ON MAPS PRESERVING THE JORDAN PRODUCT OF C-SYMMETRIC OPERATORS

ZOUHEIR AMARA AND MOURAD OUDGHIRI

Abstract

Given a conjugation C on a complex separable Hilbert space H, a bounded linear operator A acting on H is said to be C-symmetric if $A=$ $C A^{*} C$. In this paper, we provide a complete description to all those maps on the algebra of linear operators acting on a finite dimensional Hilbert space that preserve the Jordan product of C-symmetric operators, in both directions, for every conjugation C on H.

1. Introduction

Throughout this paper H will denote a finite dimensional complex Hilbert space of dimension at least three with the inner product $\langle.,$.$\rangle . The algebra of all linear$ operators acting on H is denoted by $\mathcal{B}(H)$. A conjugation on H is an anti-linear operator C on H that satisfies these conditions:
(i) C is isometric: $\langle C x, C y\rangle=\langle y, x\rangle$ for all $x, y \in H$;
(ii) C is involutive: $C^{2}=I$.

An operator $A \in \mathcal{B}(H)$ is then said to be C-symmetric, or simply complex symmetric [6], if $A=C A^{*} C$, where A^{*} denotes the adjoint of A. Clearly, C symmetric operators form a $*$-closed subspace of $\mathcal{B}(H)$.

It is well known that, for every conjugation C on H, we can find an orthonormal basis $\left\{e_{i}\right\}$ of H such that $C e_{i}=e_{i}$ for every $i \geq 1$. Moreover, for every $A \in \mathcal{B}(H)$, we have

$$
\begin{equation*}
A \text { is } C \text {-symmetric } \quad \Leftrightarrow \quad\left\langle A e_{i}, e_{j}\right\rangle=\left\langle A e_{j}, e_{i}\right\rangle \quad \text { for all } i, j \geq 1 \text {. } \tag{1.1}
\end{equation*}
$$

In other words, A is complex symmetric if and only if it has a symmetric (i.e., selftranspose) matrix representation with respect to some orthonormal basis, see [6]. The reader is referred to [5, 10, 9, 12, 13] and the references therein for more details about complex symmetry and its connection to other subjects.

The so-called non-linear preserving problem consists in characterizing those maps Φ on matrix algebras, linear operators algebras or, more generally, Banach

[^0]algebras, that preserve certain properties or subsets under a given operation such as the usual product, the Jordan product or Lie product without assuming any linearity or additivity on Φ. It was shown in 4] that a one-to-one map Φ, on the real space of hermitian operators in $\mathcal{B}(H)$, preserves Jordan zero product in both directions if and only if it has one of the following forms:
$$
A \mapsto f(A) U A U^{*} \quad \text { or } \quad A \mapsto f(A) U C A C U^{*}
$$
where f is a non-vanishing real-valued function, $U \in \mathcal{B}(H)$ is a unitary operator and C is a conjugation on H. Non-linear preserver problems have received much attention over the last years; see, for instance, [3, 11, 14].

The Jordan product of two operators $A, B \in \mathcal{B}(H)$ is the operation given by $A \circ B=A B+B A$. For $\Lambda \subset \mathcal{B}(H)$, we say that a map $\Phi: \mathcal{B}(H) \rightarrow \mathcal{B}(H)$ preserves the Jordan product of Λ in both directions if, for all $A, B \in \mathcal{B}(H)$,

$$
A \circ B \in \Lambda \quad \Leftrightarrow \quad \Phi(A) \circ \Phi(B) \in \Lambda
$$

The purpose of this paper is to describe all those maps on $\mathcal{B}(H)$ that preserve the Jordan product of the class of C-symmetric operators, in both directions, for every conjugation C.

2. Main Result and its proof

For an operator $A \in \mathcal{B}(H)$ and an orthonormal basis \mathcal{E} of H, the symbol $\mathcal{M}_{\mathcal{E}}(A)$ stands for the representation matrix of A with respect to \mathcal{E}.

The main result of this paper is the following theorem.
Theorem 2.1. Let $\Phi: \mathcal{B}(H) \rightarrow \mathcal{B}(H)$ be a map. The following assertions are equivalent:
(i) For all $A, B \in \mathcal{B}(H)$ and every orthonormal basis \mathcal{E} of H,

$$
\mathcal{M}_{\mathcal{E}}(A \circ B) \text { is symmetric } \Leftrightarrow \mathcal{M}_{\mathcal{E}}(\Phi(A) \circ \Phi(B)) \text { is symmetric. }
$$

(ii) For all $A, B \in \mathcal{B}(H)$ and every conjugation C on H,

$$
A \circ B \text { is } C \text {-symmetric } \Leftrightarrow \Phi(A) \circ \Phi(B) \text { is } C \text {-symmetric. }
$$

(iii) Φ has one of the following two forms:

$$
A \mapsto f(A) A \quad \text { or } \quad A \mapsto f(A) A^{*}
$$

where $f: \mathcal{B}(H) \rightarrow \mathbb{C} \backslash\{0\}$.
The reverse implication in assertion (ii) of the previous theorem is indispensable, as demonstrated by the following example.

Example 2.2. For $t>0$, consider the orthogonal sum $A_{t}=B_{t} \oplus 0 \in \mathcal{B}(H)$, where B_{t} is the operator defined with respect to an orthonormal basis by the following matrix:

$$
B_{t}=\left[\begin{array}{ccc}
1 & t & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \begin{aligned}
& e_{1} \\
& e_{2} \\
& e_{3}
\end{aligned} .
$$

As the trace of the operator $B_{t}^{*} B_{t}^{2} B_{t}^{* 2} B_{t}-B_{t} B_{t}^{* 2} B_{t}^{2} B_{t}^{*}$ is equal to $t^{2}>0$, we obtain by [7, Proposition 2.5] that B_{t} is not C-symmetric for any conjugation C, and hence so is the operator A_{t} by [8, Lemma 1]. Therefore, letting $\Omega=\left\{A_{t}: t>0\right\}$, we obtain that any map Φ vanishing on $\mathcal{B}(H) \backslash \Omega$ must satisfy the direct implication of assertion (ii) of the previous theorem for every conjugation. Indeed, if $T=A_{t}$ and $S=A_{s}$ for some $t, s>0$, then we have $T \circ S=2 A_{t+s}$ is never complex symmetric; on the other hand, if $T \notin \Omega$ or $S \notin \Omega$, then $\Phi(T) \circ \Phi(S)=0$ is C-symmetric for all conjugations C.

