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THE CORTEX OF A CLASS OF SEMIDIRECT PRODUCT
EXPONENTIAL LIE GROUPS

BÉCHIR DALI AND CHAÏMA SAYARI

Abstract. In the present paper, we are concerned with the determination
of the cortex of semidirect product exponential Lie groups. More precisely,
we consider a finite dimensional real vector space V and some abelian matrix
group H = exp

(∑n

i=1 RAi

)
, where {A1, . . . , An} is a set of pairwise com-

muting non-singular matrices acting on V . We first investigate the cortex of
the action of the group H on V . As an application, we investigate the cortex
of the group semidirect product G := V ⋊ Rn.

1. Introduction

1.1. State of the art. A. M. Vershik and S. I. Karpushev define in [17] the cortex
of a locally compact group G as

cor(G) = {π ∈ Ĝ : π cannot be separated from the identity representation of G},

where Ĝ is the dual of G (set of class of unitary irreducible representations of G),
that is, π ∈ cor(G) if and only if, for any neighborhood V of 1G (identity repre-
sentation of G) and for each neighborhood U of π, one has V ∩ U is a non-empty
set. Note that Ĝ is equipped with the topology which can be described in terms of
weak containment (see [14]) and which is in general not separated. However, if G

is abelian, Ĝ is separated, and hence cor(G) = {1G}.
Suppose now that G = exp g is an exponential Lie group, with Lie algebra g.

Then Kirillov’s theory says that Ĝ is homeomorphic to the set g⋆/Ad⋆G of coad-
joint orbits in the dual g⋆ of g, equipped with the quotient topology. Using this
identification, we can see the cortex of G as the set of orbits which are not sepa-
rated to the trivial orbit {0}. For simplicity, in [5] the authors define the cortex
of g⋆ as the union of these orbits. In other words, the cortex of g⋆ is the set of
points y of g⋆ which are limit of a sequence x(p) = Ad⋆spℓ(p), where, for each p, sp
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belongs to G = exp g, ℓ(p) to g⋆, and limp ℓ(p) = 0:

Cor(g⋆) =
{

y ∈ g⋆ : y = lim
p

Ad⋆
sp

ℓ(p), lim
p

ℓ(p) = 0
}

,

and we have πℓ ∈ cor(G) if and only if ℓ ∈ Cor(g⋆). In this context, the cortex of
some Lie algebras has been studied in [4, 10, 11, 12]. In [7] the authors generalize
this notion and define the cortex Cor(V ) = CV (G) of a representation of a locally
compact group G on a finite-dimensional vector space V as the set of all v ∈ V for
which G.v and {0} cannot be Hausdorff-separated in the orbit-space V/G. They
give a precise description of CV (G) in the case G = RA, where A is a real nilpotent
matrix acting on V .

In fact, the cortex of V (or g⋆) is generally not easy to determine and describe,
even if G = V ⋊ H is a nilpotent, connected and simply connected Lie group.

Given a set of pairwise commuting matrices A1, . . . , An ∈ Rm×m, one has a nat-
ural distribution x 7→ D(x) = R-span{A1x, . . . , Anx}; under some considerations
of regularity (see [3, 2]), D(x) corresponds to the tangent space at x to the sub-
manifold Mx of Rm given by Mx = {et1A1 · · · etnAnx, t1, . . . , tn ∈ R}. A natural
question is to seek the behavior of (Mx)x when x tends to zero.

For the setting studied here, we consider a class of Lie groups given by the
semidirect product of abelian groups G = V ⋊π Rn (in [2] G is called an inhomo-
geneous vector group), where V is an m-dimensional real vector space and π is the
continuous representation of the topological additive group Rn in V given by

π : Rn → GL(V ), t = (t1, . . . , tn) 7→ π(t) = e

(∑n

i=1
tiAi

)
, (t1, . . . , tn) ∈ Rn,

where eA denotes the matrix exponential of A ∈ Rm×m. The representation π⋆ on
the dual V ⋆ of V derives from π as

π⋆(t) = (π(−t))T
, t ∈ Rn,

where the superscript T denotes the transpose matrix operator. The orbit under
π⋆ of ξ ∈ V ⋆ is given by

Oπ⋆

ξ = {π⋆(t)ξ, t ∈ Rn}.

In our setting, {A1, . . . , An} is a set of pairwise commuting non-singular matrices
in Rm×m. Under some considerations on the eigenvalues of the matrices (Ai)1≤i≤n,
G turns out to be a solvable exponential Lie group.

On the other hand, if g is the Lie algebra of G, then g = V × h (with h =∑n
i=1 RAi) and the coadjoint orbit of any (ξ, λ) ∈ g⋆ is given by Ad⋆(G)(ξ, λ) =

(exp(hT )ξ)×(λ+h⊥
ξ ), where (λ+h⊥

ξ ) is an affine subvariety in h⋆ (for more details,
see [8]); besides these considerations a description of Cor(g⋆) is derived.

