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CHARACTERIZATION OF ESSENTIAL SPECTRA
BY QUASI-COMPACT PERTURBATIONS

FAIÇAL ABDMOULEH, HAMADI CHAÂBEN, AND INES WALHA

Abstract. We are interested in the concept of quasi-compact operators al-
lowing us to provide some advances on the theory of operators acting in Banach
spaces. More precisely, our main objective is to exhibit the importance of the
use of this notion to outline a new approach in the analysis of the stability
problems of upper and lower semi-Fredholm, upper and lower semi-Weyl, and
upper and lower semi-Browder operators, and to provide a fine description
and characterization of some Browder’s essential spectra involving this kind
of operators.

1. Introduction

In recent years, there has been significant progress in the theory of semi-Browder
and semi-Fredholm operators. These classes of operators have gained recognition
for their importance, motivating further exploration of generalizations and the
study of various notions of essential spectra under (additive) perturbations. These
perturbations can belong to any two-sided ideal of the set of bounded linear opera-
tors, including compact, weakly compact, strictly singular or cosingular operators.
Additionally, other perturbations such as Riesz operators, polynomially of strict
singularity perturbation, or measures of non-strict singularity are also considered.
This kind of study plays a really strong and fruitful role across different areas of
mathematics, essentially in the theory of stability and characterization. The inter-
ested reader can find basic information on this topic in works by F. Abdmouleh
and I. Walha [1, 2], P. Aiena [3], S. Grabiner [9], R. Harte [10], V. Müller [19],
V. Rakočević [20, 21], and M. Schechter [22].

On the other hand, since 1937, one of the novel classes of perturbations emerged
as a prominent generalization of Riesz operators. This class, known as quasi-
compact operators, encompasses all types of operators including finite rank, com-
pact, or weakly compact operators, and was introduced by N. Kryloff and N. Bogo-
liouboff [16]. This kind of notion remains a forceful tool in the study of the ergodic
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properties of the Markov chains and the probabilities theory. Parallel to the con-
tributions of Kryloff and Bogoliouboff, other mathematicians, namely A. Brunel
and D. Revuz [4] and R. F. Taylor [23], successfully formulated alternative defi-
nitions for this type of operators and proved some important spectral properties
via the notion of quasi-compact operators. Later, this class of operator attracted
considerable attention of many researchers aiming to make substantial progress in
mathematical studies. For more details, the interested reader can see [7, 15, 18]
and their referenced theorems.

Note that the notion of quasi-compact operator perturbation turned out to be
a useful tool in operator theory, especially in semi-Browder and Browder opera-
tors theory. Consequently, given the above argument, the attempt to address the
concept of perturbations in operators becomes highly significant in order to de-
velop new findings regarding the invariance of perturbed linear operators, resolve
characterization problems associated with linear operators, and extend existing
well-studied results [20, 21]. More precisely, our central interest in this paper is to
exhibit the importance of the use of this kind of notion to outline a new approach
in the analysis of the stability problems of upper and lower semi-Fredholm, upper
and lower semi-Weyl and upper and lower semi-Browder operators. Particularly,
we gather some conditions that we must impose on linear operators T ∈ L(X) and
S ∈ QK(X) which assert their stability results formulated as follows:

T ∈ P(X) ⇐⇒ T + S ∈ P(X),
where P(X) := {W+(X), W−(X), B+(X), B−(X)} (see Subsection 3.1 for more
details). Based on these key results, it becomes possible to consequently derive
some stability results about their corresponding essential spectra in the second
subsection of this paper. This derivation aims to improve and generalize some
results that the author recently obtained [2]. In fact, by means of the quasi-compact
operator perturbation, we prove that

σ∗(T ) = σ∗(T + S),
for σ∗(.) := {σF+(.), σF−(.), σW−(.), σW+(.), σB+(.), σB−(.), σB(.)}.

Our main purpose in the third part of Section 3 is to point out how the quasi-
compactness concept allows us to reach a new characterization of the Browder’s
essential spectrum of linear operator T . Specifically, we define the set

E(X) := {K ∈ L(X) : KT = TK, K(µ − T − K)−1 ∈ QK(X), and there exists
ε > 0 s.t. dist(K(µ − T − K)−1, K(X)) < ε, ∀µ ∈ ρ(T + K)},

and we establish the Browder’s essential spectrum of T as

σB(T ) =
⋂

K∈ E(X)

σ(T + K).

