y_{i-2}, z\right\} \cap\left\{x_{0}, x_{1}, \ldots, x_{d-1}\right\}=\emptyset$ and that $\left\{y_{1}, \ldots, y_{i-2}, z\right\} \subseteq W_{x_{d-1}, x_{d}}$. These comments, together with 3.1), yield $\left|W_{x_{d-1}, x_{d}}\right| \geq d+2$, which contradicts the fact that $\gamma=d+1$.
(ii) Let $z_{1}, z_{2} \in \Gamma\left(x_{2}\right) \cap\left(D_{1}^{1} \cup D_{1}^{2}\right), z_{1} \neq z_{2}$. Then $z_{1}, z_{2} \in W_{x_{d-1}, x_{d}}$. This, together with (3.1), contradicts the fact that $\gamma=d+1$.

Proposition 3.2. With the notation above, the following statements hold:
(i) $|A \cup B| \leq 2$.
(ii) If $\ell \geq 3$, then $\left|A \cup B \cup\left(\Gamma(u) \cap\left(D_{\ell}^{\ell} \cup D_{\ell-1}^{\ell}\right)\right)\right|=1$.

Proof. (i) Note that $A \cup B \subseteq W_{x_{2}, x_{1}}$ and that $(A \cup B) \cap\left\{x_{2}, \ldots, x_{d}\right\}=\emptyset$. This, together with (3.2), forces $|A \cup B| \leq 2$.
(ii) Note that in this case we have that $u \in W_{x_{2}, x_{1}}$. The proof that $\mid A \cup B \cup(\Gamma(u) \cap$ $\left.\left(D_{\ell}^{\ell} \cup D_{\ell-1}^{\ell}\right)\right) \mid \leq 1$ is now similar to the proof of (i) above. On the other hand, if $\left|A \cup B \cup\left(\Gamma(u) \cap\left(D_{\ell}^{\ell} \cup D_{\ell-1}^{\ell}\right)\right)\right|=0$, then $\left|W_{x_{2}, x_{1}}\right|=d$, contradicting the fact that $\gamma=d+1$.

4. Regular NDB graphs with $\gamma=d+1$

Let Γ be a regular NDB graph with valency k, diameter $d \geq 3$, and $\gamma=\gamma(\Gamma)=$ $d+1$. In this section we use the results from Section 3 to find bounds on k and d. As in the previous section, let us pick arbitrary vertices x_{0}, x_{d} of Γ with $d\left(x_{0}, x_{d}\right)=d$, and let us pick a shortest path $x_{0}, x_{1}, \ldots, x_{d}$ between x_{0} and x_{d}. Set $D_{j}^{i}=D_{j}^{i}\left(x_{1}, x_{0}\right)$ and $\ell=\ell\left(x_{0}, x_{1}\right)$.
Proposition 4.1. Let Γ be a regular NDB graph with valency k, diameter $d=3$, and $\gamma=4$. Then for every $x \in V(\Gamma)$ we have eccentricity $\epsilon(x)=3$.

Proof. Since $d=3$, there exists $y \in V(\Gamma)$ such that $\epsilon(y)=3$. Pick $x \in \Gamma(y)$. By the triangle inequality we also observe that $\epsilon(x) \in\{2,3\}$. Suppose that $\epsilon(x)=2$. Then, the sets $D_{2}^{3}(x, y)$ and $D_{3}^{3}(x, y)$ are both empty. Recall that $\gamma=4$, and so by Lemma 2.2 we have $\left|D_{2}^{1}(x, y)\right|=\left|D_{1}^{2}(x, y)\right|=3$, which implies $D_{3}^{2}(x, y)=\emptyset$, contradicting that $\epsilon(y)=3$. Therefore, $\epsilon(x)=3$ for every $x \in \Gamma(y)$. Since Γ is connected, this finishes the proof as every neighbor of a vertex of eccentricity 3 has also eccentricity 3 .

Proposition 4.2. There exists no regular NDB graph with valency $k=6$, diameter $d=3$, and $\gamma=4$.

Proof. Suppose to the contrary that there exists a regular NDB graph Γ with valency $k=6$, diameter $d=3$, and $\gamma=4$. Then, by Proposition 4.1 every vertex $x \in V(\Gamma)$ has eccentricity $\epsilon(x)=3$.

Let us pick an edge $x y \in E(\Gamma)$. By Lemma 2.2 we have that $\left|D_{2}^{1}(x, y)\right|=$ $\left|D_{1}^{2}(x, y)\right|$, and so it follows from (2.1) that $\left|D_{3}^{2}(x, y)\right|=\left|D_{2}^{3}(x, y)\right|$ as well. We will prove that the sets $D_{3}^{2}(x, y)$ and $D_{2}^{3}(x, y)$ are nonempty.

Assume to the contrary that the sets $D_{2}^{3}(x, y)$ and $D_{3}^{2}(x, y)$ are empty. As $\gamma=$ $d+1=4$, we have that $\left|D_{2}^{1}(x, y)\right|=\left|D_{1}^{2}(x, y)\right|=3$. Moreover, by Proposition 4.1 the set $D_{3}^{3}(x, y)$ is nonempty. Pick $z \in D_{3}^{3}(x, y)$ and note that there exists a vertex $w \in \Gamma(z) \cap D_{2}^{2}(x, y)$. Pick $x_{1} \in D_{2}^{1}(x, y)$ and observe that $d\left(x_{1}, z\right) \in\{2,3\}$. We first claim that $d\left(x_{1}, z\right)=3$. Suppose to the contrary that $d\left(x_{1}, z\right)=2$. Without loss of generality, we could assume that w and x_{1} are adjacent. Notice that there exists a neighbor v of w in $D_{1}^{1}(x, y) \cup D_{1}^{2}(x, y)$ since $d(w, y)=2$. Therefore, we have $\left\{x, y, x_{1}, v, w\right\} \subseteq W_{w, z}$, contradicting that $\gamma=4$. This yields that $d\left(x_{1}, z\right)=3$, and so there exists a shortest path x_{1}, v_{1}, w_{1}, z between x_{1} and z of length 3 . Note that by the above claim we have $w_{1} \in D_{2}^{2}$, and so $\left\{x, y, x_{1}, v_{1}, w_{1}\right\} \subseteq W_{w_{1}, z}$. As $x_{1} \notin\{x, y\}$, this yields a contradiction with $\gamma=4$. This shows that the sets $D_{3}^{2}(x, y)$ and $D_{2}^{3}(x, y)$ are nonempty.

Assume for the moment that $\left|D_{3}^{2}(x, y)\right|=2$. Since $\gamma=4$, it follows from 2.1 that $\left|D_{2}^{1}(x, y)\right|=1$. Let x_{2} denote the unique vertex of Γ in $D_{2}^{1}(x, y)$ and let x_{3} be a neighbor of x_{2} which is in $D_{3}^{2}(x, y)$. Since the edge $x x_{2}$ is balanced and $D_{3}^{2}(x, y) \cup$ $\left\{x_{2}\right\} \subseteq W_{x_{2}, x}$, we have that x_{2} has at most one neighbor in $D_{2}^{2}(x, y) \cup D_{1}^{2}(x, y)$. However, as $k=6$, this shows that x_{2} has at least two neighbors in $D_{1}^{1}(x, y)$ and so the edge $x_{2} x_{3}$ is not balanced. Consequently, for every edge $x y \in E(\Gamma)$ we have that $\left|D_{3}^{2}(x, y)\right|=\left|D_{2}^{3}(x, y)\right|=1$.

It follows from the above comments and (2.1) that $\left|D_{2}^{1}(x, y)\right|=\left|D_{1}^{2}(x, y)\right|=2$ for every edge $x y \in E(\Gamma)$. This implies that $\left|\overline{D_{1}^{1}}(x, y)\right|=3$ for every edge $x y \in E(\Gamma)$ and so Γ is edge-regular with $\lambda=3$.

Pick an edge $x y \in E(\Gamma)$. Let $D_{2}^{1}(x, y)=\left\{x_{2}, u\right\}$ and let x_{3} be a neighbor of x_{2} in $D_{3}^{2}(x, y)$. We observe that the three common neighbors of x_{2} and x_{3} are not all in $D_{2}^{2}(x, y)$, since the edge $x x_{2}$ is balanced. Then, u is a common neighbor of x_{2} and x_{3} and there exist two common neighbors of x_{2} and x_{3} in $D_{2}^{2}(x, y)$. Moreover, since the edge $x x_{2}$ is balanced, x_{2} has no neighbors in $D_{1}^{2}(x, y)$. Furthermore, as $k=6$ we have that x_{2} has a neighbor, say z, in $D_{1}^{1}(x, y)$. It now follows that $\Gamma(x) \cap \Gamma\left(x_{2}\right)=\{u, z\}$, contradicting that $\lambda=3$.

Theorem 4.3. Let Γ be a regular NDB graph with valency k, diameter $d \geq 3$, and $\gamma=d+1$. Then $k \in\{3,4,5\}$.
Proof. First note that a cycle $C_{n}(n \geq 3)$ is NDB with $\gamma\left(C_{n}\right)$ equal to the diameter of C_{n}. Therefore, $k \geq 3$.

