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ON MAPS PRESERVING THE JORDAN PRODUCT
OF C-SYMMETRIC OPERATORS

ZOUHEIR AMARA AND MOURAD OUDGHIRI

ABSTRACT. Given a conjugation C on a complex separable Hilbert space H,
a bounded linear operator A acting on H is said to be C-symmetric if A =
CA*C. In this paper, we provide a complete description to all those maps on
the algebra of linear operators acting on a finite dimensional Hilbert space that
preserve the Jordan product of C-symmetric operators, in both directions, for
every conjugation C on H.

1. INTRODUCTION

Throughout this paper H will denote a finite dimensional complex Hilbert space
of dimension at least three with the inner product (.,.). The algebra of all linear
operators acting on H is denoted by B(H). A conjugation on H is an anti-linear
operator C on H that satisfies these conditions:

(i) C is isometric: (Cxz,Cy) = (y,x) for all x,y € H;
(i) C is involutive: C? = I.

An operator A € B(H) is then said to be C-symmetric, or simply complex
symmetric [6], if A = CA*C, where A* denotes the adjoint of A. Clearly, C-
symmetric operators form a #-closed subspace of B(H).

It is well known that, for every conjugation C on H, we can find an orthonormal
basis {e;} of H such that Ce; = e; for every i > 1. Moreover, for every A € B(H),
we have

Ais C-symmetric < (Ae;,e;) = (Aej,e;) forall i,j > 1. (1.1)

In other words, A is complex symmetric if and only if it has a symmetric (i.e., self-
transpose) matrix representation with respect to some orthonormal basis, see [6].
The reader is referred to [5] [10, 9] 12} [13] and the references therein for more details
about complex symmetry and its connection to other subjects.

The so-called non-linear preserving problem consists in characterizing those

maps ¢ on matrix algebras, linear operators algebras or, more generally, Banach
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algebras, that preserve certain properties or subsets under a given operation such
as the usual product, the Jordan product or Lie product without assuming any
linearity or additivity on ®. It was shown in [4] that a one-to-one map @, on the
real space of hermitian operators in B(H), preserves Jordan zero product in both
directions if and only if it has one of the following forms:

A f(AUAU* or A f(AUCACU*,

where f is a non-vanishing real-valued function, U € B(H) is a unitary operator
and C' is a conjugation on H. Non-linear preserver problems have received much
attention over the last years; see, for instance, [3 [11] [14].

The Jordan product of two operators A, B € B(H) is the operation given by
AoB = AB+ BA. For A C B(H), we say that a map ® : B(H) — B(H) preserves
the Jordan product of A in both directions if, for all A, B € B(H),

AoBelA & O(A)od(B)eA.
The purpose of this paper is to describe all those maps on B(H) that preserve the
Jordan product of the class of C-symmetric operators, in both directions, for every
conjugation C.

2. MAIN RESULT AND ITS PROOF

For an operator A € B(H) and an orthonormal basis £ of H, the symbol Mg (A)
stands for the representation matrix of A with respect to £.

The main result of this paper is the following theorem.

Theorem 2.1. Let ® : B(H) — B(H) be a map. The following assertions are
equivalent:

(i) For all A, B € B(H) and every orthonormal basis £ of H,
Meg(Ao B) is symmetric < Mg (P(A) o &(B)) is symmetric.
(ii) For all A, B € B(H) and every conjugation C on H,
Ao B is C-symmetric <  ®(A)o ®(B) is C-symmetric.
(iii) ® has one of the following two forms:
A f(A)A or A f(A)A",
where f: B(H) — C\ {0}.

The reverse implication in assertion (ii) of the previous theorem is indispensable,
as demonstrated by the following example.

