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DUALITY FOR INFINITE-DIMENSIONAL BRAIDED
BIALGEBRAS AND THEIR (CO)MODULES

ELMAR WAGNER

Abstract. The paper presents a detailed description of duality for braided
algebras, coalgebras, bialgebras, Hopf algebras, and their modules and comod-
ules in the infinite setting. Assuming that the dual objects exist, it is shown
how a given braiding induces compatible braidings for the dual objects, and
how actions (resp., coactions) can be turned into coactions (resp., actions) of
the dual coalgebra (resp., algebra), with an emphasis on braided bialgebras
and their braided (co)module algebras. Examples are provided by consid-
ering these structures in a graded (or filtered) setting, where each degree is
finite-dimensional.

1. Introduction

The objective of this paper is to give a detailed description of duality for braided
algebras, coalgebras, bi- and Hopf algebras, and their modules and comodules
in the infinite setting. The interest in duality for these structures goes back to
Majid [21, 24], who did much of the pioneering work on braided Hopf algebras
[19, 20, 22, 23, 25], and to Takeuchi [29, 30]. Focusing on specific applications,
duality for braided Hopf algebras has been studied (with different definitions) by
Heckenberger and Schneider [14] in the setting of Yetter–Drinfeld modules, by
Da Rocha, J. A. Guccione and J. J. Guccione [10] in connection with crossed
products, and by Lyuvashenko [18] and by Guo and Zhang [13] in the context of
integrals. The theory of braided Hopf crossed products reveals in particular the
relevance of braided (co)module algebras [11, 12] which serve as a guiding principle
for this paper. Duality for infinite braided Hopf algebras, under the assumption
that the braiding is symmetric, has been considered in the Yetter–Drinfeld module
category in the light of the Blattner–Montgomery duality theorem by Han and
Zhang [32], and by Cheng, Xu and Zhang [31].

In the finite setting, duality is most conveniently studied in a rigid monoidal
category [24, 29]. The problem in the infinite setting is the lack of a so-called
coevaluation map. To avoid this problem, we do not follow a categorical approach
but define the dual objects by a set of conditions, similar to the path taken by
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Takeuchi in [30]. In particular, we will neither prove the existence nor the unique-
ness of a dual space with the desired properties, so we will not define a functor
into a dual category. This may be especially useful in a topological setting, where
it is not always practical to work with the full dual space, for instance, if there are
unbounded (braiding) operators involved. However, the entire paper is kept com-
pletely algebraic even though the more interesting examples arise in a topological
framework. In this sense, one may consider all tensor products as algebraic tensor
products of linear spaces over a field K.

Our first aim is to establish a duality theory for infinite-dimensional braided
bialgebras and Hopf algebras. This will be done in Section 4. The guiding prin-
ciple emanates from the definition of a dual pairing between braided bialgebras in
Definition 4.2. To take into account the braided setting, we include in this defi-
nition a braiding between dual spaces so that the dual pairing of two-fold tensor
products can be realized by evaluating simultaneously adjacent tensor factors. The
fundamental idea of our approach is that all structures on dual spaces should be
induced from the given ones, including the braiding appearing in the dual pairing.
In this sense, our method is constructive, only the existence of a dual space with
the required properties will be assumed, whereas all algebraic properties will be
deduced from the original source.

To develop the theory step by step, we start by elaborating a duality theory for
infinite-dimensional algebras and coalgebras in Propositions 4.3 and 4.4. Before
doing so, we show in Lemma 4.1 how a given braiding induces braidings on a dual
space and between the space and its dual which are compatible with additional
algebraic structures like multiplication or comultiplication. Our definition of a
product or coproduct on the dual space is intimately related to the compatibility
conditions of a dual pairing. The construction of a dual braided bialgebra will be
achieved in Theorem 4.5 under certain assumptions on the chosen dual space which
guarantee that the induced braidings define bijective maps into the correct tensor
products and that the product and coproduct are well-defined. Proposition 4.7
shows that the construction is reflexive in the sense that taking twice the dual
gives back the same braided bialgebra. The extension of these results to braided
Hopf algebras requires only a minor condition regarding the antipode.