Assume first that $\ell=2$ and recall that in this case the set $D_{2}^{1}=\left\{x_{2}, u\right\}$. We observe that x_{1} and x_{3} are the only neighbors of x_{2} in the set $D_{1}^{0} \cup D_{3}^{2}$. Furthermore, by Proposition 3.1(ii), x_{2} has at most one neighbor in $D_{1}^{1} \cup D_{1}^{2}$ and by Proposition 3.2 (i), x_{2} has at most two neighbors in D_{2}^{2}. Moreover, since $\ell=2$, we also notice that x_{2} has at most one neighbor in D_{2}^{1}. If x_{2} and u are not adjacent, then $k \leq 5$. Assume next that x_{2} and u are adjacent. We consider the cases $d \geq 4$ and $d=3$ separately. If $d \geq 4$, we also have that $u \in W_{x_{d-1}, x_{d}}$, and so $W_{x_{d-1}, x_{d}}=\left\{x_{0}, x_{1}, \ldots, x_{d-1}, u\right\}$ (recall that $\gamma=d+1$). If $w \in D_{1}^{1} \cup D_{1}^{2}$ is adjacent to x_{2}, then we have that $w \in W_{x_{d-1}, x_{d}}$, a contradiction. Therefore, x_{2} has no neighbors in $D_{1}^{1} \cup D_{1}^{2}$. As x_{2} has at most 2 neighbors in D_{2}^{2}, it follows that $k \leq 5$. If x_{2} and u are adjacent and $d=3$, then $k \leq 6$. However, by Proposition 4.2, there exists no regular NDB graph with valency $k=6$, diameter $d=3$, and $\gamma=4$. This shows that $k \leq 5$.

Assume next that $\ell \geq 3$. By Propositions 3.1 (ii) and 3.2 (ii), x_{2} has at most one neighbor in $D_{1}^{1} \cup D_{1}^{2}$, and at most one neighbor in D_{2}^{2}. Since x_{2} has at most one neighbor in D_{2}^{1} (namely u), it follows that $k \leq 5$. This concludes the proof.

Theorem 4.4. Let Γ be a regular $N D B$ graph with valency k, diameter $d \geq 3$, and $\gamma=d+1$. Then the following statements hold:
(i) If $k=3$, then $d \in\{3,4,5\}$.
(ii) If $k=4$, then $d \in\{3,4\}$.
(iii) If $k=5$, then $d=3$.

Proof. (i) Assume that $d \geq 6$ and consider first the case $\ell=2$. Note that by Proposition 3.1 (i) x_{4} and x_{5} have a neighbor in D_{4}^{4} and D_{5}^{5} respectively. If x_{3} has a neighbor in D_{3}^{3} then this contradicts Proposition 3.2(i). Therefore, x_{3} and u are adjacent and so $u \in W_{x_{d-1}, x_{d}}$. This and (3.1) implies that x_{2} has no neighbors in $D_{1}^{1} \cup D_{1}^{2}$. If x_{2} and u are adjacent, then we have that $\left|W_{u, x_{2}}\right|=\left|W_{x_{2}, u}\right|=$ 1 , contradicting $\gamma=d+1$. Therefore, x_{2} has a neighbor in D_{2}^{2}, contradicting Proposition 3.2 (i).

If $\ell=3$, then by Proposition 3.1(i) vertex x_{5} has a neighbor in D_{5}^{5}. By Proposition 3.1(i) and Proposition 3.2(ii), x_{3} and x_{4} are both adjacent with u. But then $\left|W_{u, x_{3}}\right|=\left|W_{x_{3}, u}\right|=1$, contradicting $\gamma=d+1$.

If $\ell=d-1$, then by Proposition 3.1(i) vertex x_{3} has a neighbor in D_{3}^{3}. Proposition 3.1 (i) and Proposition 3.2 (ii) now force that x_{2} has a neighbor in D_{1}^{1} and that x_{d-1} and u are adjacent. As $\left|W_{x_{d-1}, x_{d}}\right|=d+1$ we have that also x_{d} and u are adjacent (otherwise $u \in W_{x_{d-1}, x_{d}}$). But now $\left|W_{u, x_{d-1}}\right|=\left|W_{x_{d-1}, u}\right|=1$, contradicting $\gamma=d+1$.

If $\ell=d$, then x_{3} and x_{4} both have a neighbor in D_{3}^{3} and D_{4}^{4} respectively, contradicting Proposition 3.2 (ii).

Assume finally that $4 \leq \ell \leq d-2$. Similarly as above we see that x_{ℓ} and $x_{\ell+1}$ are not both adjacent to u, so either x_{ℓ} has a neighbor in D_{ℓ}^{ℓ} or $x_{\ell+1}$ has a neighbor in $D_{\ell+1}^{\ell+1}$ (but not both). Therefore we have that $u \in W_{x_{d-1}, x_{d}}$, and so x_{2} has no neighbors in $D_{1}^{1} \cup D_{1}^{2}$. Consequently, x_{2} has a neighbor in D_{2}^{2}, contradicting Proposition 3.2 (ii).
(ii) Assume $d \geq 5$. If $\ell=2$, then by Proposition 3.1(i) vertex x_{3} has at least one neighbor in D_{3}^{3}, while vertex x_{4} has two neighbors in D_{4}^{4}. However, this contradicts Proposition 3.2 (i).

If $\ell \geq 3$, then again by Proposition 3.1(i) vertex x_{3} (resp., vertex x_{4}) has at least one neighbor in D_{3}^{3} (resp., D_{4}^{4}), contradicting Proposition 3.2 (ii).
(iii) Assume $d \geq 4$. It follows from the proof of Theorem 4.3 that in this case $\ell \in\{2,3\}$ holds. If $\ell=2$, then by Proposition 3.1(ii) and since $k=5$, vertex x_{2} has at least one neighbor in D_{2}^{2}, while vertex x_{3} has at least two neighbors in D_{3}^{3}. However, this contradicts Proposition 3.2 (i).

If $\ell \geq 3$, then by Proposition 3.1 (i) vertex x_{3} has at least two neighbors in D_{3}^{3}, again contradicting Proposition 3.2 (ii). This shows that $d=3$.

Proposition 4.5. Let Γ be a regular $N D B$ graph with valency k, diameter $d=3$, and $\gamma=4$. Then for every edge $x y \in E(\Gamma)$ we have that $\left|D_{3}^{2}(x, y)\right|=\left|D_{2}^{3}(x, y)\right| \neq 0$.
Proof. Let us pick an edge $x y \in E(\Gamma)$. Recall that by Lemma 2.2 we have that $\left|D_{2}^{1}(x, y)\right|=\left|D_{1}^{2}(x, y)\right|$, and so it follows from 2.1) that $\left|D_{3}^{2}(x, y)\right|=\left|D_{2}^{3}(x, y)\right|$ as well. Therefore, it remains to prove that the sets $D_{3}^{2}(x, y)$ and $D_{2}^{3}(x, y)$ are nonempty.

Assume to the contrary that the sets $D_{2}^{3}(x, y)$ and $D_{3}^{2}(x, y)$ are empty. As $\gamma=d+1=4$ we have that $\left|D_{2}^{1}(x, y)\right|=\left|D_{1}^{2}(x, y)\right|=3$. In view of Theorem 4.3 we therefore have $k \in\{4,5\}$. Moreover, by Proposition 4.1 the set $D_{3}^{3}(x, y)$ is nonempty. Pick $z \in D_{3}^{3}(x, y)$ and note that there exists a vertex $w \in \Gamma(z) \cap D_{2}^{2}(x, y)$.

Assume first that $k=4$. Then the set $D_{1}^{1}(x, y)$ is empty. Hence, there exist vertices $u \in D_{2}^{1}(x, y)$ and $v \in D_{1}^{2}(x, y)$ which are neighbors of w. We thus have $\{u, v, w, x, y\} \subseteq W_{w, z}$, contradicting $\gamma=4$.

Assume next that $k=5$. Note that in this case $\left|D_{1}^{1}(x, y)\right|=1$. Let us denote the unique vertex of $D_{1}^{1}(x, y)$ by u. If w and u are not adjacent, then a similar argument as in the previous paragraph shows that $\left|W_{w, z}\right| \geq 5$, a contradiction. Therefore, w and u are adjacent, and so $W_{w, z}=\{x, y, u, w\}$. It follows that the

Figure 2. (a) Case $d=5, k=3$, and $\ell=4$ (left). (b) Case $d=5$, $k=3$, and $\ell=3$ (right).
remaining three neighbors of w (let us denote these neighbors by v_{1}, v_{2}, v_{3}) are also adjacent to z. As $\{u, w, z\} \subseteq W_{u, x}$, at least two of these three common neighbors (say v_{1} and v_{2}) are in D_{2}^{2} (recall D_{3}^{2} and D_{2}^{3} are empty). By the same argument as above (that is $\Gamma\left(v_{1}\right) \cap\left(D_{2}^{1} \cup D_{1}^{2}\right)=\emptyset$ and $\Gamma\left(v_{2}\right) \cap\left(D_{2}^{1} \cup D_{1}^{2}\right)=\emptyset$), v_{1} and v_{2} are adjacent to u, and so $\left\{u, w, v_{1}, v_{2}, z\right\} \subseteq W_{u, x}$, a contradiction. This shows that $D_{3}^{2}(x, y)$ and $D_{2}^{3}(x, y)$ are both nonempty.

5. Case $k=3$

Let Γ be a regular NDB graph with valency $k=3$, diameter $d \geq 3$, and $\gamma=$ $\gamma(\Gamma)=d+1$. Recall that by Theorem 4.4(i) we have $d \in\{3,4,5\}$. In this section we first show that in fact $d=4$ or $d=5$ is not possible, and then classify NDB graphs with $k=d=3$. We start with a proposition which claims that $d \neq 5$. Although the proof of this proposition is rather tedious and lengthy, it is in fact pretty straightforward.

Proposition 5.1. Let Γ be a regular $N D B$ graph with valency $k=3$, diameter $d \geq 3$, and $\gamma=\gamma(\Gamma)=d+1$. Then $d \neq 5$.