Example 2.2. For ¢ > 0, consider the orthogonal sum A; = B;®0 € B(H), where
B, is the operator defined with respect to an orthonormal basis by the following
matrix:

1 t 1 €1
B,=10 1 0f e .
0 0 O] es
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As the trace of the operator Bf B Bi? B, — B, B;> B} By is equal to t* > 0, we obtain
by [7, Proposition 2.5] that B; is not C-symmetric for any conjugation C, and
hence so is the operator A; by [8, Lemma 1]. Therefore, letting Q = {4, : ¢ > 0},
we obtain that any map ® vanishing on B(H )\ {2 must satisfy the direct implication
of assertion (ii) of the previous theorem for every conjugation. Indeed, if T = A;
and S = A, for some t,s > 0, then we have T 0o .S = 24, is never complex
symmetric; on the other hand, if T' ¢ Q or S ¢ Q, then ®(T) o &(S5) = 0 is
C-symmetric for all conjugations C.

Note that the equivalence (i)<(ii) of Theorem follows easily by (L.I)), and
that the implication (iii)=-(ii) is trivial. So in order to prove the theorem, we need
only to show that (ii)=-(iii). In what follows, ® shall denote a map on B(H) that
satisfies the second assertion of Theorem 211

A bounded linear operator is called diagonal if it has a diagonal matrix repre-
sentation with respect to some orthonormal basis. From [2, Lemma 1], we recall
that an operator is diagonal with respect to an orthonormal basis {e;} if and only
if it is C;-symmetric with respect to the conjugations given by

Ciej = (—1)%e; forall j > 1, (2.1)
where 7 varies in N.

Remark 2.3. Let D, T be two bounded linear operators acting on a complex
separable Hilbert space K such that

D is C-symmetric = 7T is C-symmetric

for every conjugation C' on K. If D is diagonal with respect to an orthonormal
basis {e;}, then so is T by (2.1); furthermore, it follows by the proof of [2, Lemma
3] that

(Dey,en) = (Dem,em) =  (Ten,en) = (Tem,em)

for all n,m > 1.

As a consequence of the previous remark, for all A, B € B(H), we have
AeCl < Ais C-symmetric for every conjugation C' on H (2.2)

and
AoBeClI & ®(A)o®(B)eCl. (2.3)

Lemma 2.4. Consider an orthogonal decomposition H = Hy & Hs, and let A; €
B(H;) and T € B(H), with A; being a C;-symmetric operator for i = 1,2. If the
implication

Ay @ As is C-symmetric = T is C-symmetric
holds for every conjugation C' on H, then

[ o] H
=% &) &

where T; is a Cy-symmetric operator for i =1,2.
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Proof. Obviously, we can assume without loss of generality that H; and H, are not
trivial. It is easy to see that, for a € {1, —1}, the map (aC4) ® Cs is a conjugation
on H for which the operator A; @ A, is complex symmetric, and hence so is T with
respect to the same conjugation. Let e and f be vectors in Hy and Hs, respectively.
It follows that

(Te, f) =
(

[(aCh) ® Co] f, [(aCh) @ Co] T'e)
[(

aCy) @ Co f,T" [(aCy) ® Ca]e)

= (Cof, T"(aCh)e)
=a(Cof, T*Che),
and similarly, we get that
(Tf,e) = a{Cre, T*Caf).
Taking @ = 1 and a = —1, respectively, we obtain
(Te, f) = (Caof, T*Cre) = —(Caf, T*C1e)
and
(Tf,e) = (Cre,T*Caf) = —(Cre, T*Caf).
Therefore, (Te, f) = (T'f,e) = 0. Now, since e and f are arbitrary, we infer that T’
has the form
Ty 0| Hy
r= [0 Tg] Hy

Finally, from the fact that T is (Cy @ C3)-symmetric, one can readily see that T}
and T5 are complex symmetric with respect to C; and Cs, respectively. O

For an operator A € B(H), we denote by Ran(A), Ker(A4), and Rank(A), re-
spectively, the range, the null space, and the rank of A.

