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Vol. 67, No. 1, 2024, Pages 15–25
Published online: February 21, 2024
https://doi.org/10.33044/revuma.2842

ON AN EXTENSION OF THE NEWTON POLYGON TEST
FOR POLYNOMIAL REDUCIBILITY

BRAHIM BOUDINE

Abstract. Let R be a commutative local principal ideal ring which is not
integral, f a polynomial in R[x] such that f(0) ̸= 0 and N(f) its Newton
polygon. If N(f) contains r sides of different slopes, we show that f has at
least r different pure factors in R[x]. This generalizes the Newton polygon
method over a ring which is not integral.

1. Introduction

Let (R, πR, k) be a commutative local principal ideal ring which is not integral,
where πR is its maximal ideal for an element π ∈ R, and k its residual field. It is
easy to show that R is a chain ring (all its ideals form a chain under inclusion) and
its ideals are powers of πR. Then, πR is the unique prime ideal in R, and it follows
that R is a special principal ideal ring which is not a field (see [2, Definition 14.3]).
Therefore, πR = Nil(R), and π is nilpotent. Let e be the index of nilpotency of π.
By abuse of notation, we shall often write k in place of U(R) ∪ {0}, where U(R) is
the set of units of R. Then, we get the same result as that obtained by Dinh and
Lopez-Permouth in [6], that the ideals of R are

(0) ⊂ πe−1R ⊂ . . . ⊂ πR ⊂ R.

Further, it is easy to show that the result obtained by McDonald in [12, pp. 339–
341] holds in our case:

∀x ∈ R, ∃!(u0, . . . , ue−1) ∈ ke, x = u0 + u1π + . . . + ue−1πe−1.

K[X]/(f(X)n) is an example of an special principal ideal ring which is not integral,
where K is a field, f is an irreducible polynomial in K[X], and n is a positive
integer.

Since R contains a finite number of ideals, it is a complete ring (see [7, p. 182]).
As well, Theorem 2.3 in [14] shows that R is a Henselian ring, that is, a ring in
which Hensel’s lemma holds [1, p. 134].
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16 BRAHIM BOUDINE

Lemma 1.1 (Hensel’s lemma). Let R be a complete local Noetherian ring and let
f be in R[x] such that f = g1 × . . . × gk in k[x], where g1, . . . , gk are pairwise
coprime polynomials in k[x]. Then, there are G1, . . . , Gk ∈ R[x] such that{

f = G1 × . . . × Gk in R[x],
Gi = gi ∀i ∈ {1, . . . , k}.

We already proved in [4] that every polynomial in R[x] can be written as πvf ,
where v is an integer and f is a primitive polynomial. Moreover, in the same paper,
we proved that every primitive polynomial is associated with a monic polynomial.
Then, the study of the polynomial factorization will be reduced to the case of monic
polynomials.

In this paper, we investigate the factorization of monic polynomials which satisfy
f(0) ∈ πR. So we can easily generalize the Eisenstein criterion.

Lemma 1.2. Let f(x) = a0 + . . . + anxn be a monic polynomial in R[x], where
a0 /∈ π2R and ai ∈ πR for every i ∈ {0, . . . , n − 1}. Then, f is irreducible.

Proof. Assume that f = gh. We can assume that g and h are monic polynomials.
Moreover, f = xn = gh, then g = xn−s and h = xs for some positive integer s.
Thus, g = πg′ + xn−s and h = πh′ + xs for some polynomials g′ and h′ in R[x].
Therefore, a0 = g(0)h(0) ∈ π2R, which contradicts our assumption. □

That may be sufficient when a0 /∈ π2R, but we need something stronger for the
general case of monic polynomials satisfying f(0) ∈ πR. Therefore we extend the
Newton polygon method.

The Newton polygon was introduced by Ore [13] over a field of p-adic numbers,
generalized later to any valued field by Cohen et al. [5] and fantastically developed
by Guardia et al. [10], Khanduja and Kumar [11], and El Fadil [8]. In this work,
we generalize the techniques of Newton polygons over a ring not even integral.

The second section will be devoted to presenting all the necessary tools and in-
teresting lemmas that we will need to prove our main result, which will be presented
in the last section.