Proof. Assume to the contrary that $d=5$. Pick vertices x_{0}, x_{5} of Γ such that $d\left(x_{0}, x_{5}\right)=5$. Pick also a shortest path $x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ from x_{0} to x_{5} in Γ. Let $D_{j}^{i}=D_{j}^{i}\left(x_{1}, x_{0}\right)$, let $\ell=\ell\left(x_{0}, x_{1}\right)$ and recall that $2 \leq \ell \leq 5$. Observe that if $\ell \geq 3$, then there is a unique vertex $w \in D_{1}^{1}$ and a unique vertex $y_{2} \in D_{1}^{2}$. In this case x_{2} and w are not adjacent, otherwise edge $w x_{1}$ is not balanced. Similarly we could prove that w and y_{2} are not adjacent, and so w has a neighbor v in D_{2}^{2}.

Assume first that $\ell=5$. Then by Proposition 3.1(i) vertex x_{3} has exactly one neighbor in D_{3}^{3}. Now vertex x_{2} has a neighbor in $D_{1}^{2} \cup D_{2}^{2}$, contradicting Proposition 3.2 (ii).

Assume $\ell=4$. As x_{2} has a neighbor in $D_{1}^{2} \cup D_{2}^{2}$, Propositions 3.1 (i) and 3.2 (ii) imply that x_{4} is adjacent to u. If x_{5} is adjacent to u, then $W_{u, x_{4}}=\{u\}$, a contradiction. Therefore, x_{5} and u are not adjacent, and so $W_{x_{4}, x_{5}}=\left\{x_{4}, x_{3}, x_{2}, x_{1}, x_{0}, u\right\}$. Consequently, $w \notin W_{x_{4}, x_{5}}$, which implies $d\left(x_{5}, w\right)=4$. It follows that there exists a path $w, v_{1}, v_{2}, v_{3}, x_{5}$ of length 4 , and it is easy to see that $v_{1}=v, v_{2} \in D_{3}^{3}$ and $v_{3} \in D_{4}^{4}$ (see Figure 2(a)).

If x_{2} is adjacent with y_{2}, then $y_{2} \in W_{x_{4}, x_{5}}$, a contradiction. Therefore, x_{2} has a neighbor $z \in D_{2}^{2}$. If $z=v$, then $\left\{x_{2}, x_{3}, x_{4}, x_{5}, u, v, v_{2}, v_{3}\right\} \subseteq W_{x_{2}, x_{1}}$, a contradiction. Therefore $z \neq v, W_{x_{2}, x_{1}}=\left\{x_{2}, x_{3}, x_{4}, x_{5}, u, z\right\}$, and z is adjacent to y_{2} (recall that z must be at distance 2 from x_{0} and that y is not adjacent with x_{1} and v). If z has a neighbor in $D_{2}^{3} \cup D_{3}^{3}$, then this neighbor would be another vertex in $W_{x_{2}, x_{1}}$, which is not possible. The only other possible neighbor of z is v, and so z and v are adjacent. It is now clear that $W_{w, v}=\left\{w, x_{0}, x_{1}\right\}$, contradicting $\gamma=6$.

Assume $\ell=3$. By Proposition 3.1(i), we have that either x_{4} is adjacent to u, or that x_{4} has a neighbor in D_{4}^{4}. Let us first consider the case when x_{4} and u are adjacent. If also x_{3} and u are adjacent, then $u x_{3}$ is clearly not balanced, and so Propositions 3.1(i) and 3.2(ii) imply that u and x_{3} have a common neighbor v_{2} in D_{3}^{3}. Since $x_{4} x_{5}$ is balanced, v_{2} must be at distance 2 from x_{5}, which implies that v_{2} and x_{5} have a common neighbor $v_{3} \in D_{4}^{4}$. But now $\left\{x_{2}, x_{3}, x_{4}, x_{5}, u, v_{2}, v_{3}\right\} \subseteq$ $W_{x_{2}, x_{1}}$, a contradiction. Therefore x_{4} is not adjacent to u, and so x_{4} has a neighbor z in D_{4}^{4}. Propositions 3.1 (i) and 3.2 (ii) imply that x_{3} has no neighbors in $D_{2}^{2} \cup$ $D_{2}^{3} \cup D_{3}^{3}$, and so x_{3} is adjacent to u. This implies that z and x_{5} are adjacent, as otherwise $x_{4} x_{5}$ is not balanced. Similarly, by Proposition 3.2 (ii) u has no neighbors in $D_{2}^{3} \cup D_{3}^{3}$, and so u is adjacent to v (note that v is the unique vertex of D_{2}^{2}). As in the previous paragraph (since $w \notin W_{x_{4}, x_{5}}=\left\{x_{4}, x_{3}, x_{2}, x_{1}, x_{0}, u\right\}$) we obtain that there exists a path $w, v, v_{2}, v_{3}, x_{5}$ of length 4 , and that $v_{2} \in D_{3}^{3}, v_{3} \in D_{4}^{4}$ (note that it could happen that $z=v_{3}$). Note that u and x_{3} have no neighbors in D_{3}^{3}, and that the only neighbor of v in D_{3}^{3} is v_{2}. Therefore, as $k=3$, this implies that v_{2} is the unique vertex of D_{3}^{3}. Let us now examine the cardinality of D_{4}^{4}. By Proposition 3.2 (ii), both neighbors of x_{5}, different from x_{4}, are in D_{4}^{4}, and so $\left|D_{4}^{4}\right| \geq 2$. On the other hand, if v_{2} has two neighbors in D_{4}^{4}, then $w x_{0}$ is not balanced, and so v_{3} is the unique neighbor of v_{2} in D_{4}^{4}. As x_{4} has exactly one neighbor in D_{4}^{4} (namely z), this shows that $\left|D_{4}^{4}\right|=2$ and that $v_{3} \neq z$. But as Γ is a cubic graph, it must have an even order. Then, there exists a vertex t in D_{5}^{5}. Note that t is not adjacent to x_{5}, and so it must be adjacent to at least one of z, v_{3}. However, if t is adjacent to z, then $x_{2} x_{1}$ is not balanced, while if it is adjacent to v_{3}, then $w x_{0}$ is not balanced. This shows that $\ell \neq 3$

Assume finally that $\ell=2$. By Proposition 3.1(i), vertex x_{4} has a neighbor $z \in D_{4}^{4}$. Also by Proposition 3.1(i), vertex x_{3} either has a neighbor in D_{3}^{3}, or is adjacent with u. Assume first that x_{3} is adjacent with u. Note that in this case $x_{2} \nsim u$ (otherwise edge $x_{2} u$ is not balanced) and $\left\{x_{4}, x_{3}, x_{2}, x_{1}, x_{0}, u\right\}=W_{x_{4}, x_{5}}$. It follows that x_{2} cannot have a neighbor in D_{1}^{2} (otherwise the edge $x_{4} x_{5}$ is not balanced) and so x_{2} has a neighbor $v \in D_{2}^{2}$. Now if v has a neighbor $v_{2} \in D_{3}^{3}$, then $\left\{x_{2}, x_{3}, x_{4}, x_{5}, z, v, v_{2}\right\} \subseteq W_{x_{2}, x_{1}}$, a contradiction. Therefore v has no neighbors in
D_{3}^{3}, implying that $d\left(x_{5}, v\right)=4$. But this forces $v \in W_{x_{4}, x_{5}}$, a contradiction. Thus $x_{3} \nsim u$, and it follows that x_{3} has a neighbor $v_{2} \in D_{3}^{3}$. As $\left\{x_{2}, x_{3}, x_{4}, x_{5}, v_{2}, z\right\}=$ $W_{x_{2}, x_{1}}$, vertex x_{2} has no neighbors in $D_{1}^{2} \cup D_{2}^{2}$, implying that x_{2} is adjacent to u. Since $W_{x_{4}, x_{5}}=\left\{x_{4}, x_{3}, x_{2}, x_{1}, x_{0}, u\right\}$, vertex z is adjacent to x_{5}, and vertices v_{2} and x_{5} have a common neighbor in D_{4}^{4}. Now, since $x_{1} x_{2}$ is balanced we have that this common neighbor is in fact z, and so z is adjacent to v_{2}. Now consider the edge $v_{2} z$. Note that $\left\{x_{1}, x_{2}, x_{3}, v_{2}\right\} \subseteq W_{v_{2}, z}$. As $d\left(x_{0}, v_{2}\right)=3$, there exist vertices y_{1}, y_{2} such that $x_{0}, y_{1}, y_{2}, v_{2}$ is a path of length 3 between x_{0} and v_{2}. Observe that $\left\{x_{0}, y_{1}, y_{2}, v_{2}\right\} \subseteq W_{v_{2}, z}$. As $\left\{x_{1}, x_{2}, x_{3}\right\} \cap\left\{x_{0}, y_{1}, y_{2}\right\}=\emptyset$, we have that $\left|W_{v_{2}, z}\right| \geq 7$, a contradiction.
5.1. Case $d=4$ is not possible. Let Γ be a regular NDB graph with valency $k=3$, diameter $d \geq 3$, and $\gamma=\gamma(\Gamma)=d+1$. We now consider the case $d=4$. Our main result in this subsection is to prove that this case is not possible. For the rest of this subsection pick arbitrary vertices x_{0}, x_{4} of Γ such that $d\left(x_{0}, x_{4}\right)=4$. Pick a shortest path $x_{0}, x_{1}, x_{2}, x_{3}, x_{4}$ between x_{0} and x_{4}. Let $D_{j}^{i}=D_{j}^{i}\left(x_{1}, x_{0}\right)$ and let $\ell=\ell\left(x_{0}, x_{1}\right)$. Let u denote the unique vertex of $D_{\ell}^{\ell-1} \backslash\left\{x_{\ell}\right\}$.
Proposition 5.2. Let Γ be a regular NDB graph with valency $k=3$, diameter $d=4$, and $\gamma=\gamma(\Gamma)=d+1=5$. With the notation above, we have that $\ell \neq 4$.