The remainder of the paper is organized as follows. Some definitions and prop-
erties of linear operators are introduced in Section 2; in particular, we present in
detail the notion of quasi-compact operator according to its properties and some
illustrative examples. In Section 3 we state the main results of this work in three
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subsections: the first subsection is dedicated to developing some advances on spec-
tral theory of semi-Fredholm and semi-Browder’s operators involving the notion of
quasi-compact operators perturbations; the second subsection gives practical crite-
ria that guarantee the invariance of various Browder’s and Weyl’s essential spectra
for perturbed linear operators, improves a refinement description of upper and
lower Browder essential spectra, and presents our main results, already mentioned
above. Finally, we state the characterization of Browder’s essential spectrum by
means of quasi-compact operators.

2. Preliminary results

In this section, we recall some definitions and give some preliminary results
relevant to linear bounded operators. Let X be a Banach space. We denote by
L(X) the set of all bounded linear operators on X. We denote by K(X), F0(X)
the subsets of L(X) formed, respectively, by all compact and by all finite rank
operators on X. For T ∈ L(X), we write N (T ) = {x ∈ X : Tx = 0} ⊂ X for the
null space and R(T ) ⊂ X for the range of T . The nullity of T , denoted by α(T ),
is defined as the dimension of N (T ), and the deficiency of T , denoted by β(T ), is
defined as the codimension of R(T ) in X. The spectrum of T will be denoted by
σ(T ). The resolvent set of T , denoted by ρ(T ), is the complement of σ(T ) in the
complex plane and is defined as

ρ(T ) := {λ ∈ C : λ − T has a bounded inverse}.

An operator T ∈ L(X) is called a semi-Fredholm operator on X if its range R(T )
is a closed subspace of X and at least one of α(T ) and β(T ) is finite. For such
an operator, we define an index i(T ) by i(T ) = α(T ) − β(T ). Let Φ+(X) (resp.,
Φ−(X)) denote the set of upper (resp., lower) semi-Fredholm operators on X, that
is, the set of semi-Fredholm operators with closed range R(T ) and α(T ) < ∞
(resp., β(T ) < ∞). An operator T is said to be a Fredholm operator on X if it is
both an upper semi-Fredholm and a lower semi-Fredholm operator on X.

The set of upper (resp., lower) Weyl operators is defined by

W+(X) := {T ∈ L(X) : T ∈ Φ+(X) and i(T ) ≤ 0}
(resp., W−(X) := {T ∈ L(X) : T ∈ Φ−(X) and i(T ) ≥ 0}).

Consequently, the set of Weyl operators is defined as W(X) := W+(X) ∩ W−(X).
We define the ascent of T by

a(T ) := min{n ∈ N : N (T n) = N (T n+1)},

whenever this minimum exists. If no such number exists, the ascent of T is defined
to be ∞. Likewise, this statement leads to the introduction of the descent of T by

d(T ) := min{n ∈ N : R(T n) = R(T n+1)},

where the minimum over the empty set is taken to be ∞.
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In order to define other sets of linear operators, we introduce the set of upper
(resp., lower) semi-Browder operators on X as follows:

B+(X) = {T ∈ L(X) : T ∈ Φ+(X), i(T ) ≤ 0, and a(T ) < +∞}
(resp., B−(X) = {T ∈ L(X) : T ∈ Φ−(X), i(T ) ≥ 0, and d(T ) < +∞}).

In what follows, we list some classical definitions of linear bounded operators
used in our formulation.

Definition 2.1 ([19]). Let X be Banach space and T ∈ L(X). The reduced
minimum modulus of T is defined by

γ(T ) := inf
{

∥Tx∥ : x ∈ X, dist(x, N (T )) = 1
}

,

where dist(x, N (T )) is the distance between an element x and the subspace N (T )
of X.

Definition 2.2. Let T ∈ L(X).
(i) T is called a weakly compact operator on X if T (M) is relatively weakly

compact for every bounded subset M ∈ X.
The set of weakly compact operators on X will be denoted by WC(X).
(ii) T is called a Riesz operator if λ − T is a Fredholm operator for all non-zero

complex numbers λ ∈ C\{0}.
The class of Riesz operators on X will be denoted by R(X).

In 1937, N. Kryloff and N. Bogoliouboff [16] introduced the concept of quasi-
compact operators as a generalization of sets of finite rank, compact, weakly com-
pact, and Riesz operators, which were frequently used in many areas of mathe-
matics, particularly in the study of ergodic properties of Markov chains. In 1939,
K. Yosida provided an alternative definition for quasi-compact operators.

Definition 2.3 ([11]). An operator T ∈ L(X) is called quasi-compact if there
exists a compact operator K and n ∈ N such that ∥T n − K∥ < 1.

We denote the class of quasi-compact operators by QK(X).

Let us recall some important examples of quasi-compact operators.