In Section 5, we address duality for braided modules and comodules. The start-
ing point is again to induce new braidings for dual spaces from a given braiding
between a (co)algebra and a (co)module in such a way that the compatibility prop-
erties are maintained. This will be done step by step in Lemmas 5.1-5.3, each
time replacing one of the two involved spaces by a dual space. Since a left braided
vector space induces the structure of a right braided vector space on duals, and
vice versa, we will frequently use the inverse of a braiding to recover a left-handed
or right-handed version. In fact, one of the purposes of this paper is to single out
the correct braidings and formulas so that it may serve as a reference for others.

Theorems 5.4 and 5.6 are the main results of Section 5. There it is shown how
to transform a braided comodule into a braided module of a dual (bi)algebra, and
a braided module into a braided comodule of a dual co- or bialgebra. Interestingly,
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in the latter case, it will not exactly yield a comodule of a dual bialgebra but a
version of it that corresponds to taking twice the braided opposite and co-opposite
bialgebra. These structures, where the product or coproduct is flipped by a power
of the braiding, are discussed at greater length in Section 3 since such considerations
do play a role in subsequent results. For instance, they justify to present only one
version of a braided dual (co)algebra in Propositions 4.3 and 4.4, other versions can
be obtained by combining the constructed (co)product with powers of the braiding.
Moreover, twisting products, coproducts, actions or coactions with a braiding may
give rise to whole families of new structures as illustrated in Proposition 3.1 and
Corollary 5.7. In Section 3, we also review the significance of the antipode in the
braided setting for turning left (co)actions into right (co)actions and vice versa.

In Proposition 5.8, we dualize a coaction on a comodule to an action of a dual
algebra on a dual of the comodule, and in Proposition 5.9, we dualize an action
on a module to a coaction of a dual coalgebra on a dual of the module. Despite
the fact that our main interest lies in module and comodule algebras of braided
bialgebras, Propositions 5.8 and 5.9 do not consider these topics since we would
then have to introduce the dual objects, namely module and comodule coalgebras.
To keep the length of the paper reasonable, we refrain from introducing (co)module
coalgebras. With a detailed description of braided (co)module algebras at hand, it
should be clear how to dualize these notions to braided (co)module coalgebras.

Of course, finite-dimensional examples fit into our framework. It will be im-
mediately clear from the constructions that the results can be extended to graded
braided (co)algebras, bi- and Hopf algebras and their graded (co)modules when-
ever the spaces of homogeneous elements are finite-dimensional for all degrees. The
obvious strategy is to deal with each degree individually. This observation leads
already to a vast family of infinite-dimensional examples (see Section 6 for more
details).

For brevity, we completely avoid braid diagrams since the proofs presented by
braid diagrams would occupy considerably more space. Instead of braid diagrams,
we introduce a Sweedler-type notation and annotate the employed relations over
the equality signs. Once the reader gets used to this notation, it shouldn’t be
a problem to draw the corresponding braid diagrams, one only has to be careful
with the chosen crossings. For instance, the crossings of the induced braidings
have to be compatible with the given braidings, and the braidings obtained from
an inverse braiding should be denoted differently than those induced from a given
one. Although the proofs are rather straightforward, we present most of them in
order to show where the involved braidings and compatibility relations are used.

2. Preliminaries on braided bialgebras and their (co)modules

In this section, we give a working definition for braided bi- and Hopf algebras
without using braided tensor categories. The reason is that we want to estab-
lish a duality theory for infinite-dimensional braided bialgebras. The categorical
approach works well in rigid monoidal categories, but for infinite-dimensional ex-
amples, there is a problem with the rigorous definition of a co-evaluation map (see
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e.g. [10, 30]). Moreover, a dual braided bialgebra may not exist, and if it exists,
it may not be unique, therefore we do not aim at defining a functor into a dual
category.