2. Preliminaries and lemmas

Throughout this paper, R means the special principal ideal ring (R, πR, k, e)
which is not a field, πR its maximal ideal, k its residual field and e the index of
nilpotency of π.

We define V as follows:

V (x) =
{

max{k ∈ N | x ∈ πkR} if x ̸= 0,

+∞ if x = 0.

We remark the following statements:
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• V (xy) ≥ V (x) + V (y) for every x, y ∈ R, and the equality holds when
xy ̸= 0.

• V (x + y) ≥ min(V (x), V (y)) for every x, y ∈ R, and the equality holds
when V (x) ̸= V (y).

Let f(X) = a0 + a1X + . . . + an−1Xn−1 + Xn be a monic polynomial in R[X] such
that a0 ̸= 0. The Newton polygon N(f) of f is the lower boundary of the convex
hull of the set {(i, V (ai)) | i ∈ {0, . . . , n} and ai ̸= 0} (see [8]).

If N(f) contains the sides S1, . . . , Sr of several slopes 0 ≥ −λ1 > . . . > −λr

respectively, where for each i ∈ {1, . . . , r} the initial point of Si is (xi−1, yi−1) and
its final point is (xi, yi), then f is called of type (l1, −λ1; l2, −λ2; . . . ; lr, −λr), where
li = xi − xi−1 is the length of Si for every i ∈ {1, . . . , r} (see [3]). Furthermore,
if N(f) has only one side, then f is called a pure polynomial [3]. Notice that the
following statements are equivalent:

(1) f is pure and the slope of N(f) is equal to −λ.
(2) V (a0) = nλ, and V (ai) ≥ (n − i)λ for each i ∈ {0, . . . , n}.

Lemma 2.1. Let f and g be two pure monic polynomials in R[X] for which N(f)
and N(g) have the same slope −λ and f(0).g(0) ̸= 0. Then, fg is also a pure
monic polynomial and N(fg) has the same slope −λ.

Proof. Let {
f(x) = a0 + a1X + . . . + an−1Xn−1 + Xn,

g(x) = b0 + b1X + . . . + bm−1Xm−1 + Xm.

Since f and g are pure,{
V (a0) = nλ,

∀i ∈ {0, . . . , n}, V (ai) ≥ (n − i)λ,
,

{
V (b0) = mλ,

∀i ∈ {0, . . . , m}, V (bi) ≥ (m − i)λ.

Set f(x)g(x) = c0 +c1X + . . . +cn+m−1Xn+m−1 +Xn+m, where ci =
∑i

k=0 akbi−k

with ak = 0 if k > n or k < 0 and bk = 0 if k > m or k < 0.
(1) V (c0) = V (a0b0) = V (a0) + V (b0) = nλ + mλ = (n + m)λ since a0b0 ̸= 0.
(2) V (ci) = V

( ∑i
k=0 akbi−k

)
≥ min(V (akbi−k) | k ∈ {0, . . . , i}). For k ∈

{0, . . . , i}, V (akbi−k) ≥ V (ak) + V (bi−k) ≥ (n − k)λ + (m − i + k)λ =
(n+m−i)λ. Then, V (ci) ≥ min(V (akbi−k) | k ∈ {0, . . . , i}) ≥ (n+m−i)λ.

Therefore, fg is pure and the slope of N(fg) is −λ. □

Lemma 2.2. Let f ∈ R[x] be a monic polynomial of type (l1, −λ1; l2, −λ2; . . . ;
lr, −λr), where deg(f) =

∑r
i=1 li, and let g ∈ R[x] be a pure monic polynomial of

type (lr+1, −λr+1) where λr > λr+1 and deg(g) = lr+1. If f(0)g(0) ̸= 0, then fg is
a monic polynomial of type (l1, −λ1; l2, −λ2; . . . ; lr, −λr; lr+1, −λr+1).

Proof. Set si =
i∑

k=1
li and{
f(x) = a0 + a1X + . . . + an−1Xn−1 + Xn,

g(x) = b0 + b1X + . . . + bm−1Xm−1 + Xm.
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Then:

• ∀i ∈ {1, . . . , r}, V (asi
) =

r∑
k=i+1

lkλk.