Note that the equivalence $(\mathrm{i}) \Leftrightarrow$ (ii) of Theorem 2.1 follows easily by (1.1), and that the implication (iii) \Rightarrow (ii) is trivial. So in order to prove the theorem, we need only to show that (ii) \Rightarrow (iii). In what follows, Φ shall denote a map on $\mathcal{B}(H)$ that satisfies the second assertion of Theorem 2.1.

A bounded linear operator is called diagonal if it has a diagonal matrix representation with respect to some orthonormal basis. From [2] Lemma 1], we recall that an operator is diagonal with respect to an orthonormal basis $\left\{e_{i}\right\}$ if and only if it is C_{i}-symmetric with respect to the conjugations given by

$$
\begin{equation*}
C_{i} e_{j}=(-1)^{\delta_{i j}} e_{j} \quad \text { for all } j \geq 1 \tag{2.1}
\end{equation*}
$$

where i varies in \mathbb{N}.
Remark 2.3. Let D, T be two bounded linear operators acting on a complex separable Hilbert space K such that

$$
D \text { is } C \text {-symmetric } \quad \Rightarrow \quad T \text { is } C \text {-symmetric }
$$

for every conjugation C on K. If D is diagonal with respect to an orthonormal basis $\left\{e_{i}\right\}$, then so is T by (2.1); furthermore, it follows by the proof of [2] Lemma 3] that

$$
\left\langle D e_{n}, e_{n}\right\rangle=\left\langle D e_{m}, e_{m}\right\rangle \quad \Rightarrow \quad\left\langle T e_{n}, e_{n}\right\rangle=\left\langle T e_{m}, e_{m}\right\rangle
$$

for all $n, m \geq 1$.
As a consequence of the previous remark, for all $A, B \in \mathcal{B}(H)$, we have

$$
\begin{equation*}
A \in \mathbb{C} I \quad \Leftrightarrow \quad A \text { is } C \text {-symmetric for every conjugation } C \text { on } H \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
A \circ B \in \mathbb{C} I \quad \Leftrightarrow \quad \Phi(A) \circ \Phi(B) \in \mathbb{C} I \tag{2.3}
\end{equation*}
$$

Lemma 2.4. Consider an orthogonal decomposition $H=H_{1} \oplus H_{2}$, and let $A_{i} \in$ $\mathcal{B}\left(H_{i}\right)$ and $T \in \mathcal{B}(H)$, with A_{i} being a C_{i}-symmetric operator for $i=1,2$. If the implication

$$
A_{1} \oplus A_{2} \text { is } C \text {-symmetric } \quad \Rightarrow \quad T \text { is } C \text {-symmetric }
$$

holds for every conjugation C on H, then

$$
T=\left[\begin{array}{cc}
T_{1} & 0 \\
0 & T_{2}
\end{array}\right] \begin{gathered}
H_{1} \\
H_{2}
\end{gathered}
$$

where T_{i} is a C_{i}-symmetric operator for $i=1,2$.

Proof. Obviously, we can assume without loss of generality that H_{1} and H_{2} are not trivial. It is easy to see that, for $\alpha \in\{1,-1\}$, the map $\left(\alpha C_{1}\right) \oplus C_{2}$ is a conjugation on H for which the operator $A_{1} \oplus A_{2}$ is complex symmetric, and hence so is T with respect to the same conjugation. Let e and f be vectors in H_{1} and H_{2}, respectively. It follows that

$$
\begin{aligned}
\langle T e, f\rangle & =\left\langle\left[\left(\alpha C_{1}\right) \oplus C_{2}\right] f,\left[\left(\alpha C_{1}\right) \oplus C_{2}\right] T e\right\rangle \\
& =\left\langle\left[\left(\alpha C_{1}\right) \oplus C_{2}\right] f, T^{*}\left[\left(\alpha C_{1}\right) \oplus C_{2}\right] e\right\rangle \\
& =\left\langle C_{2} f, T^{*}\left(\alpha C_{1}\right) e\right\rangle \\
& =\bar{\alpha}\left\langle C_{2} f, T^{*} C_{1} e\right\rangle,
\end{aligned}
$$

and similarly, we get that

$$
\langle T f, e\rangle=\alpha\left\langle C_{1} e, T^{*} C_{2} f\right\rangle
$$

Taking $\alpha=1$ and $\alpha=-1$, respectively, we obtain

$$
\langle T e, f\rangle=\left\langle C_{2} f, T^{*} C_{1} e\right\rangle=-\left\langle C_{2} f, T^{*} C_{1} e\right\rangle
$$

and

$$
\langle T f, e\rangle=\left\langle C_{1} e, T^{*} C_{2} f\right\rangle=-\left\langle C_{1} e, T^{*} C_{2} f\right\rangle .
$$

Therefore, $\langle T e, f\rangle=\langle T f, e\rangle=0$. Now, since e and f are arbitrary, we infer that T has the form

$$
T=\left[\begin{array}{cc}
T_{1} & 0 \\
0 & T_{2}
\end{array}\right] \begin{gathered}
H_{1} \\
H_{2}
\end{gathered} .
$$

Finally, from the fact that T is $\left(C_{1} \oplus C_{2}\right)$-symmetric, one can readily see that T_{1} and T_{2} are complex symmetric with respect to C_{1} and C_{2}, respectively.

For an operator $A \in \mathcal{B}(H)$, we denote by $\operatorname{Ran}(A), \operatorname{Ker}(A)$, and $\operatorname{Rank}(A)$, respectively, the range, the null space, and the rank of A.

It is worth mentioning that if R is an operator whose rank is less than or equal to one, then it can be expressed as an orthogonal sum

$$
\begin{equation*}
R=R_{0} \oplus 0 \tag{2.4}
\end{equation*}
$$

where R_{0} is an operator acting on the at most two-dimensional space $\operatorname{Ran}(R)+$ $\operatorname{Ker}(R)^{\perp}$. It should also be noted that every operator acting on a space K, with $\operatorname{dim} K \leq 2$, is complex symmetric. Indeed, this is trivial if $\operatorname{dim} K \leq 1$; the other case was proved in [6, Example 6].

Corollary 2.5. Let $R, T \in \mathcal{B}(H)$ with $\operatorname{Rank}(R) \leq 1$ and such that

$$
R \text { is } C \text {-symmetric } \quad \Rightarrow \quad T \text { is } C \text {-symmetric }
$$

for every conjugation C on H. Then

$$
T=\left[\begin{array}{cc}
T_{0} & 0 \\
0 & \lambda I
\end{array}\right] \begin{aligned}
& \operatorname{Ran}(R)+\operatorname{Ker}(R)^{\perp} \\
& \left(\operatorname{Ran}(R)+\operatorname{Ker}(R)^{\perp}\right)^{\perp}
\end{aligned}
$$

for some operator T_{0} and $\lambda \in \mathbb{C}$.