Throughout this paper, the letter K stands for an arbitrary field. A braiding
for a vector space V is a bijective linear map ΨV V : V ⊗ V → V ⊗ V fulfilling the
Yang–Baxter equation

(ΨV V ⊗ id) ◦ (id ⊗ ΨV V ) ◦ (ΨV V ⊗ id) = (id ⊗ ΨV V ) ◦ (ΨV V ⊗ id) ◦ (id ⊗ ΨV V ). (1)

Let V be a braided vector space. A left V -braided vector space is a vector space W
together with a bijective linear map ΨV W : V ⊗W → W ⊗ V such that

(ΨV W ⊗ id)◦(id⊗ΨV W )◦(ΨV V ⊗ id) = (id⊗ΨV V )◦(ΨV W ⊗ id)◦(id⊗ΨV W ). (2)

Similarly, V is called a right W -braided vector space if W is a braided vector space
and the bijective linear map ΨV W : V ⊗W → W ⊗ V satisfies

(id⊗ΨV W )◦(ΨV W ⊗id)◦(id⊗ΨW W ) = (ΨW W ⊗id)◦(id⊗ΨV W )◦(ΨV W ⊗id). (3)

The archetypal example, also in the case V = W , is given by the flip:

τ : V ⊗W −→ W ⊗ V, τ(v ⊗ w) := w ⊗ v. (4)

Let V be an algebra with multiplication mV : V ⊗ V → V . If W is a left
V -braided vector space, or if V is a right W -braided vector space, then we say that
the braiding ΨV W is compatible with the multiplication if

ΨV W ◦ (mV ⊗ id) = (id ⊗mV ) ◦ (ΨV W ⊗ id) ◦ (id ⊗ ΨV W ) (5)

and, if 1 ∈ V ,
ΨV W (1 ⊗ w) = w ⊗ 1, w ∈ W. (6)

Assume now that W is an algebra with multiplication mW : W ⊗W → W and that
W is a left V -braided vector space or that V is a right W -braided vector space.
Then we say that the braiding ΨV W is compatible with the multiplication if

ΨV W ◦ (id ⊗mW ) = (mW ⊗ id) ◦ (id ⊗ ΨV W ) ◦ (ΨV W ⊗ id) (7)

and
ΨV W (v ⊗ 1) = 1 ⊗ v, v ∈ V. (8)

A braided algebra is an algebra (A,m) which is a braided vector space such that
the braiding is compatible with the multiplication. In this case, it follows from (5)
and (7) that

ΨAA ◦ (m⊗m) = (m⊗m) ◦ (id ⊗ ΨAA ⊗ id) ◦ (ΨAA ⊗ ΨAA) ◦ (id ⊗ ΨAA ⊗ id). (9)

Clearly, each algebra A becomes a braided algebra with the usual flip defined in
(4) as braiding isomorphism.

Suppose now that (V,∆, ε) is a coalgebra and W is a left V -braided vector space
or V is a right W -braided vector space. We say that the braiding ΨV W : V ⊗W →
W ⊗ V is compatible with the comultiplication of V if

(id⊗∆)◦ΨV W = (ΨV W ⊗id)◦(id⊗ΨV W )◦(∆⊗id), (id⊗ε)◦ΨV W = ε⊗id. (10)
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If (W,∆, ε) is a coalgebra and V is a right W -braided vector space or W is a left
V -braided vector space, then the analogous definitions read

(∆⊗id)◦ΨV W = (id⊗ΨV W )◦(ΨV W ⊗id)◦(id⊗∆), (ε⊗id)◦ΨV W = id⊗ε. (11)

A braided coalgebra is a coalgebra (H,∆, ε) which is a braided vector space such
that the braiding is compatible with the comultiplication. In this case, combining
(10) and (11) yields

(∆⊗∆)◦ΨHH = (id⊗ΨHH ⊗ id)◦(ΨHH ⊗ΨHH)◦(id⊗ΨHH ⊗ id)◦(∆⊗∆). (12)

As for algebras, each coalgebra becomes a braided coalgebra with the braiding
defined by the flip τ given in (4).