• ∀i ∈ {1, . . . , r}, if j < si, then V (aj) ≥ V (asi) + (si − j)λi.
• ∀i ∈ {1, . . . , r − 1}, if j > si, then V (aj) ≥ V (asi

) − (j − si)λi+1.
• V (b0) = lr+1λr+1.
• ∀i ∈ {0, . . . , m}, V (bi) ≥ (lr+1 − i)λr+1.

Set ti =
r+1∑

k=i+1
liλi and f(x)g(x) = c0 +c1X + . . . +cn+m−1Xn+m−1 +Xn+m, where

ci =
i∑

k=0
akbi−k with ak = 0 if k > n or k < 0 and bk = 0 if k > m or k < 0.

We should prove the following statements:

(1) ∀i ∈ {1, . . . , r}, V (csi
) =

r+1∑
k=i+1

lkλk.

(2) ∀i ∈ {1, . . . , r + 1}, if j < si, then V (cj) ≥ V (csi
) + (ti − j)λi.

(3) ∀i ∈ {1, . . . , r}, if j > ti, then V (cj) ≥ V (csi
) − (j − ti)λi+1.

Let us proceed.

(1) Let csi
=

si∑
k=0

akbsi−k. Notice that csr+1 = anbm = 1. Therefore, V (csr+1) =

0. Suppose now that i < r + 1 and set k ∈ {0, . . . , si}. If k = si, we get

V (akbsi−k) = V (asib0) =
r+1∑

j=i+1
ljλj since asib0 ̸= 0 (V (asi) ≤ V (a0) and

a0b0 ̸= 0). Else, let k ∈ {0, . . . , si − 1}. We have{
V (ak) ≥ V (asi

) + (si − k)λi,

V (bsi−k) ≥ (lr+1 − (si − k))λr+1.

Therefore, V (akbsi−k) ≥ V (ak)+V (bsi−k) ≥
r+1∑

k=i+1
lkλk+(si−k)(λi−λr+1).

Since λi > λr+1, V (akbsi−k) >
r+1∑

k=i+1
lkλk. Thus, V (csi) =

r+1∑
k=i+1

lkλk.

(2) Let i ∈ {1, . . . , r + 1} and j < si; then cj =
j∑

k=0
akbj−k. For any k ∈

{0, . . . , j}, we have the following inequalities:{
V (ak) ≥ V (asi) + (si − k)λi,

V (bj−k) ≥ (lr+1 − (j − k))λr+1.

Therefore, V (akbj−k) ≥ V (ak) + V (bj−k) ≥
r+1∑

k=i+1
lkλk + (si − k)λi − (j −

k)λr+1. However, (si −k)λi −(j −k)λr+1 = (si −j)λi +(j −k)(λi −λr+1) ≥
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(si−j)λi. Thus, V (akbj−k) ≥
r+1∑

k=i+1
lkλk+(si−j)λi for every k ∈ {0, . . . , j}.

Hence, V (cj) ≥
r+1∑

k=i+1
lkλk + (si − j)λi = V (csi) + (si − j)λi.

(3) Let i ∈ {1, . . . , r} and j > si; then cj =
j∑

k=0
akbj−k. If k ≤ si, we have the

following inequalities:{
V (ak) ≥ V (asi

) + (si − k)λi,

V (bj−k) ≥ (lr+1 − (j − k))λr+1.

Then we get like in the previous part, V (akbj−k) ≥ V (csi
). If k > si, we

have the following inequalities:{
V (ak) ≥ V (asi

) − (k − si)λi+1,

V (bj−k) ≥ (lr+1 − (j − k))λr+1.

Then, V (akbj−k) ≥ V (ak)+V (bj−k) ≥ V (csi
)− (k −si)λi+1 − (j −k)λr+1.

However, −(k − si)λi+1 − (j − k)λr+1 = −(j − si)λi+1 + (j − k)(λi+1 −
λr+1) ≥ −(j − si)λi+1. Therefore, V (akbj−k) ≥ V (csi) − (j − si)λi+1 for
any k ∈ {0, . . . , j}. Thus, V (cj) ≥ V (csi) − (j − si)λi+1.

This proves that fg is a monic polynomial of type (l1, −λ1; l2, −λ2; . . . ; lr+1, −λr+1).
□

Definition 2.3. Let λ ∈ Q+ and let p
q be its irreducible form. We define the

function Vλ by

Vλ : R[x] → N ∪ {+∞}

f(x) =
n∑

k=0
akxk 7→ Vλ(f(x)) = min{qV (ak) + pk | k ∈ {0, . . . , n}}.

