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POINCARÉ DUALITY FOR HOPF ALGEBROIDS

SOPHIE CHEMLA

Abstract. We prove a twisted Poincaré duality for (full) Hopf algebroids
with bijective antipode. As an application, we recover the Hochschild twisted
Poincaré duality of van den Bergh. We also get a Poisson twisted Poincaré
duality, which was already stated for oriented Poisson manifolds by Chen et al.

1. Introduction

Left bialgebroids over a (possibly) non-commutative basis A generalize bialge-
bras. If U is a left bialgebroid, there is a natural U -module structure on A and
the category of left modules over a left bialgebroid U is monoidal. Nevertheless, A
is generally not a right U -module. Left Hopf left bialgebroids (or ×A-Hopf alge-
bras [24]) generalize Hopf algebras. In a left Hopf left bialgebroid U , the existence
of an antipode is not required but, for any element u ∈ U , there exists an element
u+ ⊗ u− corresponding to u(1) ⊗ S(u(2)). The more restrictive structure of full
Hopf algebroids ([3]) ensures the existence of an antipode. If L is a Lie–Rinehart
algebra (or Lie algebroid) over a commutative k-algebra A ([23]), there exists a
standard left bialgebroid structure on its enveloping algebra V (L). This struc-
ture is left Hopf. Kowalzig [17] showed that V (L) is a full Hopf algebroid if and
only if there exists a right V (L)-module structure on A. If X is a C∞ Poisson
manifold and A = C∞(X), the A-module of global differential one forms Ω1(X) is
endowed with a natural Lie–Rinehart structure over A, which is of much interest
([6], [10], [12], [15], [22], [26], etc.). In particular, Huebschmann ([12]) exhibited
a right V (Ω1(X))-module structure on A (denoted by AP ) that makes V (Ω1(X))
a full Hopf algebroid. He also interpreted the Lichnerowicz–Poisson cohomology
Hi

Pois(X) as Exti
V (Ω1(X))(A,A) and the Poisson homology HPois

i (X) ([5], [16]) of
X as TorV (Ω1(X))(AP , A).

A Poincaré duality theorem was proved in [6] for Lie–Rinehart algebras and then
extended to left Hopf left bialgebroids in [18]. It asserts, under some conditions,
that if Exti

U (A,U) = 0 for i 6= d, then, for all left U -modules M and all n ∈ N,
there is an isomorphism

Extn
U (A,M) ' TorU

d−n(M ⊗A Λ, A),
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124 SOPHIE CHEMLA

where Λ := Extd
U (A,U) is endowed with the right U -module structure given by right

multiplication in U . If U = V (L) is the enveloping algebra of a finitely generated
projective Lie–Rinehart algebra L, it is shown in [6] that Extn

V (L)(A, V (L)) = 0 if
n 6= dimL. Moreover, Extdim L

V (L) (A, V (L)) ' Λdim L
A (L∗).

We give a new formulation of the Poincaré duality in the case where U as well as
its coopposite Ucoop is left Hopf and A is endowed with a right U -module structure
(denoted by AR) such that the Ae-module IAR J is invertible.

Theorem 3.5 Let U be a left and right Hopf left bialgebroid over A. Assume the
following:

(i) Exti
U (A,U) = {0} if i 6= d, and set Λ = Extd

U (A,U).
(ii) The left U -module A admits a finitely generated projective resolution of

finite length.
(iii) A is endowed with a right U -module structure (denoted by AR) such that

the Ae-module IAR J is invertible.
(iv) Let T be the left U -module HomA(AR J ,Λ J ) (see Proposition 2.7). The

A-module B T and the Aop-module TC are projective.
Then, for all left U -modules M and all i ∈ N, there is an isomorphism

Exti
U (A,M) ' TorU

d−i (AR, TC⊗A BM) .