It is worth mentioning that if R is an operator whose rank is less than or equal
to one, then it can be expressed as an orthogonal sum

R=Ry®O0, (24)

where Ry is an operator acting on the at most two-dimensional space Ran(R) +
Ker(R)*. It should also be noted that every operator acting on a space K, with
dim K < 2, is complex symmetric. Indeed, this is trivial if dim K < 1; the other
case was proved in [6, Example 6].

Corollary 2.5. Let R,T € B(H) with Rank(R) < 1 and such that
R is C-symmetric = T is C-symmetric
for every conjugation C on H. Then

T [To 0 } Ran(R) + Ker(R)*
[0 M (Ran(R) + Ker(R)l)l

for some operator Ty and A € C.
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Proof. Tt follows by and Lemma that T has the form
T [To 0] Ran(R) + Ker(R)*

0 Ti] (Ran(R)+ Ker(R)*)

and that the operator 77 is complex symmetric with respect to all conjugations on

(Ran(R) + Ker(R)J-)J'. Therefore, by (2.2), T3 is a scalar multiple of the identity,
and consequently, T' has the desired form. O

4

Let u,v € H be non-zero. As customary, we denote by u ® v the rank-one
operator given by (u ® v)(z) = {x,v)u for all z € H. It is well known that every
rank-one operator acting on a Hilbert space has such representation.

The following lemma describes ® on the set of scalar multiple of rank-one or-
thogonal projections.

Lemma 2.6. For every non-zero A € C and every unit vector w € H, there is a
non-zero oy, x € C such that (A ® u) = ay u @ u.

Proof. The proof consists of three steps.

Step 1. Let uw € H be a unit vector and A € C be non-zero. Clearly, the
operator
M@ u)o(M@u)=2\u®u
is diagonal with respect to every orthonormal basis containing u. Since the oper-
ators (Au ® u) o (Au® u) and ®(Au ® u) o P(Au ® u) are complex symmetric with
respect to the same conjugations, it follows by Remark that
2 _ | Yu,\ 0 u
P(Au®@u) = { 0 Bu,/\I:| ut
for some distinct complex numbers v,  and 3, . Hence, as ®(Au ® u) commutes

with ®(Au ® u)?, it also commutes with the spectral projections of ®(\u ® u)?.
Thus,

€1

d(hu®u) = [0‘“* 0 ] Y

0 Au,A u
for some a,, , € C and A4, € B(ut) satisfying O‘Z,/\ = Y,,» and Ai,/\ = Purl.

Step 2. Let u € H be a unit vector and A € C be non-zero. We shall prove
that if A, x # 0, then A, x = py 21 for some g, » € C. In light of [I, Lemma 2.8],
it suffices to show that every unit vector v € ut is an eigenvector for ®(\u ® u).
Let v € ut be a unit vector. As (Au® u) o (v ® v) = 0, we obtain by that

M@ u)P(v@v)+ (v v)P(Auu) e CI.

According to the previous step, we have ®(v ® v)v = ay 1v for some a, 1 € C;
consequently,

O (Au® u)ay,1v + P(v ® v)P(Au ® u)v € Span{v}.

Hence,
(w1l + @(v®@v)) P(Au® u)v € Span{v};
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268 Z. AMARA AND M. OUDGHIRI

that is,
2041,71 0
0 Ozv’lf + AUJ
Note that the operator o, 1/ + A, is invertible in B(vl), because otherwise we
get

} ZL O (Au ®@ u)v € Span{v}.

Yop =iy €0(Ay1)? =0(A2 ) = {Bua},
where o(T") denotes the spectrum of T'. This contradicts the fact that v, 1 # 8, 1.
Thus

0 0| v 0 0 v
{0 I] vt CD(A“@“)”_[O (oa] + Auy) M D + Ayy)] ot PAUEWC=0,

and consequently, ®(Au ® u)v € Span{v}.