Lemma 2.4. The function Vλ satisfies the following properties:
• Vλ(f) = +∞ if and only if f = 0.
• ∀f, g ∈ R[x], Vλ(f + g) ≥ min(Vλ(f), Vλ(g)).
• ∀f, g ∈ R[x], if f(0)g(0) ̸= 0, then Vλ(fg) = Vλ(f) + Vλ(g).

Proof. Let f(x) = a0 + a1x + . . . + anxn and g(x) = b0 + b1x + . . . + bmxm, where
m ≤ n, bk = 0 if k > m and ak = 0 if k > n.

• Vλ(P ) = +∞ if and only if for every k ∈ {0, . . . , n}, qV (ak) + pk = +∞.
This means that V (ak) = +∞. Thus, ak = 0 for every k ∈ {0, . . . , n}.

• For any k ∈ {0, . . . , n}, we have V (ak + bk) ≥ min(V (ak), V (bk)).
Then, Vλ(f + g) ≥ min{q min(V (ak), V (bk)) + pk | k ∈ {0, . . . , n}} ≥

min(Vλ(f), Vλ(g)).
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• Set f(x)g(x) =
n+m∑
i=0

cix
i, where ci =

i∑
k=0

akbi−k for every i ∈ {0, . . . , n+m}.

Assume that{
r = min{k ∈ {0, . . . , n} | Vλ(f) = qV (ak) + k.p},

s = min{k ∈ {0, . . . , m} | Vλ(g) = qV (bk) + k.p}.

Then, {
V (ak) ≥ V (ar) + (r − k)λ∀k ∈ {0, . . . , n},

V (bk) ≥ V (bs) + (s − k)λ∀k ∈ {0, . . . , m}.

Thus, V (akbi−k) ≥ V (ak) + V (bi−k) ≥ V (ar) + V (bs) + (r + s − i)λ for
every k ∈ {0, . . . , i}. Therefore, qV (akbi−k) + p.i ≥ q(V (ar) + V (bs) + (r +
s − i)λ) + p.i = Vλ(f) + Vλ(g). Thus, qV (ci) + p.i ≥ Vλ(f) + Vλ(g) for each
i ∈ {0, . . . , m + n}. Hence, Vλ(fg) ≥ Vλ(f) + Vλ(g). Then, for i = r + s, if
k ∈ {0, . . . , r + s}, we distinguish some cases:

Case 1: k < r. In this case, by the definition of r, we get V (ak) > V (ar) +
(r−k)λ. Thus, qV (akbr+s−k)+p(r+s) ≥ qV (ak)+qV (br+s−k)+p(r+s) >
Vλ(f) + Vλ(g).

Case 2: k > r. Likewise, by the definition of s, we get V (br+s−k) >
V (bs) + (−r + k)λ. Thus, qV (akbr+s−k) + p(r + s) > Vλ(f) + Vλ(g).

Case 3: k = r. Notice that{
qV (ar) + rp ≤ qV (a0) ⇒ V (ar) ≤ V (a0) − rλ,

qV (bs) + sp ≤ qV (b0) ⇒ V (bs) ≤ V (b0) − sλ.

Then, V (arbs) ≤ V (ar)+V (bs) < V (a0)+V (b0) < e since a0b0 ̸= 0. Thus,
qV (arbs) + p(r + s) = qV (ar) + qV (bs) + p(r + s) = Vλ(f) + Vλ(g).

Therefore, qV (cr+s) + p(r + s) = Vλ(f) + Vλ(g). Hence, Vλ(fg) =
Vλ(f) + Vλ(g). □

Corollary 2.5. Let f(x) = a0 + a1x + . . . + anxn ∈ R[x] be a monic polynomial.
Suppose that deg(f) = n = min{k ∈ N | Vλ(f) = qV (ak) + pk}. Then for every
polynomial g = b0+b1x+. . . +bN xN ∈ R[x], Vλ(fg) = Vλ(f)+Vλ(g). Furthermore,
if j = min{k ∈ N | qV (bk) + pk}, then Vλ(fg) = qV

( ∑n+j
k=0 akbn+j−k

)
+ p(n + j).