The compatibility conditions permit us to extend the (co)algebra structures
to tensor products. If (A,mA) and (B,mB) are algebras such that A is a right
B-braided vector space, B is a left A-braided vector space, and the braiding ΨBA :
B ⊗A → A⊗B is compatible with the multiplications of A and B, then

mmm : (A⊗B) ⊗ (A⊗B) −→ A⊗B, mmm := (mA ⊗mB) ◦ (id ⊗ ΨBA ⊗ id), (13)

defines a product on A⊗B turning it into an associative algebra denoted by A⊗B.
If A and B are unital, then 1 ⊗ 1 yields the unit of A⊗B.

If H and G are coalgebras such that H is a right G-braided vector space, G is a
left H-braided vector space, and the braiding ΨHG : H⊗G → G⊗H is compatible
with the comultiplications of H and G, then the coproduct

∆∆∆ : H ⊗G −→ (H ⊗G) ⊗ (H ⊗G), ∆∆∆ := (id ⊗ ΨHG ⊗ id) ◦ (∆ ⊗ ∆), (14)

turns H ⊗G into a coalgebra with counit εεε := ε⊗ ε.
Recall that, for a coalgebra (H,∆, ε) and a unital algebra (A,m), the space

L(H,A) of all linear mappings from H to A becomes an associative unital algebra
under the convolution product

(ϕ ∗ ψ)(h) := m ◦ (ϕ⊗ ψ) ◦ ∆(h), h ∈ H, ϕ, ψ ∈ L(H,A), (15)

and with unit h 7→ ε(h)1. In this picture, the antipode of a Hopf algebra can be
viewed as the convolution inverse of the identity map id : H → H.

The central objects of this paper are braided bialgebras which will be defined
below. We include there the definition of a braided Hopf algebra although the
existence of an antipode will play rather a minor role in our presentation.

Definition 2.1 ([19, 30]). A braided bialgebra is a unital algebra (H,m) together
with a coalgebra structure (H,∆, ε) and a braiding ΨHH : H ⊗ H → H such
that the following compatibility conditions hold: H is a braided vector space, the
braiding ΨHH is compatible with the multiplication and the comultiplication of H,
and the coproduct is an algebra homomorphism ∆ : H → H ⊗H, i.e.,

∆ ◦m = (m⊗m) ◦ (id ⊗ ΨHH ⊗ id) ◦ (∆ ⊗ ∆). (16)

A braided Hopf algebra is a braided bialgebra H such that the identity map has a
convolution inverse S : H → H called the antipode.
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For a braided Hopf algebra H, it can be shown that
ΨHH ◦ (S ⊗ id) = (id ⊗ S) ◦ ΨHH , ΨHH ◦ (id ⊗ S) = (S ⊗ id) ◦ ΨHH ,

S ◦m = m ◦ ΨHH ◦ (S ⊗ S), ∆ ◦ S = ΨHH ◦ (S ⊗ S) ◦ ∆, ε ◦ S = ε,
(17)

(see e.g. [24, 30]).
If A and B are braided bialgebras with a braiding ΨAB satisfying the compat-

ibility conditions on the multiplication and comultiplication, then A⊗B becomes
a braided bialgebra with braiding
ΨA⊗B, A⊗B := (id⊗ΨAB ⊗id)◦(id⊗id⊗ΨBB)◦(ΨAA⊗id⊗id)◦(id⊗Ψ−1

AB ⊗id), (18)
and multiplication and comultiplication defined in (13) and (14), respectively.

The following presentation of actions and coactions in the braided setting is taken
from [10]. Let (A,m) be a braided (unital) algebra, and let W be a left A-braided
vector space such that the braiding is compatible with the multiplication. We say
that W is a braided left A-module if there is a map νL : A⊗W → W satisfying

νL ◦ (id ⊗ νL) = νL ◦ (m⊗ id), νL(1 ⊗ w) = w, w ∈ W, (19)
ΨAW ◦ (id ⊗ νL) = (νL ⊗ id) ◦ (id ⊗ ΨAW ) ◦ (ΨAA ⊗ id). (20)

Equation (19) says that νL is an algebra action in the usual sense, and (20) means
that νL is compatible with the braiding. A braided right A-module V is defined
analogously, i.e., V is a right A-braided vector space, the braiding is compatible
with the multiplication, and the right action νR : V ⊗A → V satisfies