Examples of quasi-compact operators.
(i) A compact operator T : X −→ X is quasi-compact.
(ii) Operators with compact power (or weakly compact operators) are quasi-

compact.
(iii) Note that, for T ∈ L(X), we may characterize the quasi-compact operator T

by its essential spectral radius, denoted by ress(T ); that is,
T ∈ QK(X) if and only if ress(T ) < 1,

where ress(T ) is defined as

ress(T ) := lim
n→+∞

(dist(T n, K(X))) 1
n ,

for dist(T n, K(X)) = infK∈K(X) ∥T n − K∥. Hence, we can regard a Riesz
operator as an example of a quasi-compact operator when ress(T ) = 0 for
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T ∈ R(X). Consequently, we order by inclusion the last various classes of
linear operators as follows:

F0(X) ⊂ K(X) ⊂ WC(X) ⊂ R(X) ⊂ QK(X).
Some interesting properties of this kind are developed by J. Mart́ınez and J. M.

Mazón [18, Proposition 2.2] as follows:

Proposition 2.4. For any operator T ∈ L(X), the following assertions are equiv-
alent:

(i) T is quasi-compact.
(ii) lim

n→+∞
∥T n + K(X)∥ = 0.

(iii) The spectrum radius r(T̂ , L̂(X)) < 1, where T̂ := T + K(X) in the Calkin
algebra L̂(X) := L(X)/K(X).

(iv) T = U + K, where K ∈ K(X) is of finite rank and U ∈ L(X) has spectral
radius r(U) < 1.

Remark 2.5. Following [17], we infer that the adjoint of the quasi-compact oper-
ator T on a reflexive Banach space X is still also a quasi-compact operator on X∗.

3. Main results

Quasi-compact operators perturbation is important in operator theory, partic-
ularly for the study of invariant and characterization problems of linear bounded
operators. In this section, our focus will be to articulate this objective through
three distinct subsections.

3.1. Semi-Fredholm theory via quasi-compact perturbations. To discuss
the stability results of semi-Fredholm, semi-Weyl and semi-Browder linear bounded
operators via the concept of quasi-compact perturbation, the following result of
semi-Fredholm operators may be essential. We will discuss it firstly for upper
and lower semi-Fredholm operators as these sets are not equal in general. Before
moving to the desired results, we will introduce an illustrative example showing
the difference between semi-Fredholm operators.

Example 3.1 (Φ+(X) ̸= Φ−(X)). Let us define on l2(N) the bounded operator T
as

Tx = (x1, 0, x2, 0x3, 0..), where x = (xi) ∈ l2(N).
Obviously, the operator T is injective with closed range R(T ) such that codim R(T ) =
∞.

Therefore, T is an upper semi-Fredholm but not a lower semi-Fredholm operator
on l2(N), which asserts that T ∈ Φ+(l2(N)) but T /∈ Φ−(l2(N)).

Our first fundamental result is formulated as follows:

Proposition 3.2. Let T ∈ L(X) and S ∈ QK(X). Assume that there exists ε > 0
such that dist(S, K(X)) < ε. Then we have

(i) T ∈ Φ+(X) ⇒ T + S ∈ Φ+(X) with i(T + S) = i(T ).
Assume further that X is a reflexive Banach space; then we have
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(ii) T ∈ Φ−(X) ⇒ T + S ∈ Φ−(X) with i(T + S) = i(T ).

Proof. (i) Let T ∈ Φ+(X) and S ∈ QK(X). Hence, based on Proposition 2.4 (iv),
we infer that there exists a finite rank operator F and R ∈ L(X) with r(R) < 1
such that S = F + R. Thus, we get

T + S = T + F + R.

By using [22, Theorem 5.22] under the fact that T ∈ Φ+(X) and F ∈ F0(X), it
can be concluded that

T + F ∈ Φ+(X) with i(T + F ) = i(T ).

On the other hand, one has R(T + F ) is a closed subspace of X; we infer from
[19, Theorem 10.2] that γ(T + F ) > 0. Thus, we deduce that there exists ε =
γ(T + F ) > 0 such that

∥R∥ = ∥S − F∥ < γ(T + F ), while F ∈ F0(X) ⊆ K(X).

So, in what follows, we conclude from the use of [19, Theorem 18.4], that T + S ∈
Φ+(X) with i(T + S) = i(T ).

(ii) The proof of this item may be checked in the same way as the previous one.
In fact, consider T as a lower semi-Fredholm operator in reflexive Banach space

X and S ∈ QK(X). Thus, we deduce from the use of [19, Theorem 16.4] with
Remark 2.5 that T ∗ ∈ Φ+(X∗) and S∗ ∈ QK(X∗). Arguing in the same way as the
previous item, while γ(T +F ) = γ((T +F )∗) (see [19, Theorem 10.3]), we conclude
that (T +S)∗ ∈ Φ+(X∗) with i((T +S)∗) = i(T ∗). Hence, [19, Theorem 16.4] leads
to

T + S ∈ Φ−(X) with i(T + S) = i(T ). □

For the stability results of semi-Weyl operators involving the concept of quasi-
compact perturbations, we can readily deduce the following results:

Corollary 3.3. Let X be a reflexive Banach space, T ∈ L(X) and S ∈ QK(X).
Assume that there exists ε > 0 such that dist(S, K(X)) < ε. Then we have

T ∈ W∗(X) ⇐⇒ T + S ∈ W∗(X)

for W∗(X) := {W−(X), W+(X)}.