Proof. If we use the same notation as in the proof of the third statement of the
previous lemma, we get r = n and by the same method we obtain Vλ(fg) = Vλ(f)+
Vλ(g). The fact that an = 1, means that V (arbs) = V (anbs) = V (an) + V (bs) =
V (bs) and this allows us to avoid the assumption that f(0)g(0) ̸= 0. □

Lemma 2.6. Let f(x) = a0 + a1x + . . . + an−1xn−1 + xn be a monic polynomial
in R[x] of type (l1, −λ1; . . . ; lr, −λr) satisfying a0 ̸= 0 and λ = p

q ∈ Q+ such that p

and q are coprime and λr < λ < λr−1. Then:

(1) If i <
r−1∑
i=1

li = N , then Vλ(aix
i) > Vλ(aN xN ).
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(2) If i >
r−1∑
i=1

li = N , then Vλ(aix
i) > Vλ(aN xN ).

Furthermore, Vλ(f) = Vλ(aN xN ).

Proof. Set N =
r−1∑
i=1

li.

(1) Assume that i < N :
We have Vλ(aix

i) = qV (ai) + p.i ≥ q(V (aN ) + (N − i)λr−1) + p.i.
Since λ < λr−1, we get

q(V (aN ) + (N − i)λr−1) + p.i = qV (aN ) + Np + (N − i)(λr−1q − p) > Vλ(aN xN ).

Therefore, Vλ(aix
i) > Vλ(aN xN ).

(2) Assume that i > N :
We have Vλ(aix

i) = qV (ai) + p.i ≥ q(V (aN ) − (i − N)λr) + p.i.
Since λ > λr, we get

q(V (aN ) − (i − N)λr) + p.i = qV (aN ) + Np − (i − N)(λrq − p) > Vλ(aN xN ).

Therefore, Vλ(aix
i) > Vλ(aN xN ). □

Lemma 2.7 ([9, Lemma 15.9 (i)]). Let f be a monic polynomial of degree n and g
be a monic polynomial of degree N in R[x]. Then, there exist polynomials q and r
such that deg(r) < N and f = qg + r.

Lemma 2.8. Let f be a monic polynomial of degree n, g = g0 + g1x + . . . + gN xN

be a monic polynomial of degree N < n with gN = 1, q and r be polynomials in
R[x] such that f = qg+r, deg(r) < deg(g) and deg(g) = N = min{k ∈ N | Vλ(g) =
Vλ(gkxk)}. Then, Vλ(q) ≥ Vλ(f) − Vλ(g) and Vλ(r) ≥ Vλ(f).

Proof. Step 1: We prove first that Vλ(q) ≥ Vλ(f) − Vλ(g) is equivalent to Vλ(r) ≥
Vλ(f).

By Corollary 2.5, Vλ(qg) = Vλ(q) + Vλ(g). Then, Vλ(q) ≥ Vλ(f) − Vλ(g) implies
that Vλ(qg) ≥ Vλ(f). However, r = f − qg shows that Vλ(r) = Vλ(f − gq) ≥
min(Vλ(f), Vλ(gq)) = Vλ(f). Conversely, suppose that Vλ(r) ≥ Vλ(f). Since qg =
f − r, Vλ(qg) ≥ min(Vλ(f), Vλ(r)) = Vλ(f), so we get the result by Corollary 2.5.

Step 2: Suppose that Vλ(q) < Vλ(f)−Vλ(g) and Vλ(r) < Vλ(f). Then, Vλ(qg) <
Vλ(f). It follows that Vλ(gq + r) > max{Vλ(qg), Vλ(r)}.

Set q(x) = q0+. . . +qn−N−1xn−N−1+xn−N and q(x)g(x) = c0+. . . +cn−1xn−1+
xn.

By Corollary 2.5, Vλ(qg) = Vλ(cN+jxN+j), where j = min{k ∈ N | Vλ(q) =
Vλ(qkxk)}. However, deg(r) < N ≤ N + j, then we have Vλ(f) = Vλ(qg + r) ≤
Vλ(aN+jxN+j) = Vλ(cN+jxN+j) = Vλ(qg), which is a contradiction. □

3. Main results

Theorem 3.1. Let f be a monic polynomial in R[x] such that f(0) ̸= 0. If f is
irreducible, then N(f) has only one side.
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Proof. Assume that f(x) = a0 + . . . +an−1xn−1 +xn of type (l1, −λ1; . . . ; lr, −λr),
where 0 ≤ λr < . . . < λ1. Let p

q be the irreducible form of λ which satisfies

λr < λ < λr−1. Set δ = p − qλr > 0 and N =
r−1∑
k=1

lk. Then, by Lemma 2.6 we get

Vλ(f) = Vλ(aN xN ) = qV (aN ) + pN .