Proof. It follows by (2.4) and Lemma 2.4 that T has the form

$$
T=\left[\begin{array}{cc}
T_{0} & 0 \\
0 & T_{1}
\end{array}\right] \begin{aligned}
& \operatorname{Ran}(R)+\operatorname{Ker}(R)^{\perp} \\
& \left(\operatorname{Ran}(R)+\operatorname{Ker}(R)^{\perp}\right)^{\perp},
\end{aligned}
$$

and that the operator T_{1} is complex symmetric with respect to all conjugations on $\left(\operatorname{Ran}(R)+\operatorname{Ker}(R)^{\perp}\right)^{\perp}$. Therefore, by $(\underline{2.2}), T_{1}$ is a scalar multiple of the identity, and consequently, T has the desired form.

Let $u, v \in H$ be non-zero. As customary, we denote by $u \otimes v$ the rank-one operator given by $(u \otimes v)(x)=\langle x, v\rangle u$ for all $x \in H$. It is well known that every rank-one operator acting on a Hilbert space has such representation.

The following lemma describes Φ on the set of scalar multiple of rank-one orthogonal projections.

Lemma 2.6. For every non-zero $\lambda \in \mathbb{C}$ and every unit vector $u \in H$, there is a non-zero $\alpha_{u, \lambda} \in \mathbb{C}$ such that $\Phi(\lambda u \otimes u)=\alpha_{u, \lambda} u \otimes u$.

Proof. The proof consists of three steps.
Step 1. Let $u \in H$ be a unit vector and $\lambda \in \mathbb{C}$ be non-zero. Clearly, the operator

$$
(\lambda u \otimes u) \circ(\lambda u \otimes u)=2 \lambda^{2} u \otimes u
$$

is diagonal with respect to every orthonormal basis containing u. Since the operators $(\lambda u \otimes u) \circ(\lambda u \otimes u)$ and $\Phi(\lambda u \otimes u) \circ \Phi(\lambda u \otimes u)$ are complex symmetric with respect to the same conjugations, it follows by Remark 2.3 that

$$
\Phi(\lambda u \otimes u)^{2}=\left[\begin{array}{cc}
\gamma_{u, \lambda} & 0 \\
0 & \beta_{u, \lambda} I
\end{array}\right] \begin{aligned}
& u \\
& u^{\perp}
\end{aligned}
$$

for some distinct complex numbers $\gamma_{u, \lambda}$ and $\beta_{u, \lambda}$. Hence, as $\Phi(\lambda u \otimes u)$ commutes with $\Phi(\lambda u \otimes u)^{2}$, it also commutes with the spectral projections of $\Phi(\lambda u \otimes u)^{2}$. Thus,

$$
\Phi(\lambda u \otimes u)=\left[\begin{array}{cc}
\alpha_{u, \lambda} & 0 \\
0 & A_{u, \lambda}
\end{array}\right] \begin{gathered}
u \\
u^{\perp}
\end{gathered}
$$

for some $\alpha_{u, \lambda} \in \mathbb{C}$ and $A_{u, \lambda} \in \mathcal{B}\left(u^{\perp}\right)$ satisfying $\alpha_{u, \lambda}^{2}=\gamma_{u, \lambda}$ and $A_{u, \lambda}^{2}=\beta_{u, \lambda} I$.
Step 2. Let $u \in H$ be a unit vector and $\lambda \in \mathbb{C}$ be non-zero. We shall prove that if $A_{u, \lambda} \neq 0$, then $A_{u, \lambda}=\mu_{u, \lambda} I$ for some $\mu_{u, \lambda} \in \mathbb{C}$. In light of [1, Lemma 2.8], it suffices to show that every unit vector $v \in u^{\perp}$ is an eigenvector for $\Phi(\lambda u \otimes u)$. Let $v \in u^{\perp}$ be a unit vector. As $(\lambda u \otimes u) \circ(v \otimes v)=0$, we obtain by (2.3) that

$$
\Phi(\lambda u \otimes u) \Phi(v \otimes v)+\Phi(v \otimes v) \Phi(\lambda u \otimes u) \in \mathbb{C} I
$$

According to the previous step, we have $\Phi(v \otimes v) v=\alpha_{v, 1} v$ for some $\alpha_{v, 1} \in \mathbb{C}$; consequently,

$$
\Phi(\lambda u \otimes u) \alpha_{v, 1} v+\Phi(v \otimes v) \Phi(\lambda u \otimes u) v \in \operatorname{Span}\{v\}
$$

Hence,

$$
\left(\alpha_{v, 1} I+\Phi(v \otimes v)\right) \Phi(\lambda u \otimes u) v \in \operatorname{Span}\{v\}
$$

that is,

$$
\left[\begin{array}{cc}
2 \alpha_{v, 1} & 0 \\
0 & \alpha_{v, 1} I+A_{v, 1}
\end{array}\right] \begin{aligned}
& v \\
& v^{\perp}
\end{aligned} \Phi(\lambda u \otimes u) v \in \operatorname{Span}\{v\}
$$

Note that the operator $\alpha_{v, 1} I+A_{v, 1}$ is invertible in $\mathcal{B}\left(v^{\perp}\right)$, because otherwise we get

$$
\gamma_{v, 1}=\alpha_{v, 1}^{2} \in \sigma\left(A_{v, 1}\right)^{2}=\sigma\left(A_{v, 1}^{2}\right)=\left\{\beta_{v, 1}\right\}
$$

where $\sigma(T)$ denotes the spectrum of T. This contradicts the fact that $\gamma_{v, 1} \neq \beta_{v, 1}$. Thus
$\left[\begin{array}{cc}0 & 0 \\ 0 & I\end{array}\right] \begin{gathered}v \\ v^{\perp}\end{gathered} \Phi(\lambda u \otimes u) v=\left[\begin{array}{cc}0 & 0 \\ 0 & \left(\alpha_{v, 1} I+A_{v, 1}\right)^{-1}\left(\alpha_{v, 1} I+A_{v, 1}\right)\end{array}\right] \begin{gathered}v \\ v^{\perp}\end{gathered}(\lambda u \otimes u) v=0$, and consequently, $\Phi(\lambda u \otimes u) v \in \operatorname{Span}\{v\}$.