Note that, in general, a Weyl operator is not a Browder operator. For this, we
will extend the previous results of Weyl operators to Browder operators. Below, we
introduce an example which explains the strict inclusion or the distinction between
these two operators.

Example 3.4 (A Weyl operator isn’t a Browder operator). Consider the unilateral
Shift operator V ∈ L(l2(N)) defined as{

V : l2(N) −→ l2(N)
x 7−→ V x := (0, x1, x2, . . . ), where x = (xi) ∈ l2(N).

Thus, V and V ∗ are two Fredholm operators with i(V ) = −1 and i(V ∗) = 1.
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Let us define the linear operator T : l2(N) × l2(N) −→ l2(N) × l2(N) by

T :=
(

V 0
0 V ∗

)
.

As V and V ∗ are two Fredholm operators and T is a diagonal operator matrix, we
infer that T is also a Fredholm operator on l2(N) × l2(N) with index null, that is,
i(T ) = i(V ) + i(V ∗) = 0. So, we conclude that T is a Weyl operator. Moreover,
we have

σ(T ) = {λ ∈ C : |λ| ≤ 1}.

This asserts that 0 is not isolated in σ(T ), which makes us conclude that T is not
a Browder operator.

In what follows, let us write, of T ∈ L(X), the commutant of the operator T as
well:

com(T ) := {S ∈ L(X) : ST = TS}.

When we are interested in the stability in terms of semi-Browder operators, we
need to discuss their ascent and deficiency. Thus, we formulate the following result:

Lemma 3.5. Let T ∈ L(X) and S ∈ QK(X) such that S ∈ com(T ). Assume that
there exists δ > 0 such that dist(S, K(X)) < δ with T ∈ Φ+(X). Then, we obtain

a(T ) < ∞ ⇐⇒ a(T + S) < ∞.

Proof. To prove the first implication, assume that T ∈ Φ+(X), S ∈ QK(X) such
that ST = TS and dist(S, K(X)) < δ with a(T ) < ∞ and we claim that a(T +S) <
∞.

Indeed, consider, for ξ ∈ [0, 1], the following operator Tξ having the form
Tξ = T + ξS.

One has S ∈ QK(X) and ξ ∈ [0, 1]; we prove that ξS ∈ QK(X).
Therefore, we have dist(ξS, K(X)) < δ. Using Proposition 3.2 (i), we infer that

Tξ = T + ξS ∈ Φ+(X) with i(Tξ) = i(T ) ≤ 0 for each ξ ∈ [0, 1].
According to the fact that T and S are commuting (see Theorem 3 in [8]), we can
deduce that there exists τ = τ(ξ) > 0 such that

N ∞(Tξ) ∩ R∞(Tξ) = N ∞(Tν) ∩ R∞(Tν), ∀ν ∈ D(ξ, τ). (3.1)

That is, the function of ξ, N ∞(Tξ) ∩ R∞(Tξ) is locally constant on the connected
set [0, 1]. Since every locally constant function on a connected set is constant, we
conclude that

N ∞(Tξ) ∩ R∞(Tξ) = N ∞(T ) ∩ R∞(T ), ∀ξ ∈ [0, 1].
On the other hand, the operator T p is bounded for all p ∈ N, since T ∈ L(X). Con-
sequently, we derive by Chapter 3, Problem 5.9 in [14], that N (T p) is a closed sub-
space of X. Therefore, in view of the fact that a(T ) < ∞, [24, Proposition 1.6,(i)]
leads to

N ∞(T ) ∩ R∞(T ) = N ∞(T ) ∩ R∞(T ) = {0}.
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Consequently, from Eq. (3.1), we can conclude that N ∞(T + S) ∩ R∞(T + S) = 0.
Therefore, we obtain a(T + S) < ∞, by [24, Proposition 1.6].

The proof of the reverse implication may be checked in the same way as the
previous one. It is sufficient to replace a(T ) with a(T + S), the operators T and
S with T + S and −S, and the perturbed function Tξ with (T + S)ξ with the
function (T + S)ξ := T + (ξ + 1)S for every constant ξ belonging to the connected
set [−1, 0]. □

A derivative consequence from the last result and Proposition 3.2 is formulated
below.

Theorem 3.6. Let T ∈ L(X) and S ∈ QK(X) such that S ∈ com(T ). Assume
that there exists δ > 0 such that dist(S, K(X)) < δ; then we obtain

T ∈ B+(X) ⇐⇒ T + S ∈ B+(X).