For g1(x) =
N∑

k=0
akxk and h1(x) = 1, we get



deg(g1) = N and deg(h1) ≤ N − n,

Vλ(f − g1) ≥ δ + Vλ(f) and Vλ(h1 − 1) ≥ δ,

Vλ(f − g1h1) ≥ 1 × δ + Vλ(f),
V (g1) = V (lc(g1)) = aN ,

N = min{k ∈ {0, . . . , N} | Vλ(g1) = qV (ak) + pk}.

Indeed, aN ̸= 0 because the bottom part of N(f) has a slope change at (N, V (aN )).
Moreover, Vλ(f − g1) = qV (ai) + p.i for a certain i > N . Then, Vλ(f − g1) ≥

q(V (aN )−(i−N)λr)+pi = Vλ(f)+(i−N)δ ≥ Vλ(f)+δ. Finally, the last property
is given by the fact that for every k < N , we have qV (ak) + kp > q(V (aN ) + (N −
k)λ) + kp ≥ qV (aN ) + pN .

By induction, suppose that there are gk = b0 + b1x + . . . + bN xN and hk such
that 

deg(gk) = N and deg(hk) ≤ n − N,

Vλ(f − gk) ≥ δ + Vλ(f) and Vλ(hk − 1) ≥ δ,

Vλ(f − gkhk) ≥ k × δ + Vλ(f),
V (gk) = V (lc(gk)) = aN ,

N = min{j ∈ {0, . . . , N} | Vλ(gk) = qV (bj) + pj}.

We need to prove the existence of gk+1 and hk+1 satisfying the same properties
above.

Let v = V (aN ) = lrλr. Then, lc(gk) = πvu, where u /∈ πR. Let g̃k = gk

πvu (by
abuse of notation). Then, g̃k is a monic polynomial of degree N and Vλ(g̃k) =
Vλ(gk) − qv.

We also have that V (lc(gk)) = V (aN ) > 0. This means that u′(f − gkhk) is a
monic polynomial for a certain u′ /∈ πR. So we can apply the Euclidean division
of Lemma 2.7: there are a polynomial q of degree n − N and a polynomial r such
that deg(r) < N and f − gkhk = qg̃k + r. Set gk+1 = gk + r and hk+1 = hk + q:

(1) Since deg(r) < N and deg(gk) = N , deg(gk+1) = N . Since deg(q) ≤ n − N
and deg(hk) ≤ n − N , deg(hk+1) ≤ n − N .

(2) We have{
Vλ(f − gk+1) = Vλ(f − gk − r) ≥ min(Vλ(f − gk), Vλ(r)),
Vλ(hk+1 − 1) = Vλ(hk − 1 + q) ≥ min(Vλ(hk − 1), Vλ(q)).
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By Lemma 2.8, we get{
Vλ(q) ≥ Vλ(f − gkhk) − Vλ(g̃k) ≥ kδ + Vλ(f) − Vλ(gk) + qv = kδ + qv ≥ δ,

Vλ(r) ≥ Vλ(f − gkhk) ≥ kδ + Vλ(f) ≥ δ + Vλ(f).

Thus, {
Vλ(f − gk+1) ≥ δ + Vλ(f),
Vλ(hk+1 − 1) ≥ δ.

(3) Remark that f − gk+1hk+1 = r(1 − hk) − rq. Then, Vλ(f − gk+1hk+1) =
Vλ(r(1−hk)−rq) ≥ min(Vλ(r(1−hk)), Vλ(rq)). We have Vλ(rq) ≥ Vλ(r)+
Vλ(q) ≥ kδ + Vλ(f) + δ = (k + 1)δ + Vλ(f). Moreover, Vλ(r(1 − hk)) ≥
Vλ(r) + Vλ(1 − hk) ≥ kδ + Vλ(f) + δ = (k + 1)δ + Vλ(f). Therefore,
Vλ(f − gk+1hk+1) ≥ (k + 1)δ + Vλ(f).