Step 3. Now, fix a unit vector $u \in H$ and a non-zero $\lambda \in \mathbb{C}$, and let us prove that $A_{u, \lambda}=0$. Assume the contrary, and let $v \in u^{\perp}$ be any unit vector. It follows by the previous steps that

$$
\Phi(\lambda u \otimes u)=\left[\begin{array}{ccc}
\alpha_{u, \lambda} & 0 & 0 \\
0 & \mu_{u, \lambda} & 0 \\
0 & 0 & \mu_{u, \lambda} I
\end{array}\right] \begin{aligned}
& u \\
& v \\
& \{u, v\}^{\perp}
\end{aligned}
$$

and

$$
\Phi(v \otimes v)=\left[\begin{array}{ccc}
\mu_{v, 1} & 0 & 0 \\
0 & \alpha_{v, 1} & 0 \\
0 & 0 & \mu_{v, 1} I
\end{array}\right] \begin{aligned}
& u \\
& v \\
& \{u, v\}^{\perp}
\end{aligned}
$$

with $\mu_{u, \lambda} \neq 0$ and $\alpha_{v, 1}^{2} \neq \mu_{v, 1}^{2}$. Since $\Phi(\lambda u \otimes u) \circ \Phi(v \otimes v) \in \mathbb{C} I$, one can easily see that $\mu_{u, \lambda} \alpha_{v, 1}=\mu_{u, \lambda} \mu_{v, 1}$, and consequently $\alpha_{v, 1}=\mu_{v, 1}$, the desired contradiction. Therefore, $A_{u, \lambda}=0$, and $\Phi(\lambda u \otimes u)=\alpha_{u, \lambda} u \otimes u$ with $\alpha_{u, \lambda}^{2} \neq \beta_{u, \lambda}=0$ as stated.
Corollary 2.7. For every $\lambda \in \mathbb{C}$, the operator $\Phi(\lambda I)$ is a scalar multiple of the identity. Furthermore, $\lambda=0$ if and only if $\Phi(\lambda I)=0$.
Proof. Fix $\lambda \in \mathbb{C}$. We first establish that $\Phi(\lambda I)$ is a scalar multiple of the identity. Let $u \in H$ be a unit vector. As $(u \otimes u) \circ \lambda I=2 \lambda u \otimes u$, it follows by the previous lemma and Remark 2.3 that

$$
(u \otimes u) \circ \Phi(\lambda I)=\left[\begin{array}{cc}
\alpha & 0 \\
0 & \beta I
\end{array}\right] \begin{aligned}
& u \\
& u^{\perp}
\end{aligned}
$$

for some $\alpha, \beta \in \mathbb{C}$. Applying the above operator to u, we get that $\Phi(\lambda I) u \in$ Span $\{u\}$. Since u is arbitrary, we obtain by [1] Lemma 2.8] that there exists $\alpha_{\lambda} \in \mathbb{C}$ such that $\Phi(\lambda I)=\alpha_{\lambda} I$.

Now, according to 2.3, for any fixed unit vector $u \in H$, we have

$$
\lambda=0 \Leftrightarrow u \otimes u \circ(\lambda I)=0 \Leftrightarrow 2 \alpha_{\lambda} \alpha_{u, 1} u \otimes u=\Phi(u \otimes u) \circ \Phi(\lambda I) \in \mathbb{C} I
$$

with $\alpha_{u, 1} \in \mathbb{C}$ being non-zero. Therefore,

$$
\lambda=0 \Leftrightarrow \alpha_{\lambda}=0 \Leftrightarrow \Phi(\lambda I)=0
$$

the desired equivalence.

Remark 2.8. It follows from the previous corollary that, for every conjugation C, an operator $A \in \mathcal{B}(H)$ is C-symmetric if and only if $\Phi(A)$ is C-symmetric. In particular, $A \in \mathbb{C} I$ if and only if $\Phi(A) \in \mathbb{C} I$.
Corollary 2.9. Let $A \in \mathcal{B}(H)$ be an operator that has the form $A=T \oplus 0$ with respect to some non-trivial orthogonal decomposition $H=H_{1} \oplus H_{2}$. Then, with respect to the same decomposition, we have $\Phi(A)=S \oplus 0$ for some $S \in \mathcal{B}\left(H_{1}\right)$.
Proof. Let u and v be unit vectors in H_{1} and H_{2}, respectively. As $\Phi(v \otimes v) \circ \Phi(A) \in$ $\mathbb{C} I$ because $(v \otimes v) \circ A=0$, Lemma 2.6 implies that

$$
(v \otimes v) \circ \Phi(A)=0
$$

Applying the above operator to u and v, respectively, we obtain

$$
\langle\Phi(A) u, v\rangle v=0 \quad \text { and } \quad\langle\Phi(A) v, v\rangle v+\Phi(A) v=0 .
$$

Consequently, $\langle\Phi(A) u, v\rangle=\langle\Phi(A) v, v\rangle=\langle\Phi(A) v, u\rangle=0$. Since u and v are arbitrary, one can easily see that $\Phi(A)$ should have the form

$$
\Phi(A)=\left[\begin{array}{ll}
S & 0 \\
0 & 0
\end{array}\right] \begin{aligned}
& H_{1} \\
& H_{2}
\end{aligned},
$$

which completes the proof.
Lemma 2.10. Let u and v be two non-zero orthogonal vectors in H. Then, there is a non-zero $\alpha_{u, v} \in \mathbb{C}$ such that

$$
\Phi(u \otimes v)=\alpha_{u, v} u \otimes v \quad \text { or } \quad \Phi(u \otimes v)=\alpha_{u, v} v \otimes u
$$

Proof. Using the previous corollary, we can write

$$
\Phi(u \otimes v)=\left[\begin{array}{lll}
a & b & 0 \\
c & d & 0 \\
0 & 0 & 0
\end{array}\right] \begin{aligned}
& \|u\|^{-1} u \\
& \|v\|^{-1} v \\
& \{u, v\}^{\perp}
\end{aligned}
$$

for some $a, b, c, d \in \mathbb{C}$. Since $(u \otimes v) \circ(u \otimes v)=0$, and hence $\Phi(u \otimes v) \circ \Phi(u \otimes v) \in \mathbb{C} I$, we obtain $\Phi(u \otimes v) \circ \Phi(u \otimes v)=0$, meaning that the operator $\Phi(u \otimes v)$ has a square equal to zero, and so $d=-a$ because the trace of $\Phi(u \otimes v)$ should be zero.