1.2. Structure of the paper. The paper is organized as follows. In section 2, we
give some essential tools which will be useful for the remaining sections, namely the
notations and a summary of the results of [8] concerning the structure of commut-
ing matrices. In section 3, we are concerned with the characterization of the cortex
of the abelian matrix group H = exp

(∑n
i=1 RAi

)
(A1, . . . , An are pairwise com-

muting non-singular matrices in Rm×m). We first describe explicitly the cortex of

Rev. Un. Mat. Argentina, Vol. 65, No. 2 (2023)



THE CORTEX OF A CLASS OF EXPONENTIAL LIE GROUPS 315

the representation π⋆ on the dual space V ⋆ of V under some considerations on the
spectra of (Ai)1≤i≤n. We consider the Lie group semidirect product G = V ⋊π Rn

with Lie algebra g = V ×dπ h, where h =
∑n

i=1 RAi, and we illustrate the results of
[1, 9] to describe the adjoint and coadjoint actions of G on g and g⋆, respectively.
As an application of the results of section 3, a description of the cortex of g⋆ is
given.

2. Notations and preliminaries

Let h =
∑n

j=1 RAj be a Lie subalgebra in gl(m,R), where {A1, . . . , An} is a set
of pairwise commuting matrices in Rm×m, and let H = exp h be the corresponding
matrix group, where

exp : Rm×m → Rm×m, A 7→ eA := exp A =
∞∑

k=0

Ak

k!

is the exponential matrix mapping. Observe that H is solvable, simply connected,
but not necessarily closed or exponential or even type 1. Let V be an m-dimensional
real vector space; then H acts on V via

H × V → V, (eA, v) 7→ eAv.

Equivalently, we have a continuous finite dimensional representation of the topo-
logical group Rn:

π : Rn → GL(V ), t = (t1, . . . , tn) 7→ π(t) = et·A,

where

t · A :=
n∑

j=1
tjAj , t = (t1, . . . , tn) ∈ Rn, A = (A1, . . . , An).

The orbit of v ∈ V under π is denoted by Oπ
v and is given by

Oπ
v =

{
et·Av, t = (t1, . . . , tn) ∈ Rn

}
.

The representation π induces a semidirect product group G = V ⋊π Rn with law
(v, t)(w, s) = (v + π(t)w, t + s), t, s ∈ Rn, v, w ∈ V.

The representation π⋆ on the dual V ⋆ of V derives from π as

π⋆(t) = (π(−t))T
, t ∈ Rn.

The orbit under π⋆ of x ∈ V ⋆ is given by
Oπ⋆

x = {π⋆(t)x, t ∈ Rn}.

In this paper, we first concentrate on the study of the cortex of the representation
π⋆ on V ⋆. To this end, recall the following definition.

Definition 2.1 ([7]). Let G be a locally compact group and σ be a continuous
representation of G on a finite dimensional real vector space W . The cortex of G
is defined as

CW (σ) =
{

lim
k→∞

σ(gk)w(k) : (gk)k ⊂ G, (w(k))k ⊂ W, with lim
k→∞

w(k) = 0
}

.
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Remark 2.2. Let G be a locally compact group and σ be a continuous represen-
tation of G on a finite dimensional (real) vector space W . If U is a dense subset
in W , then we can verify that

CW (σ) =
{

lim
k→∞

σ(gk)w(k) : (gk)k ⊂ G, (w(k))k ⊂ U with lim
k→∞

w(k) = 0
}

.

Lemma 2.3. Let σ1 and σ2 be the continuous representations on the m-dimensional
real vector space W given by

σi(t) = etMi , t ∈ R, i = 1, 2,

where M1, M2 ∈ Rm×m. If there exists a non-singular matrix B such that M1 =
BM2B−1, then

CW (σ1) = BCW (σ2).

Proof. If M1 = BM2B−1, then

etM1 = BetM2B−1 for all t ∈ R.

On the other hand, for any w ∈ CW (σ1), there exist (w(k))k ⊂ W with lim
k→∞

w(k) =

0 and (t(k))k ⊂ R such that

w = lim
k→∞

et(k)M1w(k) = B
(

lim
k→∞

et(k)M2B−1w(k)
)

∈ BCW (σ2),

since limk→∞ B−1v(k) = 0, and thus CW (σ1) ⊂ BCW (σ2). The inclusion CW (σ2) ⊂
B−1CW (σ2) derives from the rule M2 = B−1M1B, and therefore

CW (σ1) = BCW (σ2). □

2.1. Structure of commuting matrices. It is well known that, given a set of
commuting matrices over the complex numbers, there exists a basis with respect to
which all matrices have upper triangular form. Let N (m,K) denote the subspace of
proper upper triangular matrices over K = R,C. On the other hand, each complex
number a is identified with the 2 × 2 real matrix(

Re(a) −Im(a)
Im(a) Re(a)

)
and hence we can identify gl(m,C) with a subspace of gl(2m,R). The following
structure result will be useful for the study of the cortex of π⋆.