Theorem 3.6 is a generalization of [9, Theorem 2 (a)]. As a consequence of The-
orem 3.6 we enrich the stability results for lower semi-Browder operators involving
the notion of quasi-compact operator:

Corollary 3.7. Let X be a reflexive Banach space, T ∈ L(X) and S ∈ QK(X)
such that S ∈ com(T ). Assume that there exists δ > 0 such that dist(S, K(X)) < δ.
Then, we get

T ∈ B−(X) ⇐⇒ T + S ∈ B−(X).

Proof. By a duality argument, we prove, similarly to Theorem 3.6 and Lemma 3.5,
the closeness of B−(X) under perturbation via commuting quasi-compact opera-
tors. □

Remark 3.8. According to Theorem 3.6 and Corollary 3.7, we can easily derive
the stability result for Browder operators, that is, for a reflexive Banach space X,
T ∈ L(X), S ∈ QK(X) such that ST = TS, ∃δ > 0, dist(S, K(X)) < δ, we have

T ∈ B(X) ⇐⇒ T + S ∈ B(X).

The results of Theorems 3.6 and Corollary 3.7 are an extension and an improve-
ment of [21, Theorem 1 and Corollary 2] to a large class of quasi-compact operator
perturbations.

A practical use of the previous results leads to the stability results of semi-
Browder and Browder operators via the quasi compact notion as follows:

Corollary 3.9. Let X be a reflexive Banach space, T, S ∈ L(X) such that T is
invertible and ST = TS. Then, we get

ST −1 ∈ QK(X), ∃δ > 0 : dist(ST −1, K(X)) < δ =⇒ T + S ∈ B∗(X)

for B∗(X) := {B+(X), B−(X), B(X)}.

Proof. Assuming that T ∈ L(X) is invertible, ST = TS, and ST −1 ∈ QK(X) such
that dist(ST −1, K(X)) < δ, we will show that T + S ∈ B+(X).
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In fact: As 0 ∈ ρ(T ), we infer that the operator T + S may be written as

T + S = (I + ST −1)T.

Using Remark 3.8, we infer that I + ST −1 ∈ Φ(X) with i(I + ST −1) = 0. Thus, if
T ∈ Φ+(X), we get by [19, Theorems 16.5 and 16.12] that

T + S = (I + ST −1)T ∈ Φ+(X) with i(T + S) = i(I + ST −1) + i(T ) = 0.

It remains to show that

a(T + S) < ∞ and d(T + K) < ∞.

Note that, for every n ∈ N, we have

(T + S)n = (I + ST −1)nT n.

As T n is one-to-one for every n ∈ N, we infer that

N ((T + S)n) ⊂ N ((I + ST −1)n).

Consequently,
α((T + S)n) ≤ α((I + ST −1)n).

Using [5, Lemma 1] and Theorem 3.6, we obtain

α((T + S)n) ≤ a(I + ST −1)α(I + ST −1) < ∞.

Thus, we find that T + S ∈ B+(X).
The previous result also holds for lower semi-Browder operators. The desired

result for Browder operators follows immediately from the two previous results. □

3.2. Perturbation results of some essential spectra. The aim of this subsec-
tion is to translate the formulation from the previous subsection into the context
of essential spectra. Also, we are interested in the study of the characterization
problems associated with these spectra. In the following, let us introduce some
essential spectra that are relevant to our purpose.

Definition 3.10. Let T ∈ L(X). We define
(i) the Browder’s essential approximate point spectrum of T , denoted by σB+(T ),

as
σB+(T ) := {λ ∈ C : λ − T /∈ B+(X)};

(ii) the Browder’s essential defect spectrum of T , denoted by σB−(T ), as

σB−(T ) := {λ ∈ C : λ − T /∈ B−(X)};

(iii) the Browder’s essential spectrum of T , denoted by σB(T ), as

σB(T ) := {λ ∈ C : λ − T /∈ B(X)}.

A useful characterization of Browder’s essential approximate point and Brow-
der’s essential defect spectrum by quasi-compact operator perturbations is formu-
lated below.
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Theorem 3.11. Let T ∈ L(X) and denote by E(X) the following set:
E(X) := {S ∈ L(X) : S ∈ com(T ), ∃ δ > 0 : dist(S, K(X)) < δ}.

Then, we get
σB+(T ) :=

⋂
S∈QK(X)∩E(X)

σa(T + S).

Assume further that X is a reflexive Banach space, then we obtain

σB−(T ) :=
⋂

S∈QK(X) ∩ E(X)

σd(T + S),

where the approximate point (resp., the defect) spectrum of T is denoted by σa(T )
(resp., σd(T )) and defined as σa(T ) := {λ ∈ C : λ−T is not bounded below} (resp.,
σd(T ) := {λ ∈ C : λ − T is not onto}).