νR ◦ (νR ⊗ id) = νR ◦ (id ⊗m), νR(v ⊗ 1) = v, v ∈ V, (21)
ΨV A ◦ (νR ⊗ id) = (id ⊗ νR) ◦ (ΨV A ⊗ id) ◦ (id ⊗ ΨAA). (22)

Applying the inverse braidings to the compatibility relations yields
(id ⊗ νL) ◦ (Ψ−1

AA ⊗ id) ◦ (id ⊗ Ψ−1
AW ) = Ψ−1

AW ◦ (νL ⊗ id), (23)
(νR ⊗ id) ◦ (id ⊗ Ψ−1

AA) ◦ (Ψ−1
V A ⊗ id) = Ψ−1

V A ◦ (id ⊗ νR). (24)
To shorten notation, we often write

νL(a⊗ w) := a ▷ w, νR(v ⊗ a) := v ◁ a, w ∈ W, v ∈ V, a ∈ A. (25)
Let (H,∆, ε) be a braided coalgebra, and let V be a right H braided vector

space such that the braiding is compatible with the comultiplication. Recall that
a left coaction on a vector space V is a linear map ρL : V → H ⊗ V satisfying

(id ⊗ ρL) ◦ ρL = (∆ ⊗ id) ◦ ρL, (ε⊗ id) ◦ ρL = id. (26)
We say that the coaction is compatible with the braiding if

(id ⊗ ρL) ◦ ΨV H = (ΨHH ⊗ id) ◦ (id ⊗ ΨV H) ◦ (ρL ⊗ id). (27)
In this case, V is called a braided left H-comodule.

Likewise, for a braided right H-comodule W with a right coaction ρR : W →
W ⊗H, we require that W be a left H braided vector space and that

(ρR ⊗ id) ◦ ρR = (id ⊗ ∆) ◦ ρR, (id ⊗ ε) ◦ ρR = id, (28)
(ρR ⊗ id) ◦ ΨHW = (id ⊗ ΨHH) ◦ (ΨHW ⊗ id) ◦ (id ⊗ ρR). (29)
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Note that we defined a braided left H-comodule for a right H braided vector
space and vice versa. By Lemma 2.4 below, the inverse braidings turn a right (resp.,
left) H braided vector space into a left (resp., right) H braided vector space. For
the inverse braidings, the compatibility conditions read

(id⊗Ψ−1
V H)◦ (Ψ−1

HH ⊗ id)◦ (id⊗ρL) = (ρL ⊗ id)◦Ψ−1
V H , (30)

(Ψ−1
HW ⊗ id)◦ (id⊗Ψ−1

HH)◦ (ρR ⊗ id) = (id⊗ρR)◦Ψ−1
HW . (31)

The objects of our interest are H-module algebras and H-comodule algebras for
a braided bialgebra H, so we will highlight them in a separate definition.

Definition 2.2. Let H be a braided bialgebra and let B be a braided algebra such
that B is a left H-braided vector space and the braiding ΨHB is compatible with
the multiplications of H and B and with the comultiplication of H.

Assume that B is a braided left H-module with left action νL : H ⊗ B → B.
We say that B is a braided left H-module algebra if the left action νL and the
multiplication mB of B satisfy the compatibility condition

νL ◦ (id ⊗mB) = mB ◦ (νL ⊗ νL) ◦ (id ⊗ ΨHB ⊗ id) ◦ (∆ ⊗ id ⊗ id). (32)

If 1 ∈ B, then it is additionally required that

νL(f ⊗ 1) = ε(f)1, f ∈ H. (33)

Assume that B is a braided right H-comodule with right coaction ρR : B →
B ⊗H. Then B is called a braided right H-comodule algebra if

ρR ◦mB = (mB ⊗mH) ◦ (id ⊗ ΨHB ⊗ id) ◦ (ρR ⊗ ρR). (34)

If 1 ∈ B, then it is additionally required that

ρR(1) = 1 ⊗ 1. (35)

A braided right H-module algebra and braided left H-comodule algebra are
defined analogously by flipping the tensor products and replacing ΨHB by ΨBH .