Rev. Un. Mat. Argentina, Vol. 65, No. 2 (2023)



THE CORTEX OF A CLASS OF EXPONENTIAL LIE GROUPS 317

Theorem 2.4 ([8]). Let A1, . . . , An ∈ Rm×m be commuting matrices. Then there
exist B ∈ GL(m,R), ds ∈ N, and Ks ∈ {R,C} (for s = 1, . . . , l) such that

l∑
s=1

ds dimR Ks = m,

and, for j = 1, . . . , k,

Tj = BAjB−1 =


Tj,1 0 . . . 0

0 Tj,2
. . .

...
...

. . . . . . 0
0 . . . 0 Tj,l


with blocks Tj,s ∈ Ks1ds

+ N (ds,Ks). If the spectra of A1, . . . , An are known, B
is explicitly computable by repeated applications of Gaussian elimination. One has
K1 = · · · = Kl = R if and only if spectra(As) ⊂ R for all 1 ≤ s ≤ l.

Fix a basis (v1, . . . , vm) in the complexification VC = C ⊗R V = V ⊕ iV (where
i2 = −1) so that the matrices A1, . . . , An take the form T1, . . . , Tn, respectively,
of Theorem 2.4. Note that there is a natural extension of the representation π of
Rn on VC and likewise for the representation π⋆ of Rn on V ⋆

C . Alternatively, and
from now on, we shall consider the matrices (Tj)1≤j≤n instead of (Aj)1≤j≤n so
that the matrix of each π(t) is an upper triangular matrix. On the other hand, if
B = (e1, . . . , em) is the dual basis in V ⋆

C , then with respect to B the representation
π⋆ acts on V ⋆

C by lower triangular non-singular matrices.
A complex form λ is a root for the action of h on V ⋆ if, for each A ∈ h, λ(A) is

an eigenvalue of A. If λ is a root, the corresponding generalized eigenspace for λ is

V ⋆
λ =

⋂
A∈h

kerC(A − λ(A)Im)m.

For any A commuting with A1, . . . , An, the space V ⋆
λ is A-invariant and hence π⋆-

invariant and there is a finite set of linear complex functionals R = {λ1, . . . , λs}
such that

Fλ ̸= {0}, λ ∈ R and V ⋆
C = ⊕λ∈RFλ. (2.1)

Since A1, . . . , An ∈ Rm×m, the set R is invariant under complex conjugation and
the mapping V ⋆

C ∋ λ 7→ λ (componentwise complex conjugation) induces a bijection
Fλ → Fλ; more precisely, one has

Fλ = Fλ, Fλ = {ξ : ξ ∈ Fλ}, λ ∈ R.

It then further follows that there exist real-valued linear functionals αj = Re(λj),
βj = Im(λj) satisfying

λj(A) = αj(A) + iβj(A), A ∈ h, j = 1, . . . , s.

Denote by Λj the character of H defined by

Λj(eA) = eλj(A) = eαj(A)eiβj(A), A ∈ h.
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From now on, choose an ordering for the roots such that λ1, . . . , λr are real and
λr+1, . . . , λs are not real. If there are no real roots, then r = 0. On the other
hand, since R is stable under complex conjugation, s−r = 2p is even and the roots
λr+1, . . . , λs are pairwise conjugated, that is, one can write

λr+j = λr+j−p, j = p + 1, . . . , s.

As in [2, 3, 8], we identify V ⋆ with a real vector subspace in V ⋆
C , since

V ⋆
C =

(
⊕r

j=1Fλj

)
⊕
(
⊕p

j=r+1Fλj

)
⊕
(
⊕s

j=p+1Fλj

)
. (2.2)

We choose only one term from each pair (λ, λ) in R, and we thereby obtain a subset
of R, which we write as {λ1, . . . , λp}. The space V ⋆ is the following real subspace
in V ⋆

C :

V ⋆ =
(

r⊕
j=1

V ⋆
λj

∩ V

)
⊕

(
p⊕

j=r+1
(V ⋆

λj
+ V ⋆

λj
) ∩ V ⋆

)
. (2.3)

Therefore, if k ∈ {1, . . . , r}, then λk is real and we put Wk = Fλk
∩ V ⋆, and if

k ∈ {r + 1, . . . , p}, then we put Wk = Fλk
; finally, we let

W =
p⊕

j=1
Wj . (2.4)

On the other hand, according to the decomposition (2.2), each ξ ∈ V ⋆
C is written

as ξ =
∑s

j=1 ξ(j), where ξ(j) ∈ Fλj
, j = 1, . . . , s. We define the R-linear mapping

V ⋆ → W, ξ =
s∑

j=1
ξ(j) 7→ ξ′ =

p∑
j=1

ξ(j).