Proof. It is trivial to see that all compact operators belong to the subset QK(X) ∩
E(X); thus we conclude from the works of V. Rakočević [20, 21] that⋂

S∈QK(X)∩E(X)

σ∗(T + S) ⊂
⋂

S∈K(X)ST =T S

σ∗(T + S) := σBj
(T ), (3.2)

where (σ∗(.), σBj (.)) = {(σa(.), σB+(.)), (σd(.), σB−(.))}.
(i) We reach the result of this item by double inclusion. The first one follows

from Eq. (3.2). For the reverse inclusion, assume that λ /∈
⋂

{σa(T + S), S ∈
QK(X)∩E(X)}; then there exists S ∈ QK(X)∩E(X) for which λ−T −S is bounded
below. Thus, [19, Theorem 9.4] asserts that λ−T −S is one-to-one with closed range
R(λ−T −S). Therefore, λ−T −S ∈ Φ+(X) with i(λ−T −S) = −β(λ−T −S) ≤ 0
and a(λ − T − S) = 0 < ∞. Following Theorem 3.6, one has S ∈ QK(X) ∩ E(X),
and we infer that λ − T ∈ B+(X). Consequently, we find

σB+(T ) ⊂
⋂

{σa(T + S), S ∈ QK(X) ∩ E(X)}.

(ii) Assume that λ /∈
⋂

{σd(T + S), S ∈ QK(X) ∩ E(X)}; then ∃S ∈ QK(X) ∩
E(X) such that λ−T −S is surjective, and so λ−T −S ∈ Φ−(X) with i(λ−T −S) =
α(λ − T − S) ≥ 0 and d(λ − T − S) = 0 < ∞. That is, λ − T − S ∈ B−(X).
According to the fact that S ∈ QK(X) ∩ E(X), we deduce from Corollary 3.7 that
λ − T ∈ B−(X). This with Eq. (3.2) ends the proof. □

In [21], V. Rakočević showed the invariance of the approximate point and defect
spectrum under commuting Riesz operators perturbations. So, we generalize this
results as follows.

Theorem 3.12. Let X be a reflexive Banach space, T ∈ L(X). Then, we have
S ∈ QK(X) : S ∈ com(T ), ∃ ε > 0, dist(S, K(X)) < ε =⇒ σ∗(T ) = σ∗(T + S),
where σ∗(.) := {σB+(.), σB−(.), σB(.)}.

Proof. It is enough to prove the result for the approximate point spectrum. The
result for the defect spectrum may be checked in the same way: it is sufficient to
use Corollary 3.7.
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Indeed, consider T ∈ L(X) and S ∈ QK(X) such that S ∈ com(T ) and there
exists ε > 0 for which we have dist(S, K(X)) < ε. Assume that λ /∈ σB+(T ); we
will show that λ /∈ σB+(T + S). Since S ∈ QK(X), we infer that −S ∈ QK(X).
Consequently, it is seen that −S ∈ com(λ − T ) while S ∈ com(T ), satisfying that
dist(−S, K(X)) < ε. Keeping in mind the fact that λ − T ∈ B+(X), Theorem 3.6
asserts that λ − T − S ∈ B+(X). Hence, we find σB+(T + S) ⊂ σB+(T ).

Conversely, suppose that λ /∈ σB+(T + S). Hence, λ − T − S ∈ B+(X). It is
easy to see that S commutes with λ−T −S, while S commutes with T . Therefore,
using again Theorem 3.6, we deduce that λ − T − S + S = λ − T ∈ B+(X). This
implies that λ /∈ σB+(T ).

Consequently, we derive the result for Browder’s essential spectrum while

σB(T ) := σB+(T ) ∪ σB−(T ). □

Before moving to the stability results of semi-Fredholm and semi-Weyl opera-
tors via the concept of quasi-compact operators, we start to define some essential
spectra.

Definition 3.13. Let T ∈ L(X). We define
(i) the upper (resp., lower) Fredholm essential spectrum of T , denoted by σF+(T )

(resp., σF−(T )), as

σF+(T ) := {λ ∈ C : λ − T /∈ Φ+(X)}
(resp., σF−(T ) := {λ ∈ C : λ − T /∈ Φ−(X)});

(ii) the upper (resp., lower) Weyl essential spectrum of T , denoted by σW+(T )
(resp., σW−(T )), as

σW+(T ) := {λ ∈ C : λ − T /∈ W+(X)}
(resp. σW−(T ) := {λ ∈ C : λ − T /∈ W−(X)}).