Proof. Assume to the contrary that $\ell=4$. Note that in this case, since $k=3$ and $\left|D_{2}^{1}\right|=\left|D_{1}^{2}\right|=1$, we have $\left|D_{1}^{1}\right|=1$. Let w denote the unique vertex of D_{1}^{1}, and let z denote the neighbor of x_{2}, different from x_{1} and x_{3}. Observe that $z \neq w$, as otherwise $x_{1} w$ is not balanced. Similarly, w is not adjacent to the unique vertex y_{2} of D_{1}^{2}. Observe also that $\left\{x_{0}, x_{1}, x_{2}, x_{3}\right\} \subseteq W_{x_{3}, u}$. We claim that $u \in \Gamma\left(x_{4}\right)$. To prove this, suppose that x_{4} and u are not adjacent. Then $x_{4} \in W_{x_{3}, u}$, and so z is contained in D_{2}^{2}. Observe that $d(z, u)=2$, otherwise $x_{3} u$ is not balanced. Therefore, u and z must have a common neighbor z_{1} and it is clear that $z_{1} \in D_{3}^{3}$. But now $\left\{x_{2}, x_{3}, x_{4}, u, z, z_{1}\right\} \subseteq W_{x_{2}, x_{1}}$, a contradiction. This proves our claim that $u \sim z$.

Suppose now that $z=y_{2}$. Then $D_{2}^{3} \cup D_{3}^{4} \cup\left\{u, x_{2}, x_{3}, x_{4}, y_{2}\right\} \subseteq W_{x_{2}, x_{1}}$. Note that by the NDB condition we have $\left|D_{2}^{3} \cup D_{3}^{4}\right|=3$, and so $x_{2} x_{1}$ is not balanced, a contradiction. We therefore have that $z \in D_{2}^{2}$.

By Proposition 3.2(ii) it follows that u and x_{4} have a neighbor z_{1} and z_{2} in D_{3}^{3}, respectively. We observe that $z_{1} \neq z_{2}$, as otherwise $x_{4} u$ is not balanced. Note that z has no neighbors in D_{3}^{3}, as otherwise $x_{2} x_{1}$ is not balanced. Therefore, z is not adjacent to any of z_{1}, z_{2}, which gives us $W_{x_{3}, x_{4}}=W_{x_{3}, u}=\left\{x_{3}, x_{2}, x_{1}, x_{0}, z\right\}$. Consequently, $d(w, u)=d\left(w, x_{4}\right)=3$, and so the (unique) neighbor of w in D_{2}^{2} is adjacent to both z_{1} and z_{2}. But this implies that $w x_{0}$ is not balanced, a contradiction.

Proposition 5.3. Let Γ be a regular NDB graph with valency $k=3$, diameter $d=4$, and $\gamma=\gamma(\Gamma)=d+1=5$. With the notation above, we have that $\ell \neq 3$.

Proof. Suppose that $\ell=3$. By Lemma 2.2 we have $\left|D_{1}^{2}\right|=1$, and since $k=3$ also $\left|D_{1}^{1}\right|=1$. Let w and y_{2} denote the unique vertex of D_{1}^{1} and D_{1}^{2}, respectively.

Since $\gamma=5, y_{2}$ has at least one neighbor y_{3} in D_{2}^{3}, and $\left|D_{3}^{4}\right| \leq 2$. If $D_{3}^{4}=\emptyset$, then there are three vertices in D_{2}^{3}, which are all adjacent to y_{2}, contradicting $k=3$. By Proposition 5.2 we have that $\left|D_{3}^{4}\right| \neq 2$, and so $\left|D_{3}^{4}\right|=1,\left|D_{2}^{3}\right|=2$. Let y_{4} denote the unique element of D_{3}^{4} and let u_{1} denote the unique element of $D_{2}^{3} \backslash\left\{y_{3}\right\}$. Without loss of generality assume that y_{4} and y_{3} are adjacent. Observe that $\Gamma\left(y_{2}\right)=\left\{x_{0}, y_{3}, u_{1}\right\}$, and so w has a neighbor $v \in D_{2}^{2}$, and it is easy to see that v is the unique vertex of D_{2}^{2} (see Figure 3(a)). By Proposition 3.1(i) we find that either $x_{3} \in \Gamma(u)$, or x_{3} has a neighbor in D_{3}^{3}.

CASE 1: there exists $z \in \Gamma\left(x_{3}\right) \cap D_{3}^{3}$. Note that in this case we have $W_{x_{2}, x_{1}}=$ $\left\{x_{2}, x_{3}, x_{4}, u, z\right\}$. We split our analysis into two subcases.

Subcase 1.1: vertices u and x_{4} are not adjacent. As $x_{2} x_{1}$ is balanced and as v is the unique vertex of D_{2}^{2}, this forces u to be adjacent with v and z. As every vertex in D_{3}^{3} is at distance 3 from x_{1} and as vertices u, x_{3} already have three neighbors each, this implies that beside z there is at most one more vertex in D_{3}^{3} (which must be adjacent with v). But this shows that x_{4} could have at most one neighbor in D_{3}^{3} (observe that z could not be adjacent with x_{4}, as otherwise z is not at distance 3 from x_{0}), and consequently x_{4} has at least one neighbor in $D_{4}^{4} \cup D_{3}^{4}$. But now $x_{2} x_{1}$ is not balanced, a contradiction.

Subcase 1.2: vertices u and x_{4} are adjacent. By Proposition 3.2 (ii), vertex u is either adjacent to $v \in D_{2}^{2}$ or to $z \in D_{3}^{3}$. If u is adjacent to v, then $\left\{x_{0}, x_{1}, x_{2}, u, v, w\right\} \subseteq W_{u, x_{4}}$, a contradiction. This shows that $u \sim z$. Note that the third neighbor of z is one of the vertices v, y_{3}, u_{1}, and so z and x_{4} are not adjacent. Consequently, $W_{x_{3}, x_{4}}=\left\{x_{3}, x_{2}, x_{1}, x_{0}, z\right\}$, and so w must be at distance 3 from x_{4}. Therefore, v and x_{4} have a common neighbor $v_{1} \in D_{3}^{3}$. Note that $v_{1} \neq z$ as z and x_{4} are not adjacent. Every vertex in D_{3}^{3}, different from z and v_{1}, must be adjacent with v in order to be at distance 3 from x_{1}. This shows that $\left|D_{3}^{3}\right| \leq 3$. If there exists vertex $v_{2} \in D_{3}^{3}$, which is different from z and v_{1}, then there must be a vertex $t \in D_{4}^{4}$ (recall that Γ is of even order). As t could not be adjacent with x_{4}, it must be adjacent with at least one of v_{1}, v_{2}. However, this is not possible (note that in this case $\left\{w, v, v_{1}, v_{2}, x_{4}, t\right\} \subseteq W_{w, x_{0}}$, a contradiction). Therefore, $D_{3}^{3}=\left\{z, v_{1}\right\}$ and $D_{4}^{4}=\emptyset$. It follows that y_{4} is adjacent with v_{1} and u_{1}. If z and v are adjacent, then $W_{x_{1}, w}=\left\{x_{1}, x_{2}, u, x_{3}\right\}$, contradicting $\gamma=5$. Therefore, z is adjacent to either y_{3} or u_{1}. This shows that either y_{3} or u_{1} is contained in $W_{x_{3}, x_{4}}=\left\{x_{3}, x_{2}, x_{1}, x_{0}, z\right\}$, a contradiction.

CASE 2: x_{3} and u are adjacent. Observe that $x_{4} \notin \Gamma(u)$, otherwise $u x_{3}$ is not balanced. It follows that $W_{x_{3}, x_{4}}=\left\{x_{3}, x_{2}, x_{1}, x_{0}, u\right\}$, and so $d\left(w, x_{4}\right)=3$. Therefore there exists a common neighbor z of x_{4} and v, and note that $z \in D_{3}^{3}$. Reversing the roles of the paths $x_{0}, x_{1}, x_{2}, x_{3}, x_{4}$ and $x_{1}, x_{0}, y_{2}, y_{3}, y_{4}$, we get that u_{1} and y_{3} are adjacent, and that $y_{4} \notin \Gamma\left(u_{1}\right)$. As $\left|W_{x_{1}, w}\right|=5$, vertex u must have a neighbor, which is at distance 3 from x_{1} and at distance 4 from w. As x_{4}, y_{3} and u_{1} are all at distance 3 from w, this implies that u has a neighbor $z_{1} \in D_{3}^{3}$, which is not adjacent with v (and is therefore different from z). Note that since z_{1} is at distance 3 from x_{0}, it is adjacent with u_{1}. As $k=3, v$ has a neighbor $z_{2} \neq z$ in D_{3}^{3}. Pick now a vertex $t \in D_{4}^{4}$ (observe that $D_{4}^{4} \neq \emptyset$ as Γ has even order). If t is

Figure 3. (a) Case $d=4, k=3$, and $\ell=3$ (left). (b) Case $d=4$, $k=4$, and $\ell=2$ (right).
adjacent with x_{4} or with z_{1}, then $t \in W_{x_{2}, x_{1}}=\left\{x_{2}, x_{3}, x_{4}, u, z_{1}\right\}$, a contradiction. If t is adjacent with z or z_{2}, then $t \in W_{w, x_{0}}=\left\{w, v, z, z_{2}, x_{4}\right\}$, a contradiction. This finally proves that $\ell \neq 3$.

Proposition 5.4. Let Γ be a regular $N D B$ graph with valency $k=3$, diameter $d=4$, and $\gamma=\gamma(\Gamma)=d+1=5$. With the notation above, Γ is triangle-free.