Step 3. Now, fix a unit vector u € H and a non-zero A € C, and let us prove
that A, = 0. Assume the contrary, and let v € ul be any unit vector. It follows
by the previous steps that

Oy \ 0 0 u
P(Au@u)=| 0  pyx 0 v
0 0 punI] {uv}t

and
(poy 0 0 ] w
Pvu)=| 0 oy 0 v
| 0 0 ppal| {u,v}t

with fu, x # 0 and o2 ; # p2 ;. Since ®(Au®@u) o ®(v®@v) € CI, one can easily see
that [ty 0,1 = fu,bv,1, and consequently o, 1 = fiy,1, the desired contradiction.
Therefore, A, » =0, and ®(A\u®u) = a, \u®u with ozi/\ # Pu,x = 0 asstated. O

Corollary 2.7. For every A\ € C, the operator ®(AI) is a scalar multiple of the
identity. Furthermore, A\ = 0 if and only if ®(A\I) = 0.

Proof. Fix A € C. We first establish that ®(AI) is a scalar multiple of the identity.
Let u € H be a unit vector. As (u® u) o A\ = 2)\u ® u, it follows by the previous
lemma and Remark 2.3] that

(u® u) o () = [g‘ 50[} o

for some a,8 € C. Applying the above operator to u, we get that ®(\)u €
Span{u}. Since w is arbitrary, we obtain by [I, Lemma 2.8] that there exists
ay € C such that @A) = ayl.

Now, according to , for any fixed unit vector v € H, we have

A=0cuQuo (M) =020 au1u@u=2(u®u)o®N)eCI
with o, 1 € C being non-zero. Therefore,
A=0eay=0e &) =0,

the desired equivalence. O
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Remark 2.8. It follows from the previous corollary that, for every conjugation C,
an operator A € B(H) is C-symmetric if and only if ®(A) is C-symmetric. In
particular, A € CI if and only if ®(A) € CI.

Corollary 2.9. Let A € B(H) be an operator that has the form A =T & 0 with
respect to some non-trivial orthogonal decomposition H = Hy & Hy. Then, with
respect to the same decomposition, we have ®(A) =S &0 for some S € B(Hy).

Proof. Let u and v be unit vectors in H; and Ha, respectively. As ®(v@v)o®P(A) €
CI because (v ®v) o A =0, Lemma implies that
(v@v)o®(A) =0.
Applying the above operator to u and v, respectively, we obtain
(P(A)u,v)v =0 and (P(A)v,v)v+ P(A)v=0.

Consequently, (®(A)u,v) = (P(A)v,v) = (P(A)v,u) = 0. Since u and v are
arbitrary, one can easily see that ®(A) should have the form

_[s 0] H

which completes the proof. O

Lemma 2.10. Let u and v be two non-zero orthogonal vectors in H. Then, there
is @ non-zero oy, , € C such that

P(uRV) =y, u®@v  or PuRV) = qy,vu.

Proof. Using the previous corollary, we can write

a b 0] |ul~tu

duv)=|c d 0| v~ v

0 0 0| {uvit
for some a,b,¢,d € C. Since (u®v)o(u®v) = 0, and hence P(uRv)oP(u®v) € CI,
we obtain ®(u®v)o®(u®wv) = 0, meaning that the operator ®(u®v) has a square
equal to zero, and so d = —a because the trace of ®(u ® v) should be zero.

Let w € {u,v}* be any non-zero vector. It follows by the previous paragraph
that

-z z 0] [jw|tw
dwov)=|y o 0| ol
0 0 0f {v,w}t
for some z,y,z € C. As ®(u®v) o P(w ® v) € CI because (u®v) o (w®v) =0,
we have
a b 0 00 O
c —a 0[o|0 =z vy | €eCls,
0 0 O 0 z —=x
where I3 is the 3 x 3 identity matrix. Calculations yield
0 bz by
cx —2ar —ay| =0.
cz  —az 0
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Note that a =b=0or a =c=0. Indeed, if a Z0 or bc #0, thenx =y =2=10
and ®(w ® v) =0, and so w ® v € CI by Remark a contradiction. Therefore,
we have either ®(u®v) = bu®v or P(u®v) = cv ® u. The fact that P(u®v) #£ 0
is ensured by Remark O