This mapping is an isomorphism. With this in place, we have the identification
V ⋆ = Rm1 × · · · × Rmr × Cmr+1 × · · · × Cmp .

Accordingly, we write

ξ =
[
ξ(1), . . . , ξ(p)]T =

[
ξ

(1)
1 , . . . , ξ(1)

m1
, ξ

(2)
1 , . . . , ξ(2)

m2
, . . . , ξ

(p)
1 , . . . , ξ(p)

mp

]T
.

Fix j, 1 ≤ j ≤ p and according to Theorem 2.4, then if lj = αj is real-valued,
choose an ordered basis for Rmj over R so that, for each A ∈ h, the matrix for
A|Rmj is upper triangular with real entries. Otherwise, choose an ordered basis for
Cmj over C so that the matrix for A|Cmj is upper triangular with complex entries.
Therefore each A ∈ h is identified with an upper triangular matrix consisting of p
blocks:

A =


A(1)

A(2)

. . .
A(p)

 (2.5)

so that Aξ = (A(1)ξ(1), . . . , A(p)ξ(p))T , ξ ∈ V ⋆ and each A(j) has the form lj(A)Id+
n(A(j)) with n(A(j)) strictly upper triangular. Each A ∈ h has the Jordan–
Chevalley decomposition A = d(A) + n(A), where d(A) (respectively, n(A)) is
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the diagonal part of A (respectively, the nilpotent part of A) with d(A)n(A) =
n(A)d(A) and hence we can write

eAξ = ed(A)+n(A)ξ =
(

el1(A(1))en(A(1))ξ(1), . . . , eλp(A(p))en(A(p))ξ(p)
)

.

Example 2.5. Define an action of R2 on V ⋆ = R3 by

A1 =

 1 0 0
0 1 −1
0 1 1

 , A2 =

 −1 0 0
0 2 −1
0 1 2

 .

Here p = 2, and the roots are λ1, λ2, λ2 with{
λ1(A1) = 1
λ1(A2) = −1

{
λ2(A1) = 1 + i

λ2(A2) = 2 + i.

With this identification, the matrices become

A1 =
(

1 0
0 1 + i

)
, A2 =

(
−1 0
0 2 + i

)
.

3. The cortex of the representation π⋆

In this section we are concerned with the characterization of the cortex of the
action of the abelian matrix group H = exp

(∑n
i=1 RAi

)
on the vector space V .

By (2.5) one has

Aj =


A

(1)
j

A
(2)
j

. . .
A

(p)
j

 , j = 1, . . . , n,

where, for each k = 1, . . . , p, one has

A
(k)
j = λ

(j)
k Imk

+ N
(k)
j , (3.1)

where N
(k)
j is a strictly upper triangular matrix and Imk

is the identity matrix in
Rmk×mk . Therefore

etjAj =


etjA

(1)
j

etjA
(2)
j

. . .
etjA

(p)
j


and

etjA
(k)
j = etjλ

(j)
k etjN

(k)
j = etjλ

(j)
k

mk−1∑
ℓ=1

tℓ
j

ℓ! (N (k)
j )ℓ.

The orbit of ξ ∈ V ⋆ (under π⋆) is given by

Oξ =
{

et1AT
1 +···+tnAT

n ξ, t = (t1, . . . , tn) ∈ Rn
}

.
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For x ∈ Oξ, we can write x =
(
x(1), . . . , x(p)), where, for k = 1, . . . , p we have

x
(k)
1 = e

∑n

j=1
tjλ

(j)
k ξ

(k)
1

x
(k)
2 = e

∑n

j=1
tjλ

(j)
k

(
a

(k)
2,1(t)ξ(k)

2 + ξ
(k)
1

)
...

x(k)
mk

= e

∑n

j=1
tjλ

(j)
k

(
mk−1∑

i=1
a

(k)
mk,i(t)ξ

(k)
i + ξ(k)

mk

)
,

where ak
j,i(t) are complex-valued polynomials in the variables t1, . . . , tn. For ease

of notation, we write

Lk(t) =
n∑

j=1
λ

(j)
k tj , t = (t1, . . . , tn) ∈ Rn.

Recall that some of the roots (λk)1≤k≤p are real while others are complex. Put

λ
(j)
k = λk(A(k)

j ) = α
(j)
k + iβ

(j)
k , j = 1, . . . , n, k = 1, . . . , p,

with
α

(j)
k = Re(λk(Aj)), β

(j)
k = Im(λk(Aj)).

Then, each complex-valued functional Lk can be written as

Lk(t) = Re(Lk(t)) + iIm(Lk(t) =
n∑

j=1
α

(j)
k tj + i

n∑
j=1

β
(j)
k tj .