Proof. Pick an edge $x y \in E(\Gamma)$ and let $D_{j}^{i}=D_{j}^{i}(x, y)$. If either D_{3}^{4} or D_{4}^{3} is nonempty, then Propositions 5.2 and 5.3 together with Lemma 2.2 imply that $\left|D_{2}^{1}\right|=\left|D_{1}^{2}\right|=2$. As Γ is 3-regular, the set D_{1}^{1} is empty, and so $x y$ is not contained in any triangle.

Assume next that $D_{3}^{4}=D_{4}^{3}=\emptyset$. If the edge $x y$ is contained in a triangle, then D_{2}^{1} and D_{1}^{2} both contain at most one vertex, and so D_{3}^{2} and D_{2}^{3} could contain at most two vertices as Γ is 3 -regular. We thus have $\left|W_{x, y}\right| \leq 4$, contradicting $\gamma=5$. The result follows.

Proposition 5.5. Let Γ be a regular NDB graph with valency $k=3$, diameter $d \geq 3$, and $\gamma=\gamma(\Gamma)=d+1$. Then $d \neq 4$.

Proof. Suppose, towards a contradiction, that $d=4$, and so $\gamma=5$. Assume the notation from the first paragraph of this subsection, and note that Propositions 5.2 and 5.3 imply that $\ell=2$. By Lemma 2.2 we have $\left|D_{1}^{2}\right|=2$. Let u_{1}, y_{2} denote the vertices of D_{1}^{2}. Note that D_{1}^{1} is empty. We also observe that by Proposition 3.1(i) either $u \in \Gamma\left(x_{3}\right)$, or x_{3} has a neighbor in D_{3}^{3}. We consider these two cases separately.

CASE 1: u and x_{3} are adjacent. Then $\left\{x_{0}, x_{1}, x_{2}, x_{3}, u\right\}=W_{x_{3}, x_{4}}$, and so neither x_{2} nor u have neighbors in D_{1}^{2}. Since Γ is triangle-free, there exists $w \in \Gamma\left(x_{2}\right) \cap D_{2}^{2}$, and w has a neighbor in D_{1}^{2} (by definition of the set D_{2}^{2}). We may assume without loss of generality that $w \in \Gamma\left(y_{2}\right)$. Note that $d\left(w, x_{3}\right)=2$, and so $d\left(w, x_{4}\right)=2$
as well, as otherwise $x_{3} x_{4}$ is not balanced. It follows that there exists a common neighbor z of w and x_{4}, and it is clear that $z \in D_{3}^{3}$.

Similarly we find that u has a neighbor $w_{1} \in D_{2}^{2}$, and as $k=3$, we have that $w_{1} \neq w$. Note that $\left\{x_{2}, x_{1}, x_{0}, w, y_{2}\right\}=W_{x_{2}, x_{3}}$, and so $d\left(x_{3}, u_{1}\right)=3$ (otherwise $u_{1} \in W_{x_{2}, x_{3}}$, a contradiction). Note, however, that $d\left(x_{3}, u_{1}\right)=3$ is only possible if w_{1} and u_{1} are adjacent. A similar argument as above shows that w_{1} and x_{4} must have a common neighbor $z_{1} \in D_{3}^{3}$. If $z_{1}=z$, then $\left\{z, w, w_{1}, y_{2}, u_{1}, x_{0}\right\} \subseteq W_{z, x_{4}}$, a contradiction. Therefore $z_{1} \neq z$, and it is now clear that $D_{2}^{2}=\left\{w, w_{1}\right\}, D_{3}^{3}=$ $\left\{z, z_{1}\right\}$. If there exists $t \in D_{4}^{4}$, then t is adjacent to either z or z_{1}, but none of these two possible edges is balanced, and so $D_{4}^{4}=\emptyset$. If z (resp., z_{1}) has a neighbor in D_{3}^{4}, then $x_{2} x_{1}$ (resp., $u x_{1}$) is not balanced, a contradiction. As Γ is triangle-free, z and z_{1} both have a neighbor in D_{2}^{3}. Assume now for a moment that there exists a vertex $y_{4} \in D_{3}^{4}$. In this case $\gamma=5$ forces that there is a unique vertex in D_{2}^{3}, which is therefore adjacent to both z and z_{1}, to y_{4}, and to at least one of y_{2}, u_{1}, contradicting $k=3$. It follows that $D_{3}^{4}=\emptyset$. Let us denote the neighbors of z and z_{1} in D_{2}^{3} by v and v_{1}, respectively. Note that as $z x_{4}$ and $z_{1} x_{4}$ are balanced, we have that $W_{z, x_{4}}=\left\{z, w, v, y_{2}, x_{0}\right\}$ and $W_{z_{1}, x_{4}}=\left\{z_{1}, w_{1}, v_{1}, u_{2}, x_{0}\right\}$. It follows that v and v_{1} must be adjacent to y_{2} and u_{1}, respectively, and so $v \neq v_{1}$. As $k=3$, also v and v_{1} are adjacent. It is now easy to see that Γ is not NDB with $\gamma=5$ (for example, edge $x_{1} u$ is not balanced). This shows that u and x_{3} are not adjacent.

CASE 2: x_{3} has a neighbor w in D_{3}^{3}. As Γ is triangle-free, x_{2} has a neighbor z in $D_{1}^{2} \cup D_{2}^{2}$, and $w \nsim x_{4}$. If $z \in D_{1}^{2}$, then $\left\{x_{0}, x_{1}, x_{2}, x_{3}, z, w\right\} \subseteq W_{x_{3}, x_{4}}$, a contradiction. This yields that $z \in D_{2}^{2}$. If $d\left(z, x_{4}\right) \geq 3$, then again $\left\{x_{0}, x_{1}, x_{2}, x_{3}, z, w\right\} \subseteq$ $W_{x_{3}, x_{4}}$, a contradiction. Therefore, z and x_{4} have a common neighbor $w_{1} \in D_{3}^{3}$, and $w_{1} \neq w$ as $w \nsim x_{4}$. But now $\left\{x_{2}, x_{3}, x_{4}, z, w, w_{1}\right\} \subseteq W_{x_{2}, x_{1}}$, a contradiction. This finishes the proof.
5.2. Case $d=3$. In this subsection we consider the case $d=3$. We start with the following proposition.

Proposition 5.6. Let Γ be a regular $N D B$ graph with valency $k=3$, diameter $d=3$, and $\gamma=4$. Then for every edge $x_{0} x_{1}$ of Γ we have that $\left|D_{2}^{1}\left(x_{1}, x_{0}\right)\right|=$ $\left|D_{1}^{2}\left(x_{1}, x_{0}\right)\right|=2$.

Proof. Pick an edge $x_{0} x_{1}$ of Γ and let $D_{j}^{i}=D_{j}^{i}\left(x_{1}, x_{0}\right)$. Observe first that $\left|D_{2}^{1}\right| \leq 2$ as $k=3$. By Proposition 4.5 we have that $D_{3}^{2} \neq \emptyset$, and so pick $x_{3} \in D_{3}^{2}$. Note that x_{1} and x_{3} have a common neighbor $x_{2} \in D_{2}^{1}$. Assume to the contrary that $\left|D_{2}^{1}\right|=1$, and so $\left|D_{3}^{2}\right|=2,\left|D_{1}^{1}\right|=1=\left|D_{1}^{2}\right|$. Let us denote the unique vertex of D_{1}^{2} by y_{2} (note that y_{2} has two neighbors, say y_{3} and u_{1} in D_{2}^{3}), the unique vertex of D_{1}^{1} by w, and the unique vertex of $D_{3}^{2} \backslash\left\{x_{3}\right\}$ by u (note that $\Gamma\left(x_{2}\right)=\left\{x_{1}, x_{3}, u\right\}$). Note that w has a neighbor v in D_{2}^{2}, and that $D_{2}^{2}=\{v\}$.

Assume first that u and x_{3} are not adjacent. Then $W_{x_{2}, x_{3}}=\left\{x_{2}, u, x_{1}, x_{0}\right\}$, and so w is at distance 2 from x_{3} (otherwise $w \in W_{x_{2}, x_{3}}$). It follows that x_{3} is adjacent with v. Similarly we show that u is adjacent with v. As none of the neighbors of v is contained in D_{3}^{3}, every vertex from D_{3}^{3} must be adjacent to either u or x_{3}, and so $D_{3}^{3} \cup\left\{x_{2}, x_{3}, u\right\} \subseteq W_{x_{2}, x_{1}}$. It follows that $\left|D_{3}^{3}\right| \leq 1$. As Γ is a cubic graph, it
must have an even order, which gives us $D_{3}^{3}=\emptyset$. This shows that both u and x_{3} have a neighbor in D_{2}^{3}. But now $\left\{y_{2}, y_{3}, u_{1}, x_{3}, u\right\} \cup D_{2}^{3} \subseteq W_{y_{2}, x_{0}}$, a contradiction.

Therefore, u and x_{3} must be adjacent, and they have a common neighbor x_{2}. Let z_{1} and z_{2} denote the third neighbor of u and x_{3}, respectively. If $z_{1}=z_{2}$ then $u x_{3}$ is not balanced, and so we have that $z_{1} \neq z_{2}$. Furthermore, as $\left\{x_{2}, x_{3}, u\right\} \subseteq W_{x_{2}, x_{1}}$, not both of z_{1}, z_{2} are contained in $D_{3}^{3} \cup D_{2}^{3}$. Therefore, either z_{1} or z_{2} is equal to v. Without loss of generality assume that $z_{1}=v$. But then $d=3$ forces $W_{x_{2}, u}=\left\{x_{2}, x_{1}, x_{0}\right\}$, a contradiction. This shows that $\left|D_{2}^{1}\right|=2$, and by Lemma 2.2 also $\left|D_{1}^{2}\right|=2$.