Corollary 3.14. Let T ∈ L(X) and S ∈ QK(X). Assume that there exists ε > 0
such that dist(S, K(X)) < ε. Then we have

(i) σF+(T ) = σF+(T + S) and σW+(T ) = σW+(T + S).
Assume further that X is a reflexive Banach space. Then we obtain

(ii) σF−(T ) = σF−(T + S) and σW−(T ) = σW−(T + S).

Proof. (i) As S ∈ QK(X) with dist(S, K(X)) < δ, we infer that −S is also a quasi-
compact operator on X with dist(−S, K(X)) < δ. Thus, using Proposition 3.2,(i)
and the fact that µ /∈ σW+(T ), we obtain µ − T − S ∈ Φ+(X) with i(µ − T − S) +
i(µ − T ) ≤ 0.

Hence, we conclude that

σW+(T + S) ⊂ σW+(T ).

Evidently, we thus obtain

σF+(T + S) ⊂ σF+(T ).
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Conversely, for upper semi-Weyl operator µ − T − S, for µ /∈ σW+(T + S), a
direct translation of the result of Proposition 3.2 (i), in terms of essential spectra,
is formulated as

σW+(T ) ⊂ σW+(T + S) and σF+(T ) ⊂ σF+(T + S).
(ii) A similar reasoning as that of item (i) allows us to reach the result of the lower

Fredholm and lower Weyl essential spectra. It is sufficient to use Proposition 3.2 (ii)
and Corollary 3.3; the details are therefore omitted. □

A further strong stability result for Browder’s essential spectra is given as:

Theorem 3.15. Let X be a reflexive Banach space and T , S ∈ L(X) such that S
commutes with T and ρ(T ) ∩ ρ(S) ̸= ∅.

Assume, for some λ ∈ ρ(T ) ∩ ρ(S), that
(i) Q := (λ − T )−1 − (λ − S)−1 ∈ QK(X);
(ii) there exists ε > 0 such that dist(Q, K(X)) < ε.
Then, we get

σB∗(T ) = σB∗(S) for σB∗(.) := {σB+(.), σB−(.), σB(.)}.

Proof. Without loss of generality, we assume that λ = 0, thus 0 ∈ ρ(T ) ∩ ρ(S).
Therefore, we write, for ξ ∈ C\{0}, the following operator:

ξ − T := −ξ[ξ−1 − T −1]T.

Obviously, while T is one-to-one, we observe that N (ξ−T ) = N (ξ−1 −T −1). Thus,
α(ξ−T ) = α(ξ−1−T −1). Also, since T is surjective, then R(ξ−T ) = R(ξ−1−T −1).
So, β(ξ − T ) = β(ξ−1 − T −1).

In addition, when T commutes with ξ−1 − T −1, for every n ∈ N, we have
N ((ξ − T )n) = {x, (ξ − T )nx = 0}

= {x, (ξ−1 − T −1)nT nx = 0}.

Clearly, as a(T ) = 0, we can conclude that N ((ξ − T )n) = N ((ξ−1 − T −1)n).
Hence, a(ξ − T ) = a(ξ−1 − T −1).

On the other hand, while d(T ) = 0 and T commutes with ξ−1 − T −1, we write,
for every n ∈ N,

R((ξ − T )n) = {(ξ − T )nx : x ∈ D(T n)}
= {(ξ−1 − T −1)nT nx : x ∈ D(T n)}
= {(ξ−1 − T −1)ny : y ∈ X}
= R((ξ−1 − T −1)n).

Thus, we deduce that d(ξ − T ) = d(ξ−1 − T −1).
This shows that ξ−T ∈ B+(X) (resp., ξ−T ∈ B−(X)) if and only if ξ−1 −T −1 ∈

B+(X) (resp., ξ−1 − T −1 ∈ B−(X)). Using Theorem 3.6 (resp., Corollary 3.7) and
the fact that Q := T −1 − S−1 ∈ QK(X) with dist(Q, K(X)) < δ, we infer that
ξ − T ∈ B+(X) (resp., ξ − T ∈ B−(X)) if and only if ξ−1 − S−1 ∈ B+(X) (resp.,
ξ−1 − S−1 ∈ B−(X)) if and only if ξ − S ∈ B+(X) (resp., ξ − S ∈ B−(X)).
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This shows the stability result of the upper (resp., lower) Browder’s essential
spectrum. Consequently, we obtain

σB(T ) = σB+(T ) ∪ σB−(T ) = σB+(S) ∪ σB−(S) = σB(S). □

Remark 3.16. Theorem 3.15 is an extension and an improvement of [6, Theorem
2.3] to Browder’s essential spectra involving the notion of quasi-compact operator
perturbation.

3.3. Characterization of Browder’s essential spectrum of linear bounded
operators. The goal of this subsection is to show how the concept of quasi-
compact perturbations enables us to characterize the Browder’s essential spectrum
of linear bounded operators. As a first step let us summarize the basic property of
Weyl operators via the concept of quasi-compact operators in the following theo-
rem, which was developed by A. Brunel and D. Revuz [4].