With these notations in place, we can write

x
(k)
1 = eRe(Lk(t))eiIm(Lk(t))ξ

(k)
1 ,

x
(k)
2 = eRe(Lk(t))eiIm(Lk(t))

(
a

(k)
2,1(t)ξ(k)

1 + ξ
(k)
2

)
...

x(k)
mk

= eRe(Lk(t))eiIm(Lk(t))

(
mk−1∑

i=1
a

(k)
mk,i(t)ξ

(k)
i + ξ(k)

mk

)
.

(3.2)

From now on, we suppose that ξ lies in the open dense subset Ω ⊂ V ⋆, defined as

Ω =
{

ξ = (ξ1, . . . , ξm) ∈ V ⋆ :
m∏

i=1
ξi ̸= 0

}
.

Let 1 ≤ k ≤ p and assume that

Re(λ(k)
j ) = α

(j)
k ̸= 0 for any j = 1, . . . , n.
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Our goal is to seek the limits of each x
(k)
i , i = 1, . . . , mk, k = 1, . . . , p, of (3.2) when

ξ tends to zero and ∥t∥ is non-bounded. To this end, note that

|x(k)
i |2 = x

(k)
i x

(k)
i = e2Re(Lk(t))

∣∣∣∣∣
mk−1∑

i=1

(
a

(k)
mk,i(t)ξ

(k)
i + ξ

(k)
i

)∣∣∣∣∣
2

, i = 1, . . . , mk.

Then if we denote

fi,k(t) =

∣∣∣∣∣
mk−1∑

i=1

(
a

(k)
mk,i(t)ξ

(k)
i + ξ

(k)
i

)∣∣∣∣∣
2

, i = 1, . . . , mp,

these functions are real-valued polynomials, and hence, if ∥t∥ is bounded, we get

lim
v→0, ∥t∥<∞

x
(k)
i = 0, k = 1, . . . , p, i = 1, . . . , mk.

Thus if we are seeking non-trivial solutions of the cortex of π, we necessarily have
to consider all limits when v → 0 and ∥t∥ → ∞. Now, since the functions fi,k

are real-valued polynomials and Re(Lk) is a real-valued functional in the same
variable t, we have

lim
Re(Lk(t))→−∞

e2Re(Lk(t))fi,k(t) = 0, lim
Re(Lk(t))→∞

e2Re(Lk(t))fi,k(t) = ∞.

With this in mind, let (w(k)
1 , . . . , w

(k)
mk ) ∈ Wk (see (2.4)) with

∏mk

i=1 w
(k)
i ̸= 0. The

first equation of (3.2) gives

x
(k)
1 = eLk(t)ξ

(k)
1 = eRe(Lk(t))|ξ(k)

1 |eiIm(Lk(t))ei arg(ξ
(k)
1 ).

By assumption, ξ
(k)
1 converges to zero (with |ξ(k)

1 | ≠ 0, k = 1, 2, . . .), thus we can
choose (t(j))j ∈ Rn such that

lim
j→∞

Re(Lk(t(j))) = ln
(

|w(k)
1 |

|ξ(k)
1 |

)
.

On the other hand, (ξ(k)
1 ) can be chosen such that

arg(ξ(k)
1 ) + Im(Lk(t(j))) = arg(w(k)

1 ) mod 2π.

Finally, we get
lim

ξ
(k)
1 →0

x
(k)
1 = w

(k)
1 .

Now we focus on the remaining coordinates w
(k)
j of w(k) for j = 2, . . . , mk. Recall

that

x
(k)
j = eLk(t)

(
j−1∑
i=1

a
(k)
j,i (t)ξ(k)

i + ξ
(k)
j

)
.

Hence, we choose

ξ
(k)
i = 1

1 + ∥t∥n
(k)
i

, i = 1, . . . , j − 1,
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where n
(k)
i is large enough such that

lim
∥t∥→∞

ξ
(k)
1 = · · · = lim

∥t∥→∞
ξ

(k)
i = 0, i = 1, . . . , j,

and

ξ
(k)
j ≡ ξ

(k)
1

(
w

(k)
j

w
(k)
1

−
j−1∑
i=1

a
(k)
j,i (t)ξ

(k)
i

ξ
(k)
1

)
.

Thus lim∥t∥→∞ x
(k)
j = w

(k)
j , and if π⋆(k) denotes the restriction of the representation

π⋆ on Wk, one concludes that

CWk
(π⋆(k)) = Wk.

Hence one has the following result.

Proposition 3.1. Let π⋆(k) be the subrepresentation of π⋆ in Wk. If Re(Lk) is
non-zero, then

CWk
(π⋆(k)) = Wk.