Let $w \in\{u, v\}^{\perp}$ be any non-zero vector. It follows by the previous paragraph that

$$
\Phi(w \otimes v)=\left[\begin{array}{ccc}
-x & z & 0 \\
y & x & 0 \\
0 & 0 & 0
\end{array}\right] \begin{aligned}
& \|w\|^{-1} w \\
& \|v\|^{-1} v \\
& \{v, w\}^{\perp}
\end{aligned}
$$

for some $x, y, z \in \mathbb{C}$. As $\Phi(u \otimes v) \circ \Phi(w \otimes v) \in \mathbb{C} I$ because $(u \otimes v) \circ(w \otimes v)=0$, we have

$$
\left[\begin{array}{ccc}
a & b & 0 \\
c & -a & 0 \\
0 & 0 & 0
\end{array}\right] \circ\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & x & y \\
0 & z & -x
\end{array}\right] \in \mathbb{C} I_{3},
$$

where I_{3} is the 3×3 identity matrix. Calculations yield

$$
\left[\begin{array}{ccc}
0 & b x & b y \\
c x & -2 a x & -a y \\
c z & -a z & 0
\end{array}\right]=0
$$

Note that $a=b=0$ or $a=c=0$. Indeed, if $a \neq 0$ or $b c \neq 0$, then $x=y=z=0$ and $\Phi(w \otimes v)=0$, and so $w \otimes v \in \mathbb{C} I$ by Remark 2.8 a contradiction. Therefore, we have either $\Phi(u \otimes v)=b u \otimes v$ or $\Phi(u \otimes v)=c v \otimes u$. The fact that $\Phi(u \otimes v) \neq 0$ is ensured by Remark 2.8

The following lemma describes Φ on the set of all rank-one nilpotent operators.
Lemma 2.11. One of the following statements holds:

$$
\begin{equation*}
\Phi(u \otimes v)=\alpha_{u, v} u \otimes v \quad \text { for all non-zero orthogonal vectors } u, v \in H \tag{2.5}
\end{equation*}
$$

or

$$
\begin{equation*}
\Phi(u \otimes v)=\alpha_{u, v} v \otimes u \quad \text { for all non-zero orthogonal vectors } u, v \in H \tag{2.6}
\end{equation*}
$$

Proof. In light of the previous lemma, it suffices to show that, for all non-zero vectors $u_{1}, v_{1}, u_{2}, v_{2}$ such that $u_{1} \perp v_{1}$ and $u_{2} \perp v_{2}$, the operators $\Phi\left(u_{1} \otimes v_{1}\right)$ and $\Phi\left(u_{2} \otimes v_{2}\right)$ have either the form in 2.5) or the form in 2.6). In other words, we need to prove the following equivalence:

$$
\Phi\left(u_{1} \otimes v_{1}\right)=\alpha_{u_{1}, v_{1}} u_{1} \otimes v_{1} \Leftrightarrow \Phi\left(u_{2} \otimes v_{2}\right)=\alpha_{u_{2}, v_{2}} u_{2} \otimes v_{2}
$$

The proof is divided into two steps.
Step 1. For non-zero vectors u, v_{1}, v_{2} with $u \in\left\{v_{1}, v_{2}\right\}^{\perp}$, we have

$$
\Phi\left(u \otimes v_{1}\right)=\alpha_{u, v_{1}} u \otimes v_{1} \Rightarrow \Phi\left(u \otimes v_{2}\right)=\alpha_{u, v_{2}} u \otimes v_{2}
$$

and

$$
\begin{equation*}
\Phi\left(v_{1} \otimes u\right)=\alpha_{v_{1}, u} v_{1} \otimes u \Rightarrow \Phi\left(v_{2} \otimes u\right)=\alpha_{v_{2}, u} v_{2} \otimes u \tag{2.7}
\end{equation*}
$$

Indeed, if $\Phi\left(u \otimes v_{1}\right)=\alpha_{u, v_{1}} u \otimes v_{1}$ and $\Phi\left(u \otimes v_{2}\right)=\alpha_{u, v_{2}} v_{2} \otimes u$, we get that

$$
\Phi\left(u \otimes v_{1}\right) \circ \Phi\left(u \otimes v_{2}\right)=\alpha_{u, v_{1}} \alpha_{u, v_{2}}\left\langle v_{2}, v_{1}\right\rangle u \otimes u+\alpha_{u, v_{1}} \alpha_{u, v_{2}}\|u\|^{2} v_{2} \otimes v_{1} \notin \mathbb{C} I .
$$

This leads to a contradiction because $\left(u \otimes v_{1}\right) \circ\left(u \otimes v_{2}\right)=0$. The implication 2.7) can be obtained in the same manner.

Step 2. Let $u_{1}, u_{2}, v_{1}, v_{2}$ be non-zero vectors in H such that $u_{1} \perp v_{1}$ and $u_{2} \perp v_{2}$, and arbitrarily choose a non-zero vector $w \in\left\{u_{1}, u_{2}\right\}^{\perp}$. Then, by the previous step, we have

$$
\begin{aligned}
\Phi\left(u_{1} \otimes v_{1}\right)=\alpha_{u_{1}, v_{1}} u_{1} \otimes v_{1} & \Leftrightarrow \Phi\left(u_{1} \otimes w\right)=\alpha_{u_{1}, w} u_{1} \otimes w \\
& \Leftrightarrow \Phi\left(u_{2} \otimes w\right)=\alpha_{u_{2}, w} u_{2} \otimes w \\
& \Leftrightarrow \Phi\left(u_{2} \otimes v_{2}\right)=\alpha_{u_{2}, v_{2}} u_{2} \otimes v_{2}
\end{aligned}
$$

This completes the proof.
Corollary 2.12. On the set of rank-one operators, Φ has one of the following forms:

$$
R \mapsto f(R) R \quad \text { or } \quad R \mapsto f(R) R^{*}
$$

where $f: \mathcal{B}(H) \mapsto \mathbb{C} \backslash\{0\}$.

Proof. Assume first that 2.5 holds and let us show that, for every rank-one operator $R \in \mathcal{B}(H)$, there is a non-zero $\alpha_{R} \in \mathbb{C}$ such that $\Phi(R)=\alpha_{R} R$.