Assume now that H is a full Hopf algebroid. The antipode allows us to transform
any left (resp., right) H-module M (resp., N) into a right (resp., left) H-module
denoted by MS (resp., SN). Thus from the left H-module structure on A, we
can construct a right H-module structure AS . From the right H-module structure
on Λ, we can make a left H-module structure denoted by SΛ. The duality states
the following:

Exti
H(A,M) ' TorH

d−i (AS , SΛ⊗A M) .
In the special case of the (full) Hopf algebroid A⊗Aop, we recover the Hochschild
twisted Poincaré duality of [1]. In the special case where X is a Poisson manifold
and H = V (Ω1(X)), the duality above can be rewritten in terms of Poisson coho-
mology and homology. Let M be a left H-module. The coproduct on H allows
us to endow SΛ ⊗A M with a left H-module structure. Denote by Hi

Pois(M) the
Poisson cohomology with coefficients in M , and let HPois

i (SΛ⊗A M) denote the
Poisson homology with coefficients in SΛ⊗A M . There is an isomorphism

Hi
Pois(M) ' HPois

d−i (SΛ⊗A M) .

This formula was stated in [9] for oriented Poisson manifolds; see also [20] for poly-
nomial algebras with quadratic Poisson structures, [28] for linear Poisson structures,
and [21] for general polynomial Poisson algebras.

Notation. Fix an (associative, unital, commutative) ground ring k. Unadorned
tensor products will always be meant over k. All other algebras, modules, etc. will
have an underlying structure of a k-module. Secondly, fix an associative and unital
k-algebra A, i.e., a ring with a ring homomorphism ηA : k → Z(A) to its centre.
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POINCARÉ DUALITY FOR HOPF ALGEBROIDS 125

Denote by Aop the opposite algebra and by Ae := A⊗Aop the enveloping algebra
of A, and by A-Mod the category of left A-modules.

The notions of A-ring and A-coring are direct generalizations of the notions of
algebra and coalgebra over a commutative ring.

Definition 1.1. An A-coring is a triple (C,∆, ε), where C is an Ae-module (with
left action LA and right action RA), ∆ : C −→ C ⊗A C and ε : C −→ A are
Ae-module morphisms such that

(∆⊗ idC) ◦∆ = (idC ⊗∆) ◦∆, LA ◦ (ε⊗ idC) ◦∆ = idC = RA ◦ (idC ⊗ ε) ◦∆.

As usual, we adopt Sweedler’s Σ-notation ∆(c) = c(1) ⊗ c(2) or ∆(c) = c(1) ⊗ c(2)

for c ∈ C.

The notion of A-ring is dual to that of A-coring. It is well known (see [2]) that
A-rings H correspond bijectively to k-algebra homomorphisms ι : A −→ H. An
A-ring H is endowed with the following Ae-module structure:

∀h ∈ H, a, b ∈ H, a · h · b = ι(a)hι(b).

2. Preliminaries

We recall the notions and results with respect to bialgebroids that are needed to
make this article self-contained; see, e.g., [17] and references therein for an overview
on this subject.

2.1. Bialgebroids. For an Ae-ring U given by the k-algebra map η : Ae → U ,
consider the restrictions s := η(− ⊗ 1U ) and t := η(1U ⊗ −), called source and
target map, respectively. Thus an Ae-ring U carries two A-module structures from
the left and two from the right, namely

a Bu C b := s(a)t(b)u, a Iu J b := ut(a)s(b), ∀ a, b ∈ A, u ∈ U.

If we let UC⊗A BU be the corresponding tensor product of U (as an Ae-module)
with itself, we define the (left) Takeuchi–Sweedler product as

UC×A BU :=
{∑

iui⊗u′i ∈ UC⊗A BU |
∑

i(a Iui)⊗u′i =
∑

iui⊗ (u′i J a) ∀a ∈ A
}
.

By construction, UC×A BU is an Ae-submodule of UC⊗A BU ; it is also an Ae-ring
via factorwise multiplication, with unit 1U⊗1U and η

U C ×A B U
(a⊗ã) := s(a)⊗t(ã).