The following lemma describes ® on the set of all rank-one nilpotent operators.
Lemma 2.11. One of the following statements holds:
P(uRv) =y ,u®v  for all non-zero orthogonal vectors u,v € H (2.5)
or
D(u®v) =ay,w®u  for all non-zero orthogonal vectors u,v € H. (2.6)

Proof. In light of the previous lemma, it suffices to show that, for all non-zero
vectors uq, vy, ug, v such that u; L vy and ug L vy, the operators ®(u; ® v1) and
®(ug ® v2) have either the form in or the form in . In other words, we
need to prove the following equivalence:

D(u @ u1) = Qyy v, U1 @ V1 & Pug @ V2) = Ay 0, U2 @ V.
The proof is divided into two steps.
Step 1. For non-zero vectors u, v1, vy with u € {vy, UQ}L, we have
P(u®v1) = Ayt @ V1 = P(U®v2) = Qg4 U @ V2
and
D(v1 @ U) =y w1 QU= P(V2 @ U) = Ay V2 D U. (2.7)
Indeed, if ®(u ® v1) = y v, u @ v1 and P(u @ v2) = 0, V2 @ u, We get that
O(u®@v1) 0 P(U®V2) = Ay oy Qs g (V2, V1)U @ U + gy 1y Qg || 1]|*02 @ 01 & CI.

This leads to a contradiction because (4 ® v1) o (u ® v2) = 0. The implication (2.7))
can be obtained in the same manner.

Step 2. Let ui,us,v1,v2 be non-zero vectors in H such that u; 1 wv; and
us | vy, and arbitrarily choose a non-zero vector w € {uhuQ}l. Then, by the
previous step, we have

D(up @ 1) = Qyy v, U1 @ V1 S P(Ug @ W) = Ay U1 @ W
S Dug @ W) = Qyy iz @ W
S Puz @ V2) = Quyy vy U2 Q V2.
This completes the proof. O

Corollary 2.12. On the set of rank-one operators, ® has one of the following
forms:

R+~ f(R)R or R~ f(R)R",
where f: B(H) — C\ {0}.
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Proof. Assume first that (2.5) holds and let us show that, for every rank-one op-
erator R € B(H), there is a non-zero ag € C such that ®(R) = arR.

Let R € B(H) be a rank-one operator. Then, we can write R = (au + bv) ® v
where u and v are two orthonormal vectors in H, and a,b € C. In view of Lemmal2.6
and Lemma [2.11] we can assume that a and b are non-zero. Choose an arbitrary
non-zero vector w € {u,v}*. Using Corollary we may write

D(R) = (au+ Bv) @v+ (du+ f'v)@u
for some «, 3,0/, " € C. Since Ro(u®w) = Ro (w ® (—bu —|—6v)) =0, we obtain
P(R)oP(u®w) € CI and P(R)o® (w® (—bu+av)) € CI.
Hence, it follows by the previous lemma that
[(au+ Bv) @ v+ (du+ Bv)@ulo(u®w) =0
and
[(qu+ Bv) ® v+ (u+ B'v) ®u]o (w® (—bu+av)) = 0.

The first equality implies that (a’u + f'v) ® w = 0, and so &’u + f'v = 0. The
second one yields

(—ba+ af)w @ v = ((au+ Bv) @v) o (w @ (—bu + av))
[(au+ Bv) @ v+ ('u+ f'v) ®u] o (w& (—bu+ av))
0.

Therefore,
o =3'=0 and ba=ap.

Clearly, it follows from the second equality above that if one of a and f is zero,
then so is the other, which implies that ®(R) = 0, and hence R would be a scalar
multiple of the identity, a contradiction. Consequently, ®(R) = b~!SR.