Remark 2.3. The dual notions of H-module algebra and H-comodule algebra are
H-module coalgebra and H-comodule coalgebra, respectively. The compatibility
conditions are the dual versions of those in Definition 2.2. To keep the size of the
paper in reasonable limits, we will not discuss these structures here.

An important source for braided vector spaces, or more precisely, for braided
monoidal categories, are Yetter–Drinfeld modules over a Hopf algebra H. Here,
H denotes a Hopf algebra with bijective antipode S in the unbraided setting. In
other words, H is a Hopf algebra according to Definition 2.1 with braiding ΨHH

given by the flip τ as defined in (4). A (left-left) Yetter–Drinfeld module is a vector
space V with a left H-action νL : H⊗V → V satisfying (19) and a left H-coaction
ρL : V → H ⊗ V satisfying (26) such that

ρL(h ▷ v) =
∑
j,k

hj
(1)v

k
(−1)S(hj

(3)) ⊗ hj
(2) ▷ v

k
(0), h ∈ H, v ∈ V,
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where (∆ ⊗ id) ◦ ∆(h) =
∑

j h
j
(1) ⊗ hj

(2) ⊗ hj
(3) and ρL(v) =

∑
k v

k
(−1) ⊗ vk

(0) (cf.
Sweedler-type notation in Section 4). Given two Yetter–Drinfeld modules V and
W over H, the formula

ΨYD
V W (v ⊗ w) :=

∑
k

vk
(−1) ▷ w ⊗ vk

(0)

defines a braiding which fulfills (1)–(3). It is also noteworthy that the elements
v ∈ V generate a unique braided Hopf algebra with braiding ΨYD

V V , called Nichols
algebra, satisfying a certain universal condition and

∆(v) = v ⊗ 1 + 1 ⊗ v, ε(v) = 0, S(v) = −v, v ∈ V.

Moreover, Nichols algebras are graded algebras with gr(v) = 1 for all v ∈ V and
coradically graded with coradical C0 = K and C1 = V (see, e.g., [1, 9]).

Throughout our presentation of duality, we will make frequent use of the inverse
of a given braiding. For later reference, we finish this section with a lemma that
summarizes some properties of inverse braidings. It is proved by applying repeat-
edly the corresponding inverse morphism on both sides of the defining relations.

Lemma 2.4. Let H be a braided vector space with braiding ΨHH . Then Ψ−1
HH

defines a braiding on H. If V carries the structure of a left (resp., right) H-braided
vector space with respect to ΨHH , then it does so with respect to Ψ−1

HH , and it
becomes a right (resp., left) H-braided vector space with respect to Ψ−1

HV (resp.,
Ψ−1

V H). If H or V is an algebra and ΨHV (resp., ΨV H) is compatible with the mul-
tiplication, then Ψ−1

HV (resp., Ψ−1
V H) is also compatible with the multiplication. If H

or V is a coalgebra and ΨHV (resp., ΨV H) is compatible with the comultiplication,
then Ψ−1

HV (resp., Ψ−1
V H) is also compatible with the comultiplication. In particular,

if H is a braided (co)algebra with respect to ΨHH , then it is also one with respect
to Ψ−1

HH .

3. Braided products, coproducts and (co)actions

The purpose of this section is to discuss generalizations of opposite algebras and
coalgebras in the braiding setting. It is also shown how to use the braiding, and
possibly the inverse of the antipode, to turn right (co)actions into left (co)actions
and vice versa.

Given a braided bialgebra H, there exists a different braided bialgebra structure
on H with the multiplication m and the coproduct ∆ replaced by

m1 := m ◦ ΨHH : H ⊗H −→ H, ∆−1 := Ψ−1
HH ◦ ∆ : H −→ H ⊗H. (36)

This bialgebra will be denoted by H(1,−1), differing from the standard notation
Hop,cop for reasons that will become clear below. If H is a braided Hopf algebra,
then it follows from (17) that H(1,−1) is also one with the same antipode S.