Symmetrically, one can consider the tensor product UJ ⊗A IU and define the
(right) Takeuchi–Sweedler product as UJ ×A IU , which is an Ae-ring inside UJ ⊗A

IU .

Definition 2.1 ([25]). A left bialgebroid (U,A) is a k-module U with the struc-
ture of an Ae-ring (U, s`, t`) and an A-coring (U,∆`, ε) subject to the following
compatibility relations:

(i) The Ae-module structure on the A-coring U is that of BUC .
(ii) The coproduct ∆` is a unital k-algebra morphism taking values in U C×A

BU .
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126 SOPHIE CHEMLA

(iii) For all a, b ∈ A and u, u′ ∈ U , one has

ε(1U ) = 1A, ε(a Bu C b) = aε(u)b, ε(uu′) = ε
(
u J ε(u′)

)
= ε
(
ε(u′) Iu

)
.

A morphism between left bialgebroids (U,A) and (U ′, A′) is a pair (F, f) of maps
F : U → U ′, f : A→ A′ that commute with all structure maps in an obvious way.

As for any ring, we can define the categories U -Mod and Mod-U of left and right
modules over U . Note that U -Mod forms a monoidal category but Mod-U usually
does not. However, in both cases there is a forgetful functor U -Mod → Ae-Mod
(respectively Mod-U → Ae-Mod) given by the following formulas: For m ∈M, n ∈
N , and a, b ∈ A,

a Bm C b := s`(a)t`(b)m, a Im J b := ns`(b)t`(a).

For example, the base algebra A itself is a left U -module via the left action

u(a) := ε(u J a) = ε(a Iu) ∀u ∈ U, ∀a ∈ A,

but in general there is no right U -action on A.

Example 2.2. Let A be a commutative k-algebra and Derk(A) the A-module of
k-derivations of A. Let L be a Lie–Rinehart algebra ([23]) over A with anchor
ρ : L → Derk(A). Its enveloping algebra V (L) is endowed with a standard left
bialgebroid ([26]) described as follows: For all a ∈ A, D ∈ L, and u ∈ V (L),

(i) s` and t` are equal to the natural injection ι : A→ V (L);
(ii) ∆` : V (L)→ V (L)⊗AV (L), ∆`(a) = a⊗A1, ∆`(D) = D⊗A1+1⊗AD;
(iii) ε(u) = ρ(u)(1).

In this example, the left action of V (L) on A coincides with the anchor extended
to V (L).

2.2. Left and right Hopf left bialgebroids. For any left bialgebroid U , define
the Hopf–Galois maps

α` : IU ⊗Aop UC → UC ⊗A BU, u⊗Aop v 7→ u(1) ⊗A u(2)v,

αr : UJ ⊗A
BU → UC ⊗A BU, u⊗A v 7→ u(1)v ⊗A u(2).

With the help of these maps, we make the following definition due to Schauen-
burg [24]:

Definition 2.3. A left bialgebroid U is called a left Hopf left bialgebroid or ×A

Hopf algebra if α` is a bijection. Likewise, it is called a right Hopf left bialgebroid if
αr is a bijection. In either case, we adopt for all u ∈ U the following (Sweedler-like)
notation

u+ ⊗Aop u− := α−1
` (u⊗A 1), u[+] ⊗A u[−] := α−1

r (1⊗A u), (2.1)

and call both maps u 7→ u+ ⊗Aop u− and u 7→ u[+] ⊗A u[−] translation maps.
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Remarks 2.4. Let (U,A, s`, t`,∆, ε) be a left bialgebroid.
(i) In case A = k is central in U , one can show that α` is invertible if and

only if U is a Hopf algebra, and the translation map reads u+ ⊗ u− :=
u(1) ⊗ S(u(2)), where S is the antipode of U . On the other hand, U is a
Hopf algebra with invertible antipode if and only if both α` and αr are
invertible, and then u[+] ⊗ u[−] := u(2) ⊗ S−1(u(1)).