Corollary 5.7. Let Γ be a regular NDB graph with valency $k=3$, diameter $d=3$, and $\gamma=4$. Then Γ is triangle-free and $D_{3}^{3}(x, y)=\emptyset$ for every edge $x y$ of Γ.
Proof. Pick an arbitrary edge $x y$ of Γ and let $D_{j}^{i}=D_{j}^{i}(x, y)$. By Proposition 4.5 we get that the sets $D_{2}^{1}, D_{1}^{2}, D_{3}^{2}$, and D_{2}^{3} are all nonempty. Furthermore, by Proposition 5.6 and Lemma 2.2 we have that $\left|D_{2}^{1}\right|=\left|D_{1}^{2}\right|=2$ and $\left|D_{2}^{3}\right|=\left|D_{3}^{2}\right|=1$ (recall that $\gamma=4$). Since $k=3$, it follows that $D_{1}^{1}=\emptyset$. This shows that Γ is triangle-free.

We next assert the set D_{3}^{3} is empty. Suppose to the contrary there exists $z \in D_{3}^{3}$ and let w denote a neighbor of z. Assume first that $w \in D_{2}^{2}$. Since $D_{1}^{1}=\emptyset$, there exist vertices $u \in D_{2}^{1}$ and $v \in D_{1}^{2}$ which are neighbors of w. We thus have $\{u, v, w, x, y\} \subseteq W_{w, z}$, contradicting $\gamma=4$. This shows that $w \notin D_{2}^{2}$. Therefore z is adjacent to both vertices which are in D_{2}^{3} and D_{3}^{2}. As z has three neighbors, none of which is in D_{2}^{2}, and as $\left|D_{3}^{2}\right|=\left|D_{2}^{3}\right|=1$, it follows that z has a neighbor $w^{\prime} \in D_{3}^{3}$. But by the same argument as above, w^{\prime} must be adjacent to both vertices in D_{2}^{3} and D_{3}^{2}, contradicting the fact that Γ is triangle-free.
Theorem 5.8. Let Γ be a regular NDB graph with valency $k=3$, diameter $d \geq 3$, and $\gamma=d+1$. Then Γ is isomorphic to the 3 -dimensional hypercube Q_{3}.

Proof. By Theorem4.4(i), Proposition 5.1 and Proposition 5.5 we have that $d=3$. Pick an edge $x y$ of $\bar{\Gamma}$ and let $D_{j}^{i}=D_{j}^{i}(x, y)$. Observe that Γ is triangle-free and $D_{3}^{3}=\emptyset$ by Corollary 5.7. We first show that $D_{2}^{2}=\emptyset$ as well. Observe that as $D_{1}^{1}=\emptyset$, every vertex of D_{2}^{2} must have a neighbor in both D_{2}^{1} and D_{1}^{2}. This shows that $\left|D_{2}^{2}\right| \in\{1,2,3\}$, and so $|V(\Gamma)| \in\{9,10,11\}$. However, since Γ is regular with $k=3$, we have $|V(\Gamma)|=10$ and $\left|D_{2}^{2}\right|=2$. In [5], it is shown that the number of connected 3 -regular graphs with 10 vertices is 19 , but only five of them have diameter $d=3$ and girth $g \geq 4$. Out of these five graphs, only four have all vertices with eccentricity 3 (see Figure 4). It is easy to see that none of these graphs is NDB with $\gamma=4$. This shows that $D_{2}^{2}=\emptyset$, and so $|V(\Gamma)|=8$. But it is well known (and also easy to see) that Q_{3} is the only cubic triangle-free graph with eight vertices and diameter $d=3$.

6. CASE $k=4$

Let Γ be a regular NDB graph with valency $k=4$, diameter $d \geq 3$, and $\gamma=$ $\gamma(\Gamma)=d+1$. Recall that by Theorem 4.4(ii) we have $d \in\{3,4\}$. In this section

Figure 4. Connected 3-regular graphs of order 10 with diameter $d=3$, girth $g \geq 4$, and with all vertices with eccentricity 3 .
we first show that the case $d=4$ is not possible, and then classify regular NDB graphs with $k=4$ and $d=3$. We start with the following lemma.

Lemma 6.1. Let Γ be a regular NDB graph with valency $k=4$, diameter $d=4$, and $\gamma=\gamma(\Gamma)=d+1$. Pick vertices x_{0}, x_{4} of Γ such that $d\left(x_{0}, x_{4}\right)=4$, and pick a shortest path $x_{0}, x_{1}, x_{2}, x_{3}, x_{4}$ between x_{0} and x_{4}. Let $\ell=\ell\left(x_{0}, x_{1}\right), D_{j}^{i}=$ $D_{j}^{i}\left(x_{1}, x_{0}\right)$, and $D_{\ell}^{\ell-1}=\left\{x_{\ell}, u\right\}$. Then $\ell=2$. Moreover, $u \sim x_{2}$ and $u \sim x_{3}$.
Proof. Assume first that $\ell=4$. By Proposition 3.1(i), vertex x_{3} has a neighbor z in D_{3}^{3}. Now $W_{x_{2}, x_{1}}=\left\{x_{2}, x_{3}, x_{4}, u, z\right\}$, and so x_{2} has no neighbors in $D_{2}^{2} \cup D_{1}^{2}$. Consequently, x_{2} has two neighbors in D_{1}^{1}, contradicting Proposition 3.1(ii).

Assume now that $\ell=3$. By Proposition 3.1(i) x_{3} does not have neighbors in $D_{2}^{3} \cup D_{2}^{2}$, and so by Proposition 3.2 (ii) we get that x_{3} and u are adjacent, and that x_{3} has a neighbor z in D_{3}^{3}. By Proposition 3.2(ii) vertex x_{2} has no neighbors in $D_{2}^{2} \cup D_{1}^{2}$, and so x_{2} has a neighbor w in D_{1}^{1}. Now $\left\{x_{3}, x_{2}, x_{1}, x_{0}, w\right\} \subseteq W_{x_{3}, x_{4}}$, implying that x_{4} is adjacent to both u and z. Similarly, $\left\{u, x_{2}, x_{1}, x_{0}, w\right\} \subseteq W_{u, x_{4}}$, and so u has no neighbors in $D_{2}^{2} \cup D_{2}^{3}$. It follows that u has a neighbor in D_{3}^{3}, and by Proposition 3.2 (ii), this neighbor is z. But now the edge $x_{3} u$ is not balanced, a contradiction.

This shows that $\ell=2$. By Proposition 3.1(i), vertex x_{3} has either one or two neighbors in D_{3}^{3}. If x_{3} has two neighbors in D_{3}^{3}, then by Proposition 3.2 (i) vertex x_{2} has no neighbors in $D_{2}^{2} \cup D_{1}^{2}$. Therefore, x_{2} is adjacent to the unique vertex $w \in D_{1}^{1}$, and is also adjacent to u. But now we have that $\left\{x_{3}, x_{2}, x_{1}, x_{0}, u, w\right\} \subseteq W_{x_{3}, x_{4}}$, a contradiction.

Therefore, x_{3} has exactly one neighbor in D_{3}^{3}. As by Proposition 3.1(i) vertex x_{3} has no neighbors in $D_{2}^{2} \cup D_{2}^{3}$, we have that $x_{3} \sim u$. Consequently $\left\{x_{3}, x_{2}, x_{1}, x_{0}, u\right\} \subseteq$ $W_{x_{3}, x_{4}}$, and so x_{2} and u have no neighbors in $D_{1}^{1} \cup D_{1}^{2}$. Since $k=4$ and since edges $x_{2} x_{1}$ and $u x_{1}$ are balanced, it follows both of x_{2} and u have exactly one neighbor in D_{2}^{2}, and that $x_{2} \sim u$.
Proposition 6.2. Let Γ be a regular NDB graph with valency $k=4$, diameter $d \geq 3$, and $\gamma=\gamma(\Gamma)=d+1$. Then $d \neq 4$.

Proof. Assume to the contrary that $d=4$. Pick vertices x_{0}, x_{4} of Γ such that $d\left(x_{0}, x_{4}\right)=4$. Pick a shortest path $x_{0}, x_{1}, x_{2}, x_{3}, x_{4}$ between x_{0} and x_{4}. Let $D_{j}^{i}=$
$D_{j}^{i}\left(x_{1}, x_{0}\right)$, let $\ell=\ell\left(x_{0}, x_{1}\right)$ and let $D_{\ell}^{\ell-1}=\left\{x_{\ell}, u\right\}$. Recall that by Lemma 6.1 we have that $\ell=2$ and that vertex u is adjacent with x_{2} and x_{3}. Let z denote a neighbor of x_{3} in D_{3}^{3} (note that by Proposition 3.1(i) vertex x_{3} has no neighbors in $\left.D_{2}^{2} \cup D_{2}^{3}\right)$.

Since $W_{x_{3}, x_{4}}=\left\{x_{3}, x_{2}, x_{1}, x_{0}, u\right\}$, vertices x_{2} and u have no neighbors in $D_{1}^{1} \cup D_{1}^{2}$. Let us denote the neighbors of u and x_{2} in D_{2}^{2} by v_{1}, v_{2}, respectively. Note that $v_{1} \neq v_{2}$, otherwise edge $u x_{2}$ is not balanced. Furthermore, $\left\{x_{3}, x_{2}, x_{1}, x_{0}, u\right\}=$ $W_{x_{3}, x_{4}}$ implies that x_{4} and z are adjacent, and that x_{4} is at distance 2 from both v_{1} and v_{2}. Consequently, v_{1} and v_{2} both have a common neighbor, say z_{1} and z_{2}, respectively, with x_{4}, and these common neighbors must be in D_{3}^{3}. But as edges $x_{2} x_{1}$ and $u x_{1}$ are balanced, this implies that $z_{1}=z=z_{2}$ (see Figure 3(b)).