Assume now that holds. Then, it is easy to see that the map ¥(X) = ®(X*)
satisfies the second assertion of Theorem and the form in Lemma m
Hence, we obtain that, for every rank-one operator R € B(H),

B(R) = B((R")") = W(R") = apk"
for some non-zero agp € C. This ends the proof of the corollary. O

In the remainder of this section, we assume that ® satisfies (2.5)) and we aim to
show that ® has the first form in assertion (iii) of Theorem The case where
O satisfies (2.6) can be treated by considering the map ¥ defined in the previous

proof, and therefore, in this case, ® would have the second form in assertion (iii)
of Theorem 211

Lemma 2.13. Let A € B(H). Then, A and ®(A) have a mutual eigenvector.

Proof. The proof is divided into two steps:

Step 1. Firstly, we assume that A has only one eigenvalue where the associated
eigenspace is spanned by u € H. We distinguish two cases:
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272 Z. AMARA AND M. OUDGHIRI

Case 1. Au = 0. Let v € H be a non-zero vector such that A*v = 0. We have
®(A) o ®(u®wv) € CI because Ao (u®v) = 0, and since ®(u ® v) is rank-one by
the previous corollary, we get

P(A)(u@v)+ (u@v)P(A) =0.
Hence, (P(A)u) @ v = —u ® (P(A)*v), and consequently ®(A)u € Span{u}.

Case 2. Au = au with a # 0. Since the spectrum of A* contains only @, then
the operator al + A* is invertible. Let h € H be a vector such that u = ah + A*h.
Since

Ao(u®h)=au®h+u® (A*h) =u® (@h+ A*h) = uQu,
we get by Corollary 2.5 and the previous corollary that
_ . v 0] lluf
T:=(@A)u)@h+u® (P(A)*h) =P(A)o (u®h) = {0 )\I} (it

where v, A € C. Note that, since T" has at most rank two, at least one of v and
A is zero. Furthermore, they cannot both be zero because otherwise the operator
Ao (u® h) would be a scalar multiple of the identity.

If A #£ 0, we obtain that T is a rank-two operator, which implies that

u € Ran ((®(A)u) @ h +u® (P(A)*u)) = {u},
yielding a contradiction. Therefore, A\ = 0, and consequently,
|h]|2®(A)u + (h,®(A)*h)u = Th € Span{u},
and so ®(A)u € Span{u}.

Step 2. Suppose now that there are two linearly independent vectors u; and
uo such that Au; = «a;u; for some a1, as € C, and let v and vy be two linearly
independent unit vectors in H such that A*v; = a;v;. Then

Ao (u; ®@vj) = (05 + aj)u; ®@v; for 1 <4, 5 <2.
Using Corollary and the previous corollary, we get

T;; O Span{u;, v;}
0 )\i’jl {’U,i,’Uj}J‘ ’

where T; ; € B(Span{u;,v;}) and A;; € C for 1 < 4,5 < 2. Letting w; ; be any
non-zero vector in {u;,v;}+, we obtain

o _ Ty 0 | Span{us v} N
Aty = [ 0 )\i,jI:| {unvj}J‘ wig = (B(A) e (us @ v5))wi

= (®(A)uwi) @ v + u; @ (B(A) i) wi
= (wi j, D(A) v;)ui,
which implies that A; ; = 0. Consequently,
Ran (®(A) o (u; ® v)) C Span{u;,v,;} for 1 <4, j <2 (2.8)
It follows that, for all 1 <i,j5 < 2,
D(A)u; + (v, P(A) vj)u; = (P(A) o (u; ® v;)) v; € Span{u;,v;},