(ii) The underlying left bialgebroid in a full Hopf algebroid with bijective
antipode is both a left and right Hopf left bialgebroid (but not necessarily
vice versa); see [3, Proposition 4.2] for the details of this construction
recalled below in Section 4

Example 2.5. If L is a Lie–Rinehart algebra over a commutative k-algebra A with
anchor ρ, then its enveloping algebra V (L), endowed with its standard bialgebroid
structure, is a left Hopf left bialgebroid. The translation map is described as follows
(see Proposition 2.6; in this case, A = Aop and s` = t`): If a ∈ A and D ∈ L,

a+ ⊗Aop a− = a⊗Aop 1, D+ ⊗Aop D− = D ⊗Aop 1− 1⊗Aop D.

It is also a right Hopf left bialgebroid as it is cocommutative.

The following proposition collects some properties of the translation maps [24]:

Proposition 2.6. Let U be a left bialgebroid.
(i) If U is a left Hopf left bialgebroid, the following relations hold:

u+ ⊗Aop u− ∈ U ×Aop U,

u+(1) ⊗A u+(2)u− = u⊗A 1 ∈ UC ⊗A BU,

u(1)+ ⊗Aop u(1)−u(2) = u⊗Aop 1 ∈ IU⊗AopUC ,

u+(1) ⊗A u+(2) ⊗Aop u− = u(1) ⊗A u(2)+ ⊗Aop u(2)−,

u+ ⊗Aop u−(1) ⊗A u−(2) = u++ ⊗Aop u− ⊗A u+−,

(uv)+ ⊗Aop (uv)− = u+v+ ⊗Aop v−u−,

u+u− = s`(ε(u)),
ε(u−) Iu+ = u,

(s`(a)t`(b))+ ⊗Aop (s`(a)t`(b))− = s`(a)⊗Aop s`(b),

where, in the first relation, we mean the Takeuchi–Sweedler product

U×AopU :=
{∑

iui ⊗ vi ∈ IU ⊗Aop UC |
∑

iui C a⊗ vi =
∑

iui ⊗ a I vi ∀a ∈ A
}
.

(ii) There are similar relations for u[+] ⊗A u[−] if U is a right Hopf left bial-
gebroid (see [8] for an exhaustive list).

The existence of a translation map if U is a left or right Hopf left bialgebroid
makes it possible to endow Hom-spaces and tensor products of U -modules with
further natural U -module structures. These structures were systematically studied
in [8, Proposition 3.1.1]. They generalize the case of V (L) ([7], see [4], [14] for the
particular case L = Der(A))
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Proposition 2.7. Let (U,A) be a left bialgebroid. Let M,M ′ ∈ U -Mod and
N,N ′ ∈ Mod-U be left and right U -modules, respectively. We denote the respective
actions by juxtaposition.

(i) Let (U,A) be additionally a left Hopf left bialgebroid.
• The Ae-module HomAop(M,M ′) carries a left U -module structure

given by
(u · f)(m) := u+

(
f(u−m)

)
.

• The Ae-module HomA(N,N ′) carries a left U -module structure via
(u · f)(n) :=

(
f(nu+)

)
u−.

• The Ae-module IN ⊗Aop MC carries a right U -module structure via
(n⊗Aop m) · u := nu+ ⊗Aop u−m.

(ii) Let (U,A) be a right Hopf left bialgebroid instead.
• The Ae-module HomA(M,M ′) carries a left U -module structure given

by
(u · f)(m) := u[+]

(
f(u[−]m)

)
.

• The Ae-module HomAop(N,N ′) carries a left U -module structure given
by

(u · f)(n) :=
(
f(nu[+])

)
u[−].

• The Ae-module NJ ⊗A
BM carries a right U -module structure given

by
(n⊗A m) · u := nu[+] ⊗A u[−]m.

Corollary 2.8 ([8]). Let U be a left and right left bialgebroid. For any N ∈ Mod-U ,
the evaluation map

PJ⊗A B HomA( IP,I N)→ N, p⊗A φ 7→ φ(p)
is a morphism of right U -modules.