Note that v_{1} and v_{2} both have at least one neighbor in $D_{1}^{1} \cup D_{1}^{2}$. Let us denote a neighbor of v_{1} (resp., v_{2}) in $D_{1}^{1} \cup D_{1}^{2}$ by w_{1} (resp., w_{2}). If $w_{1} \neq w_{2}$, then $\left\{z, v_{1}, v_{2}, w_{1}, w_{2}, x_{0}\right\} \subseteq W_{z, x_{4}}$, contradicting $\gamma=5$. Therefore $w_{1}=w_{2}$ and by applying Lemma 6.1 to the path $x_{0}, w_{1}, v_{1}, z, x_{4}$ we get that vertices v_{1} and v_{2} are adjacent. But now it is easy to see that $W_{u, x_{2}}=\left\{u, v_{1}\right\}$, a contradiction. This finishes the proof.

Proposition 6.3. Let Γ be a regular $N D B$ graph with valency $k=4$, diameter $d=3$, and $\gamma=\gamma(\Gamma)=4$. Then for every edge $x_{0} x_{1}$ of Γ we have that $\left|D_{2}^{1}\left(x_{1}, x_{0}\right)\right|=$ $\left|D_{1}^{2}\left(x_{1}, x_{0}\right)\right|=2$.

Proof. Pick an edge $x_{0} x_{1}$ of Γ and let $D_{j}^{i}=D_{j}^{i}\left(x_{1}, x_{0}\right)$. By Proposition 4.5 we have that $D_{3}^{2} \neq \emptyset$, and so $\gamma=4$ implies $\left|D_{2}^{1}\right| \leq 2$. Assume to the contrary that $\left|D_{2}^{1}\right|=1$, and so $\left|D_{3}^{2}\right|=2,\left|D_{1}^{1}\right|=2$, and $\left|D_{1}^{2}\right|=1$. Let x_{3}, u be vertices of D_{3}^{2}, and let x_{2} be the unique vertex of D_{2}^{1}. Let z denote the neighbor of x_{2}, different from x_{1}, x_{3}, u, and note that $z \in D_{2}^{2} \cup D_{1}^{2} \cup D_{1}^{1}$. In each of these three cases we derive a contradiction.

Assume first that $z \in D_{2}^{2}$. Then $D_{2}^{1}\left(x_{2}, x_{1}\right)=\left\{x_{3}, u, z\right\}$, and $\gamma=4$ forces $D_{3}^{2}\left(x_{2}, x_{1}\right)=\emptyset$, contradicting Proposition 4.5

Assume next that $z \in D_{1}^{2}$ (note that z is the unique vertex in D_{1}^{2}). Then $\left\{x_{2}, z, x_{3}, u\right\} \cup D_{2}^{3} \subseteq W_{x_{2}, x_{1}}$. As $D_{2}^{3} \neq \emptyset$ by Proposition 4.5. this contradicts $\gamma=4$.

Assume finally that $z \in D_{1}^{1}$. Recall that $\left|D_{1}^{1}\right|=2$ and denote the other vertex of D_{1}^{1} by w. If z and w are adjacent, then $W_{x_{1}, z}=\left\{x_{1}\right\}$, a contradiction. If z has a neighbor $v \in D_{2}^{2}$, then $\left\{z, v, x_{2}, u, x_{3}\right\} \subseteq W_{z, x_{0}}$, a contradiction. This shows that z is adjacent to the unique vertex of D_{1}^{2}. Let us denote this vertex by y_{2}. As $W_{x_{2}, x_{3}}=W_{x_{2}, u}=\left\{x_{2}, x_{1}, x_{0}, z\right\}$, vertices x_{3} and u are both at distance 2 from y_{2}. But this shows that $W_{z, y_{2}}=\left\{x_{1}, z, x_{2}\right\}$, a contradiction.

Theorem 6.4. Let Γ be a regular NDB graph with valency $k=4$, diameter $d \geq 3$, and $\gamma=\gamma(\Gamma)=d+1$. Then Γ is isomorphic to the line graph of the 3-dimensional hypercube Q_{3}.

Proof. By Theorem 4.4 (ii) and Proposition 6.2 we have that $d=3$. Pick an arbitrary edge $x y$ of Γ. By Proposition 6.3 we have that $\left|D_{2}^{1}(x, y)\right|=\left|D_{1}^{2}(x, y)\right|=2$. Consequently $\left|D_{1}^{1}(x, y)\right|=1$, and so Γ is an edge-regular graph with $\lambda=1$. Observe
that $\gamma=4$ also implies that $\left|D_{3}^{2}(x, y)\right|=\left|D_{2}^{3}(x, y)\right|=1$. Observe that Γ contains $|V(\Gamma)| k / 6=2|V(\Gamma)| / 3$ triangles, and so $|V(\Gamma)|$ is divisible by 3.

Pick vertices x_{0}, x_{3} of Γ at distance 3 and let $x_{0}, x_{1}, x_{2}, x_{3}$ be a shortest path from x_{0} to x_{3}. Abbreviate $D_{j}^{i}=D_{j}^{i}\left(x_{1}, x_{0}\right)$. Obviously $D_{3}^{2}=\left\{x_{3}\right\}$ and $x_{2} \in D_{2}^{1}$. Let us denote the other vertex of D_{2}^{1} by u, the vertices of D_{1}^{2} by y_{2}, v, the vertex of D_{2}^{3} by y_{3}, and the vertex of D_{1}^{1} by w. Without loss of generality we may assume that y_{2} and y_{3} are adjacent. Since Γ is edge-regular with $\lambda=1$, we also obtain that x_{2} and u are adjacent, that y_{2} and v are adjacent, and that w has two neighbors, say z_{1} and z_{2}, in D_{2}^{2}, and that z_{1}, z_{2} are also adjacent. As $W_{x_{2}, x_{3}}=\left\{x_{2}, x_{1}, x_{0}, u\right\}$, x_{3} is at distance 2 from w, and so x_{3} is adjacent to exactly one of z_{1}, z_{2}. Without loss of generality we could assume that x_{3} and z_{1} are adjacent.

Note that $\Gamma(w)=\left\{x_{0}, x_{1}, z_{1}, z_{2}\right\}$, and so x_{2} and w are not adjacent. Vertex x_{2} is also not adjacent to y_{2}, as otherwise edge $x_{2} y_{2}$ is not contained in a triangle. If $x_{2} \sim v$, then $v \sim u$ and the edge $u x_{2}$ is contained in two triangles, contradicting $\lambda=1$. It follows that x_{2} has no neighbors in D_{1}^{2}. Therefore, x_{2} has a neighbor in D_{2}^{2}. Consequently, by Proposition 3.2 (i), x_{3} could have at most one neighbor in $D_{3}^{3} \cup D_{2}^{3}$.

We now show that $D_{3}^{3}=\emptyset$. Assume to the contrary that there exists $t \in D_{3}^{3}$. If t is adjacent to z_{1} or z_{2}, then $\left\{w, z_{1}, z_{2}, x_{3}, t\right\} \subseteq W_{w, x_{0}}$, a contradiction. If t is adjacent with $z \in D_{2}^{2} \backslash\left\{z_{1}, z_{2}\right\}$, then z has a neighbor in D_{2}^{1} and a neighbor in D_{1}^{2}, implying that $\left|W_{z, t}\right| \geq 5$, a contradiction. It follows that t has no neighbors in D_{2}^{2}, and so t is adjacent with x_{3} (and with y_{3}). Now the unique common neighbor of x_{3} and t must be contained in $D_{3}^{3} \cup D_{2}^{3}$, contradicting the fact that x_{3} could have at most one neighbor in $D_{3}^{3} \cup D_{2}^{3}$. This shows that $D_{3}^{3}=\emptyset$.

Let us now estimate the cardinality of D_{2}^{2}. Observe that each $z \in D_{2}^{2} \backslash\left\{z_{1}, z_{2}\right\}$ has a neighbor in D_{2}^{1}. But u could have at most two neighbors in D_{2}^{2}, while x_{2} has exactly one neighbor in D_{2}^{2}. It follows that $2 \leq\left|D_{2}^{2}\right| \leq 5$, and so $11 \leq|V(\Gamma)| \leq 14$. As $|V(\Gamma)|$ is divisible by 3 , we have that $|V(\Gamma)|=12$. By [9 Corollary 6], there are just two edge-regular graphs on 12 vertices with $\lambda=1$, namely the line graph of 3 -dimensional hypercube (see Figure 5), and the line graph of the Möbius ladder graph on eight vertices. It is easy to see that the latter one is not even distancebalanced.

7. CASE $k=5$

Let Γ be a regular NDB graph with valency $k=5$, diameter $d \geq 3$, and $\gamma=$ $\gamma(\Gamma)=d+1$. Recall that by Theorem 4.4 we have $d=3$, and so $\gamma=4$. In this section we classify such NDB graphs. We first show that in this case we have $\left|D_{2}^{1}\left(x_{1}, x_{0}\right)\right|=\left|D_{1}^{2}\left(x_{1}, x_{0}\right)\right|=2$ for every edge $x_{1} x_{0}$ of Γ.
Proposition 7.1. Let Γ be a regular $N D B$ graph with valency $k=5$, diameter $d=3$, and $\gamma=4$. Then for every edge $x_{0} x_{1}$ of Γ we have that $\left|D_{2}^{1}\left(x_{1}, x_{0}\right)\right|=$ $\left|D_{1}^{2}\left(x_{1}, x_{0}\right)\right|=2$.
Proof. Pick an edge $x_{0} x_{1}$ of Γ and let $D_{j}^{i}=D_{j}^{i}\left(x_{1}, x_{0}\right)$. By Proposition 4.5 we have that $D_{3}^{2} \neq \emptyset$, and so $\gamma=4$ implies $\left|D_{2}^{1}\right| \leq 2$. Assume to the contrary that

Figure 5. The line graph of Q_{3}, drawn in two different ways.