Now we consider all the blocks of π⋆; then, for x ∈ Oπ⋆

ξ , we can write



x
(1)
1 = eRe(L1(t))eiIm(L1(t))ξ

(1)
1

x
(1)
2 = eRe(L1(t))eiIm(L1(t))

(
a

(1)
2,1(t)ξ(1)

1 + ξ
(1)
2

)
...

x(1)
m1

= eRe(L1(t))eiIm(L1(t))

(
m1−1∑

i=1
a

(1)
m1,i(t)ξ

(1)
i + ξ(1)

m1

)
...



x
(p)
1 = eRe(Lp(t))eiIm(Lp(t))ξ

(p)
1

x
(p)
2 = eRe(Lp(t))eiIm(Lp(t))

(
a

(p)
2,1(t)ξ(p)

1 + ξ
(p)
2

)
...

x(p)
mp

= eRe(Lp(t))eiIm(Lp(t))

(
mp−1∑

i=1
a

(p)
mp,i(t)ξ

(p)
i + ξ(p)

mp

)
.

Let’s assume that

Re(λ(k)
j ) is non-zero for all k = 1, . . . , p and j = 1, . . . , n.

We see that the real-valued functionals (Re(Lk(t))1≤k≤p may have different sign
when ∥t∥ is large enough, and hence accordingly to what has been established for
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the case of one block, we shall consider the following system of inequalities:

Re(L1(t)) :=
n∑

j=1
tj

(
α

(j)
1
)

> 0,

Re(L2(t)) :=
n∑

j=1
tj

(
α

(j)
2
)

> 0,

...

Re(Lp(t)) :=
n∑

j=1
tj

(
α(j)

p

)
> 0.

(3.3)

Let
q := rank(Re(L1), . . . ,Re(Lp)) ≤ min(p, n).

Without loss of generality, we may assume that the functionals Re(L1), . . . ,Re(Lq)
are linearly independent. Let

u1 = Re(L1), . . . , uq = Re(Lq);

for each i = p + 1, . . . , q, there exists (γi,j)i,j ⊂ R such that

Re(Li) =
q∑

j=1
γi,juj .

Equivalently, the system (3.3) becomes
u1 > 0, . . . , uq > 0,

γq+1,1u1 + · · · + γq+1,quq > 0,

...
γp,1u1 + · · · + γp,quq > 0.

(3.4)

Case 1: The system (3.4) is consistent. In this situation, there exists (u0
1 =

Re(L1(t0)), . . . , u0
q = Re(Lq(t0))) ∈ (0, ∞)q such that

Re(Lq+1(t0)) > 0, . . . , Re(Lp(t0)) > 0.

Using this together with Proposition 3.1, we conclude that

CV ⋆(π⋆) = V ⋆.

Note that if Re(L1), . . . ,Re(Lp) are linearly independent, that is, if

rank(Re(L1), . . . ,Re(Lp)) = p,

then CV ⋆(π⋆) = V ⋆.
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Case 2: The system (3.4) is inconsistent. Let (Fi)1≤i≤p be the functionals on Rq

defined by

Fi(u1, . . . , uq) =
{

ui if 1 ≤ i ≤ q,∑q
j=1 γi,juj if q + 1 ≤ i ≤ p.

Each functional Fi (i = 1, . . . , p) involves a partition of Rq into three non-empty
disjoint components,

Rq = ker Fi ⊔ C+
i ⊔ C−

i , i = 1, . . . , p,

where
• ker Fi = {u = (u1, . . . , uq) ∈ Rq : Fi(u) = 0},
• C+

i = {u = (u1, . . . , uq) ∈ Rq : Fi(u) > 0},
• C−

i = {u = (u1, . . . , uq) ∈ Rq : Fi(u) < 0}.
Thus, it yields a finite partition of Rq \

⋃p
i=1 ker Fi:

Rq \
p⋃

i=1
ker Fi =

N⊔
j=1

Cj , (3.5)

where each Cj (j = 1, . . . , N) is a non-empty open cone in Rq such that

Cj =
( ⋂

i∈I+
j

C+
i

)
∩

( ⋂
i∈I−

j

C−
i

)
,

with I+
j and I−

j non-empty disjoint subsets in {1, . . . , p} satisfying

{1, . . . , p} = I+
j ∪ I−

j , j = 1, . . . , N, I−
j ̸= ∅, I+

j ̸= ∅.

According to Proposition 3.1 and Case 1, we conclude that

CV ⋆(π⋆) ≡
N⋃

j=1
R|I+

j
| ×
{

0|I−
j

|
}

.

Thus, we obtain the following theorem.

Theorem 3.2. Let π be the representation of Rn in V , and let π⋆ be its contragre-
dient representation on V ⋆. Suppose that the real part of each eigenvalue of each
matrix Aj (j = 1, . . . , n) is non-zero. Then the cortex of π⋆ is either V ⋆ or a union
of proper non-trivial subspaces in V ⋆.

We now deduce the following.

Corollary 3.3. The interior of the cortex of the representation π⋆ is either V ⋆ or
empty.