Proof. A very similar result is stated in [8, Proposition 3.2.1]. �

3. Poincaré duality

We start by recalling the definition of an invertible module ([11]).

Definition 3.1. Let A be a k-algebra. An A⊗Aop-module X is invertible if there
exists an A⊗Aop-module Y and isomorphisms of A⊗Aop-modules

f : X ⊗A Y → A

g : Y ⊗A X → A

such that, for all (x, y) ∈ X2 and all (x′, y′) ∈ Y ,
f(x, y′)y = xg(y′, y) and x′f(x, y′) = g(x′, x)y′.

Remark 3.2. In [27], Yekutieli classifies invertible A ⊗ Aop-modules in the case
where A is a non-commutative graded algebra.
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POINCARÉ DUALITY FOR HOPF ALGEBROIDS 129

Proposition 3.3 ([13, p. 167]). Let A be a k-algebra and P an A ⊗ Aop-module.
Then, if M is an A-module, we endow HomA(P,M) with the A ⊗ Aop-module
structure: For all (a, b) ∈ A, p ∈ P , and λ ∈ HomA(P,M),

〈a · λ · b, p〉 = 〈λ, p · a〉b.

P is an invertible Ae-module if and only if it satisfies the following conditions:
• The A-module P is a finitely generated projective A-module.
• The left A⊗Aop-module morphism

g : A→ HomA(P, P ), a 7→ {p 7→ p · a}

is an isomorphism.
• The evaluation map

ev : P⊗A HomA(P,A)→ A, p⊗Aop φ 7→ φ(p)

is an isomorphism of A⊗Aop-modules.

Remark 3.4. Let U be a left and right Hopf left bialgebroid over A. If moreover,
P is endowed with a right U -module structure such that the A ⊗ Aop-module
structure on P is isomorphic to that given by I and J , then the evaluation map
is an isomorphism of left U -modules (Corollary 2.8).

We can now state the twisted Poincaré duality:

Theorem 3.5. Let U be a left and right Hopf left bialgebroid over A. Assume the
following:

(i) Exti
U (A,U) = {0} if i 6= d, and set Λ = Extd

U (A,U) with the right U -
module structure given by right multiplication on U .

(ii) The left U -module A admits a finitely generated projective resolution of
finite length.

(iii) A is endowed with a right U -module structure (denoted by AR) such that
the Ae-module IAR J is invertible.

(iv) Let T be the left U -module HomA( IAR,I Λ) (see Proposition 2.7). The
A-module B T and the Aop-module TC are projective.

Then, for all left U -modules M and all n ∈ N, there is an isomorphism

Exti
U (A,M) ' TorU

d−i (AR, TC⊗A BM) .

Remark 3.6. In the case where U is the enveloping algebra V (L) of a finitely gen-
erated projective Lie–Rinehart algebra L over A with anchor ρ : L→ Derk(A), the
hypotheses are all satisfied (see [6]). More precisely, if L is a projective A-module
with constant rank n, then Exti

V (L)(A, V (L)) = {0} if i 6= n. To describe the
right V (L)-module Extn

V (L)(A, V (L)), we make use of the Lie derivative L over the
Lie–Rinehart algebra L, which we briefly recall.

The k-Lie algebra L acts on L∗ = HomA(L,A) as follows: For all D,∆ ∈ L and
λ ∈ L∗,

LD(λ)(∆) = ρ(D) [λ(∆)]− λ([D,∆]).
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By extension, the Lie derivative LD is also defined on Λn
A(L∗). This allows us to

endow Λn
A(L∗) with a natural right V (L)-module structure determined as follows:

∀a ∈ A, ∀D ∈ L, ∀ω ∈ Λn
A(L∗), ω · a = aω, ω ·D = −LD(ω).

The right V (L)-modules Extn
V (L)(A, V (L)) and Λn

A(L∗) are isomorphic ([6]; see [4]
or [14] for the special case L = Derk(A)).