Let $R \in \mathcal{B}(H)$ be a rank-one operator. Then, we can write $R=(a u+b v) \otimes v$ where u and v are two orthonormal vectors in H, and $a, b \in \mathbb{C}$. In view of Lemma 2.6 and Lemma 2.11 we can assume that a and b are non-zero. Choose an arbitrary non-zero vector $w \in\{u, v\}^{\perp}$. Using Corollary 2.9, we may write

$$
\Phi(R)=(\alpha u+\beta v) \otimes v+\left(\alpha^{\prime} u+\beta^{\prime} v\right) \otimes u
$$

for some $\alpha, \beta, \alpha^{\prime}, \beta^{\prime} \in \mathbb{C}$. Since $R \circ(u \otimes w)=R \circ(w \otimes(-\bar{b} u+\bar{a} v))=0$, we obtain

$$
\Phi(R) \circ \Phi(u \otimes w) \in \mathbb{C} I \quad \text { and } \quad \Phi(R) \circ \Phi(w \otimes(-\bar{b} u+\bar{a} v)) \in \mathbb{C} I
$$

Hence, it follows by the previous lemma that

$$
\left[(\alpha u+\beta v) \otimes v+\left(\alpha^{\prime} u+\beta^{\prime} v\right) \otimes u\right] \circ(u \otimes w)=0
$$

and

$$
\left[(\alpha u+\beta v) \otimes v+\left(\alpha^{\prime} u+\beta^{\prime} v\right) \otimes u\right] \circ(w \otimes(-\bar{b} u+\bar{a} v))=0
$$

The first equality implies that $\left(\alpha^{\prime} u+\beta^{\prime} v\right) \otimes w=0$, and so $\alpha^{\prime} u+\beta^{\prime} v=0$. The second one yields

$$
\begin{aligned}
(-b \alpha+a \beta) w \otimes v & =((\alpha u+\beta v) \otimes v) \circ(w \otimes(-\bar{b} u+\bar{a} v)) \\
& =\left[(\alpha u+\beta v) \otimes v+\left(\alpha^{\prime} u+\beta^{\prime} v\right) \otimes u\right] \circ(w \otimes(-\bar{b} u+\bar{a} v)) \\
& =0 .
\end{aligned}
$$

Therefore,

$$
\alpha^{\prime}=\beta^{\prime}=0 \quad \text { and } \quad b \alpha=a \beta
$$

Clearly, it follows from the second equality above that if one of α and β is zero, then so is the other, which implies that $\Phi(R)=0$, and hence R would be a scalar multiple of the identity, a contradiction. Consequently, $\Phi(R)=b^{-1} \beta R$.

Assume now that 2.6 holds. Then, it is easy to see that the map $\Psi(X)=\Phi\left(X^{*}\right)$ satisfies the second assertion of Theorem 2.1 and the form (2.5) in Lemma 2.11 Hence, we obtain that, for every rank-one operator $R \in \mathcal{B}(H)$,

$$
\Phi(R)=\Phi\left(\left(R^{*}\right)^{*}\right)=\Psi\left(R^{*}\right)=\alpha_{R} R^{*}
$$

for some non-zero $\alpha_{R} \in \mathbb{C}$. This ends the proof of the corollary.
In the remainder of this section, we assume that Φ satisfies (2.5) and we aim to show that Φ has the first form in assertion (iii) of Theorem 2.1. The case where Φ satisfies 2.6 can be treated by considering the map Ψ defined in the previous proof, and therefore, in this case, Φ would have the second form in assertion (iii) of Theorem 2.1

Lemma 2.13. Let $A \in \mathcal{B}(H)$. Then, A and $\Phi(A)$ have a mutual eigenvector.
Proof. The proof is divided into two steps:
Step 1. Firstly, we assume that A has only one eigenvalue where the associated eigenspace is spanned by $u \in H$. We distinguish two cases:

Case 1. $A u=0$. Let $v \in H$ be a non-zero vector such that $A^{*} v=0$. We have $\Phi(A) \circ \Phi(u \otimes v) \in \mathbb{C} I$ because $A \circ(u \otimes v)=0$, and since $\Phi(u \otimes v)$ is rank-one by the previous corollary, we get

$$
\Phi(A)(u \otimes v)+(u \otimes v) \Phi(A)=0
$$

Hence, $(\Phi(A) u) \otimes v=-u \otimes\left(\Phi(A)^{*} v\right)$, and consequently $\Phi(A) u \in \operatorname{Span}\{u\}$.
Case 2. $A u=\alpha u$ with $\alpha \neq 0$. Since the spectrum of A^{*} contains only $\bar{\alpha}$, then the operator $\bar{\alpha} I+A^{*}$ is invertible. Let $h \in H$ be a vector such that $u=\bar{\alpha} h+A^{*} h$. Since

$$
A \circ(u \otimes h)=\alpha u \otimes h+u \otimes\left(A^{*} h\right)=u \otimes\left(\bar{\alpha} h+A^{*} h\right)=u \otimes u,
$$

we get by Corollary 2.5 and the previous corollary that

$$
T:=(\Phi(A) u) \otimes h+u \otimes\left(\Phi(A)^{*} h\right)=\Phi(A) \circ(u \otimes h)=\left[\begin{array}{cc}
\gamma & 0 \\
0 & \lambda I
\end{array}\right] \begin{aligned}
& \|u\|^{-1} u \\
& \{u\}^{\perp}
\end{aligned}
$$

where $\gamma, \lambda \in \mathbb{C}$. Note that, since T has at most rank two, at least one of γ and λ is zero. Furthermore, they cannot both be zero because otherwise the operator $A \circ(u \otimes h)$ would be a scalar multiple of the identity.

If $\lambda \neq 0$, we obtain that T is a rank-two operator, which implies that

$$
u \in \operatorname{Ran}\left((\Phi(A) u) \otimes h+u \otimes\left(\Phi(A)^{*} u\right)\right)=\{u\}^{\perp}
$$

yielding a contradiction. Therefore, $\lambda=0$, and consequently,

$$
\|h\|^{2} \Phi(A) u+\left\langle h, \Phi(A)^{*} h\right\rangle u=T h \in \operatorname{Span}\{u\}
$$

and so $\Phi(A) u \in \operatorname{Span}\{u\}$.
Step 2. Suppose now that there are two linearly independent vectors u_{1} and u_{2} such that $A u_{i}=\alpha_{i} u_{i}$ for some $\alpha_{1}, \alpha_{2} \in \mathbb{C}$, and let v_{1} and v_{2} be two linearly independent unit vectors in H such that $A^{*} v_{i}=\overline{\alpha_{i}} v_{i}$. Then

$$
A \circ\left(u_{i} \otimes v_{j}\right)=\left(\alpha_{i}+\alpha_{j}\right) u_{i} \otimes v_{j} \quad \text { for } 1 \leq i, j \leq 2
$$