Figure 6. Graph Γ from Proposition 7.1
$\left|D_{2}^{1}\right|=1$, and so $\left|D_{3}^{2}\right|=2,\left|D_{1}^{1}\right|=3$, and $\left|D_{1}^{2}\right|=1$. Let x_{3}, u be vertices of D_{3}^{2}, and let x_{2} be the unique vertex of D_{2}^{1}. Let us denote the unique vertex of D_{1}^{2} by y_{2}, and the vertices of D_{1}^{1} by z_{1}, z_{2}, z_{3}. Note that also $\left|D_{2}^{3}\right|=2$, and let us denote these two vertices by y_{3}, u_{1}. Clearly we have that x_{2} is adjacent to both x_{3} and u, and y_{2} is adjacent to both y_{3} and u_{1} (see the diagram on the left side of Figure 6). Observe that each edge $x y$ of Γ is contained in at least one triangle; otherwise $\left|W_{x, y}\right| \geq 5>\gamma$, a contradiction. Therefore, x_{2} and y_{2} both have at least one neighbor in D_{1}^{1}. On the other hand, these two vertices could not have more than one neighbor in D_{1}^{1}, as otherwise $\left|W_{x_{2}, x_{3}}\right| \geq 5$ (resp., $\left|W_{y_{2}, y_{3}}\right| \geq 5$), a contradiction. Without loss of generality we could assume that z_{1} is the unique neighbor of x_{2} in D_{1}^{1}. Note that it follows from Proposition 3.1 (ii) that x_{2} and y_{2} are not adjacent. This shows that x_{2} has a unique neighbor (say w) in D_{2}^{2}. As $W_{x_{2}, x_{3}}=W_{x_{2}, u}=$ $\left\{x_{2}, x_{1}, x_{0}, z_{1}\right\}$, vertex w is adjacent to both u and x_{3}. Similarly we prove that also y_{2} has a unique neighbor in D_{2}^{2}, say w^{\prime}, and that w^{\prime} is adjacent to both u_{1} and y_{3}.

If $w=w^{\prime}$, then the degree of w is at least 6 , a contradiction. Therefore, $w \neq w^{\prime}$ (see the diagram on the right side of Figure 67).

Note that $W_{x_{2}, x_{1}}=\left\{x_{2}, x_{3}, u, w\right\}$, and so both y_{3} and u_{1} are at distance 3 from x_{2}. Similarly, $W_{x_{1}, x_{2}}=\left\{x_{1}, x_{0}, z_{2}, z_{3}\right\}$, and so y_{2} is at distance 2 from x_{2}. Therefore y_{2} and x_{2} have a common neighbor, and by the comments above the only possible common neighbor is z_{1}. It follows that z_{1} and y_{2} are adjacent. But now $\left\{y_{2}, x_{0}, x_{1}, z_{1}, x_{2}\right\} \subseteq W_{y_{2}, y_{3}}$ (recall that $d\left(x_{2}, y_{3}\right)=3$), a contradiction. This shows that $\left|D_{2}^{1}\right|=2$. By Lemma 2.2 we obtain that $\left|D_{1}^{2}\right|=2$ as well.

Theorem 7.2. Let Γ be a regular NDB graph with valency $k=5$, diameter $d \geq 3$, and $\gamma=d+1$. Then Γ is isomorphic to the icosahedron.

Proof. First recall that by Theorem 4.4 we have $d=3$, and so $\gamma=4$. We will first show that Γ is edge-regular with $\lambda=2$. Pick an arbitrary edge $x y$ and observe that by Proposition 7.1 we obtain $\left|D_{2}^{1}(x, y)\right|=2$, which forces $\left|D_{1}^{1}(x, y)\right|=2$. This shows that Γ is edge-regular with $\lambda=2$. It follows that for every vertex x of Γ, the subgraph of Γ which is induced on $\Gamma(x)$ is isomorphic to the five-cycle C_{5}. By [4] Proposition 1.1.4], Γ is isomorphic to the icosahedron.

Proof of Theorem 1.1. It is straightforward to see that all graphs from Theorem 1.1 are regular NDB graphs with $\gamma=d+1$. Assume now that Γ is a regular NDB graph with valency k, diameter d, and $\gamma=d+1$. If $d=2$, then it follows from Remark 2.3 that Γ is isomorphic either to the Petersen graph, the complement of the Petersen graph, the complete multipartite graph $K_{t \times 3}$ with t parts of cardinality $3(t \geq 2)$, the Möbius ladder graph on eight vertices, or the Paley graph on 9 vertices. If $d \geq 3$, then it follows from Theorem 4.4 that $k \in\{3,4,5\}$. If $k=3$, then Γ is isomorphic to the 3 -dimensional hypercube Q_{3} by Theorem 5.8. If $k=4$ then Γ is isomorphic to the line graph of Q_{3} by Theorem 6.4 If $k=5$, then Γ is isomorphic to the icosahedron by Theorem 7.2

References

[1] A. Abedi, M. Alaeiyan, A. Hujdurović, and K. Kutnar, Quasi- λ-distance-balanced graphs, Discrete Appl. Math. 227 (2017), 21-28. MR 3661412
[2] K. Balakrishnan, B. Brešar, M. Changat, S. Klavžar, A. Vesel, and P. Žigert Pleteršek, Equal opportunity networks, distance-balanced graphs, and Wiener game, Discrete Optim. 12 (2014), 150-154. MR 3189033
[3] K. Balakrishnan, M. Changat, I. Peterin, S. Špacapan, P. Šparl, and A. Subhamathi, Strongly distance-balanced graphs and graph products, European J. Combin. 30 (2009), no. 5, 10481053. MR 2513907
[4] A. E. Brouwer, A. M. Cohen, and A. Neumaier, Distance-Regular Graphs, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 18, Springer, Berlin, 1989. MR 1002568
[5] F. C. Bussemaker, S. Čobeljić, D. M. Cvetković, and J. J. Seidel, Computer Investigation of Cubic Graphs, T. H. Report 76-WSK-01, Department of Mathematics, Technological University Eindhoven, The Netherlands, 1976.
[6] S. Cabello and P. Lukšič, The complexity of obtaining a distance-balanced graph, Electron. J. Combin. 18 (2011), no. 1, Paper 49, 10 pp. MR 2776825
[7] M. Cavaleri and A. Donno, Distance-balanced graphs and travelling salesman problems, Ars Math. Contemp. 19 (2020), no. 2, 311-324. MR 4183154
[8] B. Frelih and Š. Miklavič, On 2-distance-balanced graphs, Ars Math. Contemp. 15 (2018), no. 1, 81-95. MR 3862079
[9] K. B. Guest, J. M. Hammer, P. D. Johnson, and K. J. Roblee, Regular clique assemblies, configurations, and friendship in edge-regular graphs, Tamkang J. Math. 48 (2017), no. 4, 301-320. MR 3734623
[10] K. Handa, Bipartite graphs with balanced (a, b)-partitions, Ars Combin. 51 (1999), 113-119. MR 1675124
[11] A. Hujdurović, On some properties of quasi-distance-balanced graphs, Bull. Aust. Math. Soc. 97 (2018), no. 2, 177-184. MR 3772645
[12] A. Ilić, S. Klavžar, and M. Milanović, On distance-balanced graphs, European J. Combin. 31 (2010), no. 3, 733-737. MR 2587025
[13] J. Jerebic, S. Klavžar, and D. F. Rall, Distance-balanced graphs, Ann. Comb. 12 (2008), no. 1, 71-79. MR 2401137
[14] J. Jerebic, S. Klavžar, and G. Rus, On ℓ-distance-balanced product graphs, Graphs Combin. 37 (2021), no. 1, 369-379. MR 4197386
[15] K. Kutnar, A. Malnič, D. Marušič, and Š. Miklavič, Distance-balanced graphs: symmetry conditions, Discrete Math. 306 (2006), no. 16, 1881-1894. MR 2251569
[16] K. Kutnar and Š. Miklavič, Nicely distance-balanced graphs, European J. Combin. 39 (2014), 57-67. MR 3168514.
[17] Š. Miklavič and P. Šparl, On the connectivity of bipartite distance-balanced graphs, European J. Combin. 33 (2012), no. 2, 237-247. MR 2854645.
[18] Š. Miklavič and P. Šparl, ℓ-distance-balanced graphs, Discrete Appl. Math. 244 (2018), 143154. MR 3802543
[19] M. Tavakoli, F. Rahbarnia, and A. R. Ashrafi, Further results on distance-balanced graphs, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 75 (2013), no. 1, 77-84. MR 3032544

Blas Fernández ${ }^{\boxtimes}$

University of Primorska, Andrej Marušič Institute, Muzejski trg 2, 6000 Koper, Slovenia blas.fernandez@famnit.upr.si

Štefko Miklavič

University of Primorska, Andrej Marušič Institute, Muzejski trg 2, 6000 Koper, Slovenia; and Institute of Mathematics, Physics, and Mechanics, Jadranska 19, 1000 Ljubljana, Slovenia stefko.miklavic@upr.si

Safet Penjić

University of Primorska, Andrej Marušič Institute, Muzejski trg 2, 6000 Koper, Slovenia safet.penjic@iam.upr.si

Received: May 25, 2021
Accepted: December 10, 2021

[^0]: 2020 Mathematics Subject Classification. 05C12, 05C75.
 Key words and phrases. Regular graph, distance-balanced graph, nicely distance-balanced graph.

 This work is supported in part by the Slovenian Research Agency (research program P1-0285, research projects N1-0062, J1-9110, J1-1695, N1-0140, N1-0159, J1-2451, N1-0208, J1-3001, J13003, and Young Researchers Grant).