In the particular case where X is an n-dimensional Poisson manifold, A =
C∞(X), L = Ω1(X) and L∗ = Der(A), the Lie derivative Ldf over Λn

A(L∗) =
Λn

A(Der(A)) is the Lie derivative with respect to the Hamiltonian vector field Hf =
{f,−}.

To prove Theorem 3.5, we will make use of the following lemma, where the
U -module structures are given by Proposition 2.7:

Lemma 3.7 ([18, Lemma 16]). Let U be a right Hopf left bialgebroid. Let N
be a right U -module and let M and T be two left U -modules. Then there is an
isomorphism of k-modules:

(NJ⊗A B T )⊗UM ' N⊗U (TC⊗A BM).

Let P • be a bounded finitely generated projective resolution of the left U -module
A and let Q• be a projective resolution of the left U -module M . The following
computation holds in Db(k-Mod), the bounded derived category of k-modules:

RHomU (A,M) ' HomU (P •,M)
' HomU (P •, U)⊗U M

' Λ[−d]⊗U Q•

' [AR J⊗A B T ]⊗U Q• [−d] (Remark 3.4)
' AR⊗U (TC⊗A BQ

•) (Lemma 3.7)
' AR ⊗L

U (TC⊗A BM).

The last isomorphism follows from the fact that the A-module B T is projective
and from the next lemma.

Lemma 3.8. Denote by `U the left U -module structure on U given by left multi-
plication. The map

αr(T ) : `UJ⊗A B T → TC⊗A BU

u⊗ t 7→ u(1)t⊗ u(2)

is an isomorphism. One has α−1
r (t ⊗ u) = u[+] ⊗ u[−]t. Thus the U -module

TC⊗A BU is projective if the A-module B T is projective.

Theorem 3.5 is thus proved.
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Remark 3.9.
(i) In the case where U = A ⊗ Aop (see Examples 4.2), Exti

U (A,M) is the
Hochschild cohomology and we recover Van den Berg’s Hochschild twisted
Poincaré duality. Moreover, the beginning of the proof is similar to that
of [1, Theorem 1].

(ii) The isomorphism Extn
U (A,M) ' TorU

d−n(MC⊗A I Λ, A) is proved in [18].
But one can show that if the A-module Λ J is projective, one has an
isomorphism TorU

d−n(MC⊗A I Λ, A) ' TorU
d−n(Λ,M).

In the case of full Hopf algebroids, there is a natural choice of right U -module
structure on A.

4. The case of a full Hopf algebroid

Recall that a full Hopf algebroid structure ([2], [3]) on a k-module H consists of
the following data:

(i) a left bialgebroid structure H` := (H,A, s`, t`,∆`, ε) over a k-algebra A;
(ii) a right bialgebroid structure Hr := (H,B, sr, tr,∆r, ∂) over a k-algebra B;
(iii) the assumption that the k-algebra structures for H in (i) and in (ii) be

the same;
(iv) a k-module map S : H → H;
(v) some compatibility relations between the previously listed data, for which

we refer the reader to [2], [3].
The detailed definition with the same notation can be found in [19]. We shall

denote by lower Sweedler indices the left coproduct ∆` and by upper indices the
right coproduct ∆r, that is, ∆`(h) =: h(1) ⊗A h(2) and ∆r(h) =: h(1) ⊗B h(2) for
any h ∈ H. A full Hopf algebroid (with bijective antipode) is both a left and right
Hopf left bialgebroid but not necessarily vice versa. In this case, the translation
maps in (2.1) are given by

h+ ⊗Aop h− = h(1) ⊗Aop S(h(2)) and h[+] ⊗Bop h[−] = h(2) ⊗Bop S−1(h(1)),

formally similar as for Hopf algebras.
The following proposition ([2, 3]) will be needed to prove the main result in this

section.

Proposition 4.1. Let H = (H`, Hr) be a (full) Hopf algebroid over A with bijective
antipode S. Then the following statements hold:

(i) The maps ν := ∂s` : A→ Bop and µ := εsr : B → Aop are isomorphisms
of k-algebras.