Example 3.4. We consider the action of R2 = exp (RA1 + RA2) on V ⋆ = R5,
where

A1 = diag(1, 0, −1, 0, −1), A1 = diag(0, 1, 0, −1, −1).
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Therefore the system (3.4) becomes
F1(u) = u1 > 0, F2(u) = u2 > 0,

F3(u) = −u1 > 0, F4(u) = −u2 > 0,

F5(u) = −u1 − u2 > 0.

The cones (Cj)1≤j≤6 of the partition (3.5) are as follows:

C1 =
{

u = (u1, u2) ∈ R2 : F1(u) > 0, F2(u) > 0, F3(u) < 0, F4(u) < 0, F5(u) < 0
}

,

C2 =
{

u = (u1, u2) ∈ R2 : F1(u) < 0, F2(u) > 0, F3(u) > 0, F4(u) < 0, F5(u) < 0
}

,

C3 =
{

u = (u1, u2) ∈ R2 : F1(u) < 0, F2(u) > 0, F3(u) > 0, F4(u) < 0, F5(u) > 0
}

,

C4 =
{

u = (u1, u2) ∈ R2 : F1(u) < 0, F2(u) < 0, F3(u) > 0, F4(u) > 0, F5(u) > 0
}

,

C5 =
{

u = (u1, u2) ∈ R2 : F1(u) > 0, F2(u) < 0, F3(u) > 0, F4(u) > 0, F5(u) < 0
}

,

C6 =
{

u = (u1, u2) ∈ R2 : F1(u) > 0, F2(u) < 0, F3(u) < 0, F4(u) > 0, F5(u) > 0
}

.

Accordingly, we get

CV ⋆(π⋆) = (R2 × {0R3}) ∪ ({0} × R2 × {0} × R) ∪ (0R2 × R3)
∪ (R × {0} × R2 × {0}) ∪ (R × {0R2} × R2).

From Proposition 3.1 and Theorem 3.2, we deduce the following.

Corollary 3.5. Let {A1, . . . , An} be a set of pairwise commuting real non-singular
matrices, and let d(A1), . . . , d(An) be the corresponding semisimple part in the
Jordan–Chevalley decomposition of the matrices A1, . . . , An, respectively. Let π
and δ denote the representation of Rn given by

π(t) = et·A, δ(t) = etd(A), t ∈ Rn, d(A) = (d(A1), . . . , d(An)).

If the real part of each eigenvalue of any matrix Aj (for j = 1, . . . , n) is non-zero,
then

CV ⋆(π⋆) = CV ⋆(δ⋆).

Proposition 3.6. Let π be the representation corresponding to the set of pairwise
commuting real matrices {A1, . . . , An}, and let π0 be a subrepresentation of π asso-
ciated to a non-empty subset (Ai)i∈I0 , where I0 ⊂ {1, . . . , n}. If CV ⋆((π0)⋆) = V ⋆,
then CV ⋆(π⋆) = V ⋆.

Proof. This is due to the fact that O(π0)⋆

ξ ⊂ Oπ⋆

ξ for any ξ ∈ V ⋆. □

Rev. Un. Mat. Argentina, Vol. 65, No. 2 (2023)



326 B. DALI AND C. SAYARI

Now combining Proposition 3.6 and Corollary 3.5 we get the following.

Corollary 3.7. Let π be the representation of Rn in V defined as above. Assume
that, for some j = 1, . . . , n, one has

Re(λ(k)
j ) > 0 for all k = 1, . . . , p

or

Re(λ(k)
j ) < 0 for all k = 1, . . . , p.

Then
CV ⋆(π⋆) = V ⋆.

4. The cortex of the semidirect product G = V ⋊π Rn

Recall that one has the identification of Rn with the abelian matrix group
H = exp (

∑n
i=1 RAi), where (Ai)1≤i≤n is a set of pairwise commuting real ma-

trices in Rm×m fulfilling the conditions of Theorem 3.2. We use the results of
section 3 to give a description of the cortex of a class of semidirect product of
exponential Lie groups/algebras.

4.1. Semidirect product of vector groups. Here we recall some of the results
of [1, 9, 16]. Let G = V ⋊π Rn be the group endowed with the law

(v, t)(w, s) = (v + π(t)w, t + s) = (v + et·Aw, t + s), v, w ∈ V, t, s ∈ Rn,

where

t · A =
n∑

i=1
tiAi, t = (t1, . . . , tn) ∈ Rn, A = (A1, . . . , An).

In [2] the group G is called the semidirect product of the vector groups V and Rn.
The Lie algebra of G is g = V × h and is equipped with the Lie bracket

[(v, t · A), (w, s · A)] = ((t · A)w − (s · A)v, 0),

where v, w ∈ V , t, s ∈ Rn, A = (A1, . . . , An).
Since g = V ×dπ h, adv := ad(v,0) and adt·A := ad(0,t·A) can be written in 2 × 2

matrix form:
adv =

(
0 Nv

0 0

)
, adt·A =

(
t · A 0

0 0

)
,

where Nv : h → V is the linear mapping (which we identify with its matrix) given
by Nv(s · A) = −(s · A)v. Since ad2

v = 0,

Ad(v,t) =
(

et·A Nv

0 In

)
.