Theorem 3.17 ([4, Theorem I.6]). Let T ∈ L(X). If T ∈ QK(X), then λ − T ∈
Φ(X), with i(λ − T ) = 0 for every λ ∈ C such that |λ| ≥ 1.

As an accurate generalization of the Browder’s essential spectrum characteriza-
tion of V. Rakočević [21] to quasi-compact perturbations is formulated as follows:

Theorem 3.18. Let T ∈ L(X). Then, we get

σB(T ) =
⋂

{σ(T + K), K ∈ E(X)} ,

where

E(X) := {K ∈ L(X) : KT = TK, K(µ − T − K)−1 ∈ QK(X) and there exists
ε > 0 : dist(K(µ − T − K)−1, K(X)) < ε ∀µ ∈ ρ(T + K)}.

Proof. The proof may be done by double inclusions. For the first inclusion, suppose
that λ /∈

⋂
{σ(T + K), K ∈ E(X)}. Thus, there exists K ∈ E(X) such that λ ∈

ρ(T + K). Therefore, for such K, we have
λ − T − K ∈ Φ(X), with α(λ − T − K) = β(λ − T − K).

Hence, the operator λ − T may be written as follows for such K ∈ E(X):
λ − T = (I + K(λ − T − K)−1)(λ − T − K).

Since (K(λ − T − K)−1) ∈ QK(X), from Theorem 3.17, we obtain
I + K(λ − T − K)−1 ∈ Φ(X), with i(I + K(λ − T − K)−1) = 0.

Consequently, using [19, Theorem 16.12], we derive that
(I + K(λ − T − K)−1)(λ − T − K) ∈ Φ(X),

with
i(λ − T ) = i((I + K(λ − T − K)−1)(λ − T − K))

= i(I + K(λ − T − K)−1) + i(λ − T − K)
= 0.

Rev. Un. Mat. Argentina, Vol. 65, No. 2 (2023)
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Therefore, λ − T is a Weyl operator on X. To prove it for Browder operator on X,
it remains to show that

a(λ − T ) < +∞ and d(λ − T ) < +∞.

According to [13, Lemmas 1.1 and 1.4], we have for such K ∈ E(X):
(λ − T )n = (I + (K(λ − T − K)−1))n(λ − T − K)n

= (λ − T − K)n(I + (K(λ − T − K)−1))n for every n ∈ N.

Then, as a(λ − T − K) = 0, we infer that
N ((λ − T )n) ⊆ N ((I + (K(λ − T − K)−1))n) for n ∈ N.

Therefore, in view of [5, Lemma 1], we conclude that
α((λ − T )n) ≤ α((I + K(λ − T − K)−1)n)

≤ a(I + K(λ − T − K)−1)α(I + K(λ − T − K)−1) for every n ∈ N.

One has K ∈ E(X), we infer in view of the use of Theorem 3.9 that
I + K(λ − T − K)−1 ∈ B(X).

Consequently, a(I + K(λ − T − K)−1) < ∞. Likewise, one has
α(I + K(λ − T − K)−1) = β(I + K(λ − T − K)−1) < ∞.

Theorem 4.3 in [12] leads to
a(I + K(λ − T − K)−1) = d(I + K(λ − T − K)−1) < ∞.

Hence, we get λ − T ∈ B(X).
Obviously, all compact operator K which commutes with T is still an operator

of the subset E(X). For this argument, we may easily observe that
∩{σ(T+K), K ∈ E(X)} ⊂ ∩{σ(T+K), K ∈ K(X), with KT = TK} = σB(T ).

□

Remark 3.19. (i) Theorem 3.18 may be regarded as an improvement and gener-
alization of the results of V. Rakočević [21] to the class of quasi-compact pertur-
bations.

(ii) The previous result covered the characterization of the Weyl spectrum of T .
Also, the classes of finite rank, compact, weakly compact and Riesz operators
remain as illustrative examples of the previous characterization of the Browder
essential spectrum of T .

Conclusion. Recently, the notion of quasi-compact operator perturbation has
played a central role in the development of modern spectral theory. Especially, this
kind of perturbation is a new branch in the study of the invariance of perturbed
linear operators and the characterization problems of linear operators. The main
objective of this paper is to exhibit the importance of the use of this kind of
notion to outline a new approach in the analysis of the stability problems of upper
and lower semi-Fredholm, upper and lower semi-Weyl and upper and lower semi-
Browder operators. Therefore, the obtained stability results of semi-Fredholm,
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semi-Weyl and semi-Browder operators play a significant role in formulation of
some new spectral results in terms of their corresponding essential spectra.
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