B(A)o (us0;) = |
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and hence ®(A)u; € Span{u;,v;}. If we suppose that
Span{u;,v1} N Span{u;,va} = Span{u;} for some i € {1,2},
we readily see that the u; is an eigenvector for ®(A). Assume that
Span{u;,v1} = Span{u;,ve} for i =1,2.
Then, v;1 = auy + Bve and vy = a’us + S'v; for some a,a’, 5,5 € C. Hence,
(1—88"v1 = aus + o' Bug. Obviously, 1 — 8" # 0 because a # 0 and u, uy are

linearly independent. Consequently, v; € Span{ui,us}. In a similar way, we show
that v € Span{uj,us}. Hence, Span{uj,us} = Span{vi,vs}, and so A has the

form
e A1 0] Span{uj,us}
B 0 A2 {u1 y UQ}J_ ’

Let w be an eigenvector of A%. Then, we can show as in ([2.8)) that
Ran (®(A) o (w3 ® w)) C Span{uq,w},

and so, ®(A)u; € Span{us,w}. Since ®(A)u; € Span{ui,us} and w € {ur,us}=,
we obtain necessarily that ®(A)u; € Span{u; }, which ends the proof of the lemma.
U

Recall that a rank-one operator x ® y is C-symmetric for some conjugation C
if and only if Cz € Span{y} (or equivalently, Cy € Span{z}), see [0, Lemma 2].
Then, taking into account the well-known fact that every rank-one operator is
complex symmetric, we obtain that, for all non-zero vectors =,y € H, there exists
a conjugation C on H such that Cy € Span{z}.

It is worth mentioning that C(z ® y)C = Cz ® Cy for all conjugations C and
vectors x,y € H.

With these results at hand, we are ready to prove the main result of this paper.

Proof of the implication (ii)=>(iii) in Theorem[2.]] Fix an operator A € B(H), and
let us show that ®(A) = AA for some non-zero A € C. First note that by Corol-
lary 2.7 we can assume that A is not a scalar multiple of the identity. The previous
lemma ensures the existence of a non-zero vector u € H satisfying Au = au and
®(A)u = Pu for some o, f € C. Let h € H be a non-zero vector. It follows by the
previous remark that the operator

Ao(u®h) =u® (ah+ A*h)

is C-symmetric for some conjugation C satisfying C(ah + A*h) € Span{u}, and
hence so is the operator

w@ (Bh+ (A)*h) = f(u® k)1 B(A) 0 B(ud h),
where f is the map obtained in Corollary Notice that
ah+A'h=0< Ao (u®h)=0< P(A)oP(u®h) e CI
S ®(A)o(u®h) =0« Bh+ ®(A)*h = 0.
In the case @h + A*h # 0, we obtain by the previous remark that
Span{ah + A*h} = C Span{u} = Span{Bh + ®(A)*h}.
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In both cases, we can find a non-zero A\, € C such that
Bh+ ®(A)*h = \p(ah + A*h).
Since h is arbitrary, we get the existence of a non-zero A € C such that BI+®(A)* =
A(@l + A*), and consequently ®(A) = AA + I for some v € C.

Finally, it remains to show that v = 0. Let x € H such that x and A*z are
linearly independent, and let J be a conjugation on H that satisfies J(ax+ A*x) €
Span{u}. Then,

u® (ar + A*x) is J-symmetric = Ao (u ® z) is J-symmetric
= ®(A) o (u® x) is J-symmetric
= Mo (u® x) + 2yu ® z is J-symmetric
= (yu) ® x is J-symmetric.
So if v is non-zero, we obtain that
(ax + A*z) € J Span{u} = J Span{yu} = Span{z},

which contradicts the fact that x and A*x are linearly independent. This ends the
proof of the theorem. O

We conclude this section with the following questions:

Question 2.14. Fix a conjugation C' on H. Does every map on B(H) that pre-
serves the Jordan product of C-symmetric operators, in both directions, have one
of the following forms:

A f(AWUAUY or Aw f(AUAUT,

where U is a unitary (or anti unitary) operator commuting with C and f : B(H) —
C\ {0}?

Question 2.15. Does Theorem[2.I|remain valid in the setting of infinite-dimensional
Hilbert spaces?
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