Similarly, if g⋆ denotes the dual space of g, then g⋆ = V ⋆ × h⋆, and the coadjoint
action of g on g⋆ is given by

ad⋆
(v,t·A) =

(
ξ
λ

)
=
(

−(t · A)T 0
−NT

v 0

)(
ξ
λ

)
.
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We next turn to the coadjoint action of G on g⋆. We get

Ad⋆
(v,t)

(
ξ
λ

)
=
(

(e−t·A)T 0
−NT

v In

)(
ξ
λ

)
.

From these formulae, we derive that spec(ad(v,t·A)) ⊂ {0} ∪ spec(t · A) (see [9]).
For instance, we can choose the matrices (Aj)1≤j≤n so that, for each j = 1, . . . , n,
one has spec(Aj) ⊂ C \ iR (i2 = −1); thus g = V ×dπ h is a solvable exponential
Lie algebra (see [6]).

4.2. Coadjoint orbits. Recall that g = V ×dπ h, and, for ξ ∈ V ⋆, let

hξ =
{
h ∋ A =

n∑
i=1

RAi : AT ξ = 0
}

:= ker
[
A 7→ AT ξ

]
and

h⊥
ξ = {λ ∈ h⋆ : ⟨λ, hξ⟩ = 0}.

By [9, Lemma 15], one has

Ad⋆(G)(ξ, λ) = Ad⋆(H)ξ × (λ + h⊥
ξ ), (4.1)

where
H =

{
e
∑n

i=1
tiAi , t1, . . . , tn ∈ R

}
.

4.3. The cortex of g⋆. The Lie group G = V ⋊π Rn and hence the Lie algebra g,
under the considerations of Theorem 3.2, turn out to be exponential [6]. Thus Ĝ is
homeomorphic to the coadjoint orbit space of G, and there exists a canonical bijec-
tion κ : g⋆/Ad⋆(G) → Ĝ, the Kirillov–Bernat correspondence. Furthermore, this
bijection is a homeomorphism, when we endow the orbit space with the quotient
topology and Ĝ with the Fell–Jacobson topology (see [15] for details). Therefore
one has that σ(ξ,λ) is the cortex of G if and only if (ξ, λ) ∈ Cor(g⋆), where

Cor(g⋆) =
{

lim
∥(ξ,λ)∥→0

Ad⋆
(v,t)(ξ, λ), (v, t) ∈ G

}
.

Consequently to the rule (4.1) we obtain the following.

Theorem 4.1. Let G be the semidirect exponential Lie group G = V ⋊π Rn with
Lie algebra g = V ×dπ h.

(a) The cortex of the dual g⋆ of g satisfies

Cor(g⋆) ⊂ CV ⋆(π⋆) × h⊥
0 ,

where
h⊥

0 =
{

λ := lim
ξ→0

λξ, λξ ∈ h⊥
ξ , ξ ∈ V ⋆

}
.

(b) If pr1 is the projection given by
pr1 : g⋆ → V ⋆, (ξ, λ) 7→ ξ,

then
pr1(Cor(g⋆)) = CV ⋆(π⋆).
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Remark 4.2. (i) Note that, for each ξ ∈ V ⋆, hξ (respectively, h⊥
ξ ) is a vector

subspace in h (respectively, h⋆).
(ii) For any ξ ∈ V ⋆ and a ∈ R \ {0}, one has

haξ = hξ, h⊥
aξ = h⊥

ξ .

(iii) It is shown in [13] that

h⊥
0 =

⋃
ξ∈U

h⊥
ξ ,

where U is the Zariski open layer of the generic H-orbits in V ⋆.

Finally, let (λj)1≤j≤p be the set of roots of h =
∑n

i=1 RAi corresponding to the
decomposition (2.3). We give the following theorem.

Theorem 4.3. Let π be the representation of Rn ≡ exp
(∑n

i=1 RAi

)
in V and let

G be the semidirect product G = V ⋊πRn with Lie algebra g = V ×h. Let (λj)1≤j≤n

be a set of roots of h =
∑n

i=1 RAi given in (2.1). If
⋂p

j=1 ker λj = {0}, then

h⊥
0 = h⋆.

Proof. Let ξ = (ξ1, . . . , ξn) = (ξ(1), . . . , ξ(p)) ∈ V ⋆ with
∏p

k=1 ξ
(k)
1 ̸= 0, and let

A ∈ h be such that AT ξ = 0. By (3.1) one obtains

λ1(A)ξ(1)
1 = · · · = λp(A)ξ(p)

1 = 0,

that is, A ∈
⋂p

j=1 ker λj = {0}. Therefore, for any generic ξ ∈ V ⋆, one has hξ = 0
and h⊥

0 = h⋆. □
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