Using Corollary 2.5 and the previous corollary, we get

$$
\Phi(A) \circ\left(u_{i} \otimes v_{j}\right)=\left[\begin{array}{cc}
T_{i, j} & 0 \\
0 & \lambda_{i, j} I
\end{array}\right] \begin{aligned}
& \operatorname{Span}\left\{u_{i}, v_{j}\right\} \\
& \left\{u_{i}, v_{j}\right\}^{\perp}
\end{aligned}
$$

where $T_{i, j} \in \mathcal{B}\left(\operatorname{Span}\left\{u_{i}, v_{j}\right\}\right)$ and $\lambda_{i, j} \in \mathbb{C}$ for $1 \leq i, j \leq 2$. Letting $w_{i, j}$ be any non-zero vector in $\left\{u_{i}, v_{j}\right\}^{\perp}$, we obtain

$$
\begin{aligned}
& \lambda_{i, j} w_{i, j}=\left[\begin{array}{cc}
T_{i, j} & 0 \\
0 & \lambda_{i, j} I
\end{array}\right] \stackrel{\begin{array}{l}
\operatorname{Span}\left\{u_{i}, v_{j}\right\} \\
\left\{u_{i}, v_{j}\right\}^{\perp}
\end{array} w_{i, j}=\left(\Phi(A) \circ\left(u_{i} \otimes v_{j}\right)\right) w_{i, j}}{ } \\
& =\left(\left(\Phi(A) u_{i}\right) \otimes v_{j}+u_{i} \otimes\left(\Phi(A)^{*} v_{i}\right)\right) w_{i, j} \\
& =\left\langle w_{i, j}, \Phi(A)^{*} v_{j}\right\rangle u_{i},
\end{aligned}
$$

which implies that $\lambda_{i, j}=0$. Consequently,

$$
\begin{equation*}
\operatorname{Ran}\left(\Phi(A) \circ\left(u_{i} \otimes v_{j}\right)\right) \subset \operatorname{Span}\left\{u_{i}, v_{j}\right\} \quad \text { for } 1 \leq i, j \leq 2 \tag{2.8}
\end{equation*}
$$

It follows that, for all $1 \leq i, j \leq 2$,

$$
\Phi(A) u_{i}+\left\langle v_{j}, \Phi(A)^{*} v_{j}\right\rangle u_{i}=\left(\Phi(A) \circ\left(u_{i} \otimes v_{j}\right)\right) v_{j} \in \operatorname{Span}\left\{u_{i}, v_{j}\right\}
$$

and hence $\Phi(A) u_{i} \in \operatorname{Span}\left\{u_{i}, v_{j}\right\}$. If we suppose that

$$
\operatorname{Span}\left\{u_{i}, v_{1}\right\} \cap \operatorname{Span}\left\{u_{i}, v_{2}\right\}=\operatorname{Span}\left\{u_{i}\right\} \quad \text { for some } i \in\{1,2\},
$$

we readily see that the u_{i} is an eigenvector for $\Phi(A)$. Assume that

$$
\operatorname{Span}\left\{u_{i}, v_{1}\right\}=\operatorname{Span}\left\{u_{i}, v_{2}\right\} \quad \text { for } i=1,2
$$

Then, $v_{1}=\alpha u_{1}+\beta v_{2}$ and $v_{2}=\alpha^{\prime} u_{2}+\beta^{\prime} v_{1}$ for some $\alpha, \alpha^{\prime}, \beta, \beta^{\prime} \in \mathbb{C}$. Hence, $\left(1-\beta \beta^{\prime}\right) v_{1}=\alpha u_{1}+\alpha^{\prime} \beta u_{2}$. Obviously, $1-\beta \beta^{\prime} \neq 0$ because $\alpha \neq 0$ and u_{1}, u_{2} are linearly independent. Consequently, $v_{1} \in \operatorname{Span}\left\{u_{1}, u_{2}\right\}$. In a similar way, we show that $v_{2} \in \operatorname{Span}\left\{u_{1}, u_{2}\right\}$. Hence, $\operatorname{Span}\left\{u_{1}, u_{2}\right\}=\operatorname{Span}\left\{v_{1}, v_{2}\right\}$, and so A has the form

$$
A=\left[\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right] \begin{aligned}
& \operatorname{Span}\left\{u_{1}, u_{2}\right\} \\
& \left\{u_{1}, u_{2}\right\}^{\perp}
\end{aligned}
$$

Let w be an eigenvector of A_{2}^{*}. Then, we can show as in 2.8) that

$$
\operatorname{Ran}\left(\Phi(A) \circ\left(u_{1} \otimes w\right)\right) \subset \operatorname{Span}\left\{u_{1}, w\right\}
$$

and so, $\Phi(A) u_{1} \in \operatorname{Span}\left\{u_{1}, w\right\}$. Since $\Phi(A) u_{1} \in \operatorname{Span}\left\{u_{1}, u_{2}\right\}$ and $w \in\left\{u_{1}, u_{2}\right\}^{\perp}$, we obtain necessarily that $\Phi(A) u_{1} \in \operatorname{Span}\left\{u_{1}\right\}$, which ends the proof of the lemma.

Recall that a rank-one operator $x \otimes y$ is C-symmetric for some conjugation C if and only if $C x \in \operatorname{Span}\{y\}$ (or equivalently, $C y \in \operatorname{Span}\{x\}$), see [6] Lemma 2]. Then, taking into account the well-known fact that every rank-one operator is complex symmetric, we obtain that, for all non-zero vectors $x, y \in H$, there exists a conjugation C on H such that $C y \in \operatorname{Span}\{x\}$.

It is worth mentioning that $C(x \otimes y) C=C x \otimes C y$ for all conjugations C and vectors $x, y \in H$.

With these results at hand, we are ready to prove the main result of this paper. Proof of the implication (ii) \Rightarrow (iii) in Theorem 2.1. Fix an operator $A \in \mathcal{B}(H)$, and let us show that $\Phi(A)=\lambda A$ for some non-zero $\lambda \in \mathbb{C}$. First note that by Corollary 2.7. we can assume that A is not a scalar multiple of the identity. The previous lemma ensures the existence of a non-zero vector $u \in H$ satisfying $A u=\alpha u$ and $\Phi(A) u=\beta u$ for some $\alpha, \beta \in \mathbb{C}$. Let $h \in H$ be a non-zero vector. It follows by the previous remark that the operator

$$
A \circ(u \otimes h)=u \otimes\left(\bar{\alpha} h+A^{*} h\right)
$$

is C-symmetric for some conjugation C satisfying $C\left(\bar{\alpha} h+A^{*} h\right) \in \operatorname{Span}\{u\}$, and hence so is the operator

$$
u \otimes\left(\bar{\beta} h+\Phi(A)^{*} h\right)=f(u \otimes h)^{-1} \Phi(A) \circ \Phi(u \otimes h)
$$

where f is the map obtained in Corollary 2.12 Notice that

$$
\begin{aligned}
\bar{\alpha} h+A^{*} h=0 & \Leftrightarrow A \circ(u \otimes h)=0 \Leftrightarrow \Phi(A) \circ \Phi(u \otimes h) \in \mathbb{C} I \\
& \Leftrightarrow \Phi(A) \circ(u \otimes h)=0 \Leftrightarrow \bar{\beta} h+\Phi(A)^{*} h=0 .
\end{aligned}
$$