(4) Let r(x) = r0+. . . +rjxj for some j < N , and let gk+1(x) = c0+. . . +cN xN .
We have Vλ(r) > Vλ(f); then, for every 0 ≤ k ≤ N − 1, qV (rk) + pk >
qV (aN )+pN and qV (bk)+pk > qV (aN )+pN , which implies that V (rk) >
V (aN ) + (N − k)λ and V (bk) > V (aN ) + (N − k)λ, thus V (ck) = V (rk +
bk) > V (aN ) + (N − k)λ. Therefore, V (gk+1) = V (lc(gk+1)) = V (aN ) and
N = min{j ∈ {0, . . . , N} | Vλ(gk+1) = qV (ck) + pk}.

When k tends to +∞, Vλ(f − gkhk) tends to +∞. Thus, f − gkhk = 0 for some
integer k large enough. Therefore, there are g and h such that f = gh. □

The converse is not true in general.

Example 3.2. The ring R = Z/35Z is a special principal ideal ring where 3R is
its maximal ideal, k = R/3R ∼ Z/3Z is its residual field and e = 5 the index of
nilpotency of π = 3.

Set the polynomial f(x) = 135 + 99x + 21x2 + x3.
N(f) has only one side. However f is not irreducible since f(x) = g(x)h(x),

where {
g(x) = 9 + 6x + x2,

h(x) = 15 + x.

Corollary 3.3. Let f be a monic polynomial in R[x] of type (l1, −λ1; l2, −λ2; . . . ;
lr, −λr), with f(0) ̸= 0. Then, there are some pure monic polynomials g1, . . . , gr in
R[x] such that f = g1×. . . ×gr and the slope of N(gi) is −λi for every i ∈ {1, . . . , r}.

Proof. By Theorem 3.1, f is not irreducible. Then, f = gh for some polynomials
g, h ∈ R[x]. If either g or h is not pure, we can factorize it too. We continue until we
get a product of pure polynomials h1, . . . , hs for some s ∈ N. Lemma 2.2 shows that
the slopes of the Newton polygons of these factors hi belong to {−λ1, . . . , −λr}.
Then we take gi to be the product of all hk for which the slope of the Newton
polygon is −λi. As well Lemma 2.1 shows that the slope of N(gi) is −λi. □

Example 3.4. The ring R = Z/35Z is a special principal ideal ring where 3R is
its maximal ideal, k = R/3R ∼ Z/3Z is its residual field and e = 5 the index of
nilpotency of π = 3.
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Set the polynomial f(x) = 81 + 27x + 189x2 + 12x3 + 36x4 + x5.
Neither the Eisenstein criterion 1.2 nor Hensel’s lemma 1.1 can assure if f is

irreducible or not in R[x]. However, the Newton polygon method can do it.
The Newton polygon shows that f is of type (3, −1; 2, − 1

2 ). Then, Corollary 3.3
assures that there are two pure monic polynomials g, h ∈ R[x] such that f = gh.
Indeed, {

g(x) = 27 + 9x + 27x2 + x3 ⇒ N(g) = (3, −1),
h(x) = 3 + 9x + x2 ⇒ N(h) = (2, − 1

2 ).

Example 3.5. The ring R = R[t]/t8R[t] is a special principal ideal ring where tR
is its maximal ideal, k = R/tR is its residual field and e = 8 the index of nilpotency
of π = t.

Set the polynomial f(x) = t7 +2t6x+(t5 +t7)x3 +2t4x4 +t2x5 +(t5 +3t6)x6 +x8.
Neither the Eisenstein criterion 1.2 nor Hensel’s lemma 1.1 can assure if f is

irreducible or not in R[x]. However, the Newton polygon method can do it.
The Newton polygon shows that f is of type (5, −1; 3, − 2

3 ). Then, Corollary 3.3
assures that there are two pure monic polynomials g, h ∈ R[x] such that f = gh.
Indeed, {

g(x) = t5 + 2t4x + (t5 + 3t6)x3 + x5 ⇒ N(g) = (5, −1),
h(x) = t2 + x3 ⇒ N(h) = (3, − 2

3 ).
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