(ii) One has ν−1 = εtr and µ−1 = ∂t`.
(iii) The pair of maps (S, ν) : H` → (Hr)op

coop gives an isomorphism of left
bialgebroids.

(iv) The pair of maps (S, µ) : Hr → (H`)op
coop gives an isomorphism of right

bialgebroids.
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Examples 4.2.
(i) Let A be a k-algebra; then Ae = A⊗kA

op is a A-Hopf algebroid described
as follows: For all a, b ∈ A,
• s`(a) = a⊗k 1, t`(b) = 1⊗k b;
• ∆` : Ae → Ae ⊗A Ae, a⊗ b 7→ (a⊗k 1)⊗A (1⊗k b);
• ε : Ae → A, a⊗ b 7→ ab;
• sr(a) = 1⊗k a, tr(b) = b⊗k 1;
• ∆r : Ae → Ae ⊗Aop Ae, a⊗ b 7→ (1⊗k a)⊗A (b⊗k 1);
• ∂ : Ae → A, a⊗ b 7→ ba.

(ii) Let A be a commutative k-algebra and L be a Lie–Rinehart algebra over A.
Its enveloping algebra V (L) is endowed with a standard left bialgebroid
structure (see Example 2.2). Kowalzig [17] showed that the left bialgebroid
V (L) can be endowed with a Hopf algebroid structure if and only if there
exists a right V (L)-module structure on A. Then the right bialgebroid
structure V (L)r is described as follows: For any a ∈ A, D ∈ L, and
u ∈ V (L),
• ∂(u) = 1 · u;
• ∆r : V (L) → V (L) J⊗A I V (L), ∆r(D) = D ⊗A 1 + 1 ⊗A D −
∂(X)⊗A 1 and ∆r(a) = a⊗ 1;
• S(a) = a, S(D) = −D + ∂(D).
It is in particular the case if X is a C∞ Poisson manifold, A = C∞(X),

and L = Ω1(X) is the A-module of global differential 1-forms on X. Hueb-
schmann [12] showed that there is a right V (Ω1(X))-module structure on
A determined as follows: For all (a, u, v) ∈ A3,

a · u = au and a · udv = {au, v}.

Thus, V (Ω1(X)) is endowed with a (full) Hopf algebroid structure.

Notation. Let (H`, Hr, S) be a full Hopf algebroid over A.
(i) If N is a right H`-module, we will denote by SN the left H`-module

defined by

∀h ∈ H, ∀n ∈ N, h ·S n = n · S(h).

(ii) If M is a left H`-module, we will denote by MS the right H`-module
defined by

∀h ∈ H, ∀m ∈M, m ·S h = S(h) ·m.

Remark 4.3. If H = (H`, Hr, S) is a Hopf algebroid over a k-algebra A, we have
the following module structures:

• a left H`-module structure given by h ·` a = ε(hs`(a)) = ε(ht`(a));
• a right Hr-module structure given by α ·r h = ∂(sr(α)h) = ∂(tr(a)h).

Thanks to Proposition 4.1, these two structures are linked by the relation

S(h) ·` µ(α) = µ[α ·r h].
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Theorem 4.4. Let (H`, Hr) be a full Hopf algebroid over A with bijective an-
tipode S. Consider A with its left H-module structure (as in Remark 4.3). We
keep the notation of Proposition 4.1; in particular, µ = εsr and ν = ∂s`.

(i) If a ∈ A, then 1 ·S t`(a) = a. Thus the A-module I (AS) is free with
basis 1.

(ii) If a ∈ A, then α ·S s`(a) = µν(a)α. Thus the Aop-module AS J is free
with basis 1.

(iii) If N is a right H`-module, the left H`-module HomA( I (AS),I N) is iso-
morphic to SN .

(iv) The Ae-module IAS J (defined from the right H`-module structure on
AS) is invertible.