In the case $\bar{\alpha} h+A^{*} h \neq 0$, we obtain by the previous remark that

$$
\operatorname{Span}\left\{\bar{\alpha} h+A^{*} h\right\}=C \operatorname{Span}\{u\}=\operatorname{Span}\left\{\bar{\beta} h+\Phi(A)^{*} h\right\}
$$

In both cases, we can find a non-zero $\lambda_{h} \in \mathbb{C}$ such that

$$
\bar{\beta} h+\Phi(A)^{*} h=\lambda_{h}\left(\bar{\alpha} h+A^{*} h\right) .
$$

Since h is arbitrary, we get the existence of a non-zero $\lambda \in \mathbb{C}$ such that $\bar{\beta} I+\Phi(A)^{*}=$ $\bar{\lambda}\left(\bar{\alpha} I+A^{*}\right)$, and consequently $\Phi(A)=\lambda A+\gamma I$ for some $\gamma \in \mathbb{C}$.

Finally, it remains to show that $\gamma=0$. Let $x \in H$ such that x and $A^{*} x$ are linearly independent, and let J be a conjugation on H that satisfies $J\left(\bar{\alpha} x+A^{*} x\right) \in$ Span $\{u\}$. Then,

$$
\begin{aligned}
u \otimes\left(\bar{\alpha} x+A^{*} x\right) \text { is } J \text {-symmetric } & \Rightarrow A \circ(u \otimes x) \text { is } J \text {-symmetric } \\
& \Rightarrow \Phi(A) \circ \Phi(u \otimes x) \text { is } J \text {-symmetric } \\
& \Rightarrow \lambda A \circ(u \otimes x)+2 \gamma u \otimes x \text { is } J \text {-symmetric } \\
& \Rightarrow(\gamma u) \otimes x \text { is } J \text {-symmetric. }
\end{aligned}
$$

So if γ is non-zero, we obtain that

$$
\left(\bar{\alpha} x+A^{*} x\right) \in J \operatorname{Span}\{u\}=J \operatorname{Span}\{\gamma u\}=\operatorname{Span}\{x\}
$$

which contradicts the fact that x and $A^{*} x$ are linearly independent. This ends the proof of the theorem.

We conclude this section with the following questions:
Question 2.14. Fix a conjugation C on H. Does every map on $\mathcal{B}(H)$ that preserves the Jordan product of C-symmetric operators, in both directions, have one of the following forms:

$$
A \mapsto f(A) U A U^{-1} \quad \text { or } \quad A \mapsto f(A) U A^{*} U^{-1}
$$

where U is a unitary (or anti unitary) operator commuting with C and $f: \mathcal{B}(H) \rightarrow$ $\mathbb{C} \backslash\{0\}$?
Question 2.15. Does Theorem 2.1remain valid in the setting of infinite-dimensional Hilbert spaces?

References

[1] Z. Amara and M. Oudghiri, Nonlinear preservers problem of complex symmetric operators, Asian-Eur. J. Math. 14 no. 9 (2021), Paper No. 2150162, 18 pp. DOI MR Zbl
[2] Z. Amara, M. Oudghiri, and K. Souilah, Complex symmetric operators and additive preservers problem, Adv. Oper. Theory 5 no. 1 (2020), 261-279. DOI MR Zbl
[3] A. Bourhim and M. Mabrouk, Maps preserving the local spectrum of Jordan product of matrices, Linear Algebra Appl. 484 (2015), 379-395. DOI MR Zbl
[4] A. Fošner, B. Kuzma, T. Kuzma, and N.-S. Sze, Maps preserving matrix pairs with zero Jordan product, Linear Multilinear Algebra 59 no. 5 (2011), 507-529. DOI MR Zbl
[5] S. R. Garcia, Conjugation and Clark operators, in Recent Advances in Operator-Related Function Theory, Contemp. Math. 393, Amer. Math. Soc., Providence, RI, 2006, pp. $67-$ 111. DOI MR Zbl
[6] S. R. Garcia and M. Putinar, Complex symmetric operators and applications, Trans. Amer. Math. Soc. 358 no. 3 (2006), 1285-1315. DOI MR Zbl
[7] S. R. Garcia and J. E. Tener, Unitary equivalence of a matrix to its transpose, J. Operator Theory 68 no. 1 (2012), 179-203. MR Zbl
[8] S. R. Garcia and W. R. Wogen, Complex symmetric partial isometries, J. Funct. Anal. 257 no. 4 (2009), 1251-1260. DOI MR Zbl
[9] Y. Ji, T. Liu, and S. Zhu, On linear maps preserving complex symmetry, J. Math. Anal. Appl. 468 no. 2 (2018), 1144-1163. DOI MR Zbl
[10] S. Jung, E. Ko, M. Lee, and J. Lee, On local spectral properties of complex symmetric operators, J. Math. Anal. Appl. 379 no. 1 (2011), 325-333. DOI MR Zbl
[11] B. Kuzma and T. Petek, Maps preserving unitarily invariant norms of Jordan product of matrices, J. Math. Anal. Appl. 455 no. 2 (2017), 1579-1596. DOI MR Zbl
[12] E. Prodan, S. R. Garcia, and M. Putinar, Norm estimates of complex symmetric operators applied to quantum systems, J. Phys. A 39 no. 2 (2006), 389-400. DOI MR Zbl
[13] X. Wang and Z. Gao, A note on Aluthge transforms of complex symmetric operators and applications, Integral Equations Operator Theory 65 no. 4 (2009), 573-580. DOI MR Zbl
[14] L. ZhaO and J. Hou, Jordan zero-product preserving additive maps on operator algebras, J. Math. Anal. Appl. 314 no. 2 (2006), 689-700. DOI MR Zbl

Zouheir Amara ${ }^{\boxtimes}$

Department of Mathematics, Labo LAGA, Faculty of Sciences, Mohammed First University, 60000 Oujda, Morocco
z.amara@ump.ac.ma

Mourad Oudghiri
Department of Mathematics, Labo LAGA, Faculty of Sciences, Mohammed First University, 60000 Oujda, Morocco
m.oudghiri@ump.ac.ma

Received: October 16, 2021
Accepted: January 11, 2022

[^0]: 2020 Mathematics Subject Classification. 47B02, 47B49, 15B99.
 Key words and phrases. Non-linear preservers problem, complex symmetric operators, Jordan product, symmetric matrices.