Proof. (i) Using Proposition 4.1, we have

1 ·S t`(a) = S(t`(a))[1] =
Prop. 4.1

trν(a)[1] = ε [trν(a)] = a.

(ii) Similarly, one has: 1 ·S s`(a) = S(s`(a))(1) = εsrν(a) = µν(a).
(iii) The map

HomA( IAS ,I N)→ SN

λ 7→ λ(1)

is an isomorphism of left H`-modules, as the following computation shows.
Let α ∈ AS , h ∈ H`, and λ ∈ HomA( IAS ,I N). Using assertion (i) and
Proposition 4.1, we have

(h · λ)(1) = λ(1 ·S h(1))S(h(2))

= λ
[
S(h(1))(1)

]
S(h(2))

= λ
[
εS(h(1))

]
S(h(2))

= λ
[
1 ·S t`εS(h(1))

]
S(h(2))

= λ(1)t`ε[S(h(1))]S(h(2))
= λ(1)t`ε[S(h)(2)]S(h)(1)

= λ(1)S(h).

(iv) Let N be a right H`-module and let n ∈ N . Denote by λn the element
of HomA( IAS ,I N) determined by λn(1) = n. By assertions (i) and (ii),
the map (AS) J⊗A B HomA( IAS ,I N) → N , p ⊗Aop φ 7→ φ(p) is an
isomorphism with inverse n 7→ 1⊗ λn.

We need now to check that the map A → HomA( IAS ,I AS), a 7→
{p 7→ p J a} is an isomorphism. By assertion (iii), this boils down to
showing that A → S(AS), a 7→ 1 J a is an isomorphism. But this is true
as 1 J a = µν(a). Indeed,

1 J a = S2(s`(a))(1) = εS2 [s`(a)
]

= µ∂
[
S(s`(a))

]
= µνε(s`(a)) = µν(a). �
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We can now state the twisted Poincaré duality for full Hopf algebroids.

Theorem 4.5. Let (A,H`, Hr) be a Hopf algebroid over A with bijective an-
tipode S. As in Proposition 4.1, we set µ = εsr and ν = ∂s`. Assume the following:

(i) Exti
H`(A,H`) = {0} if i 6= d, and set Λ = Extd

H`(A,H`).
(ii) I Extd

H`(A,H`) is a projective A-module and Extd
H`(A,H`) J is a projec-

tive Aop-module.
(iii) The left H`-module A admits a finitely generated projective resolution of

finite length.
Then for all left H-modules M and all i ∈ N, there is an isomorphism

Exti
H`(A,M) ' TorH`

d−i (AS , SΛ C⊗A BM) .

As an application, we find a Poincaré duality for smooth Poisson algebras. As-
sume that X is a C∞ Poisson manifold, L = Ω1(X), and M is a V (L)-module.
Huebschmann [12] showed that, for any i ∈ N, the k-space Exti

V (Ω1(X))(A,M) co-
incides with the ith Poisson cohomology space with coefficients in M , Hi

Pois(A,M).
Also, the k-space TorV (Ω1(X))

i (AS ,M) coincides with the ith Poisson homology
space with coefficients in M , HPois

i (A,M).

Corollary 4.6. Let X be a C∞ n-dimensional Poisson manifold, A = C∞(X),
and let M be a left V (Ω1(X))-module. Let S be the antipode of the (full) Hopf
algebroid V (Ω1(X)) (see Examples 4.2). Then T is isomorphic to S

(
Λn

AΩ1(X)∗
)

=
S [Λn

A Der(A)], where df acts (on the right) on Λn
A Der(A) as the opposite of the Lie

derivative of the Hamiltonian vector field Hf (see Remark 3.6). For all i ∈ N, there
is an isomorphism

Hi
Pois(A,M) ' HPois

n−i (A, S [Λn
A Der(A)]⊗A M).

Remark 4.7. This formula is proved in [9] for oriented Poisson manifolds and
M = A; see also [20] for polynomial algebras with quadratic Poisson structures,
[28] for linear Poisson structures, and [21] for general polynomial Poisson algebras.
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