The opposite algebra, say H(−1,0), with m replaced by m−1 := m◦Ψ−1
HH and the

opposite coalgebra, say H(0,−1), with ∆ replaced by ∆−1 := Ψ−1
HH ◦∆ will also yield

braided bialgebras, but with respect to the inverse braiding. These constructions
may yield an infinite family of braided bialgebras provided that ΨHH is infinite
cyclic. For later use, and since we did not find it in the literature, we will state
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the result in the following proposition. In the subsequent corollary, it is shown
that, for a braided Hopf algebra H with bijective antipode, H is isomorphic to its
Hop,cop-version (see also [8]). For more information on braided Hopf algebras, we
refer the reader to [7, 16, 25, 30].

Proposition 3.1. Let (H,m) be a braided (unital) algebra and let k ∈ Z. Then

mk := m ◦ Ψk
HH : H ⊗H −→ H (37)

defines a product on H turning it again into a braided (unital) algebra (with the
same unit element). If V is a left or right H-braided vector space such that the
braiding is compatible with the multiplication m on H, then the braiding is also
compatible with the multiplication mk.

Let (H,∆, ε) be a braided coalgebra and let n ∈ Z. Then

∆n := Ψn
HH ◦ ∆ : H −→ H ⊗H (38)

defines a coproduct on H turning it again into a braided coalgebra with the same
counit. If V is a left or right H-braided vector space such that the braiding is
compatible with the comultiplication of H, then the braiding is also compatible with
the coproduct ∆n.

Assume that H is a braided bialgebra and let H(k,n)denote the linear space H
equipped with the product mk, the unmodified unit element, the coproduct ∆n and
the unmodified counit. Then, for all n ∈ Z, H(n,−n) is a braided bialgebra with
respect to the braiding ΨHH , and H(n−1,−n) is a braided bialgebra with respect to
the braiding Ψ−1

HH .
If H is a braided Hopf algebra with antipode S, then all H(n,−n) are braided Hopf

algebras with the unmodified antipode S. If S is invertible, then all H(n−1,−n) are
braided Hopf algebras with antipode S−1.

Proof. We begin by showing that m1 defines an associative product:

m1 ◦ (id ⊗m1) (37)= m ◦ ΨHH ◦ (id ⊗m) ◦ (id ⊗ ΨHH)
(7)= m ◦ (m⊗ id) ◦ (id ⊗ ΨHH) ◦ (ΨHH ⊗ id) ◦ (id ⊗ ΨHH)
(1)= m ◦ (id ⊗m) ◦ (ΨHH ⊗ id) ◦ (id ⊗ ΨHH) ◦ (ΨHH ⊗ id)
(5)= m ◦ ΨHH ◦ (m⊗ id) ◦ (ΨHH ⊗ id) = m1 ◦ (m1 ⊗ id).

If 1 ∈ H, then clearly m1(1 ⊗ h) = h = m1(h⊗ 1) for all h ∈ H by (6) and (8).
To show the compatibility of ΨHH with m1, we compute that

ΨHH ◦ (m1 ⊗ id) (5),(37)= (id ⊗m) ◦ (ΨHH ⊗ id) ◦ (id ⊗ ΨHH) ◦ (ΨHH ⊗ id)
(1)= (id ⊗m) ◦ (id ⊗ ΨHH) ◦ (ΨHH ⊗ id) ◦ (id ⊗ ΨHH)

(37)= (id ⊗m1) ◦ (ΨHH ⊗ id) ◦ (id ⊗ ΨHH),

which proves (5). The proof of (7) is completely analogous. Moreover, if 1 ∈ H,
then (6) and (8) are trivially satisfied. Therefore H is again a braided algebra with
respect to the multiplication m1 and the braiding ΨHH .
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Since mk+1 = mk ◦ ΨHH , we conclude by induction that the same holds for all
k ∈ N. From Lemma 2.4 and the previous computations, it follows that m−1 turns
H also into a braided algebra, and again by induction, we obtain the result for all
m−k, k ∈ N.

Next we prove that (H,∆1, ε) yields a braided coalgebra. The coassociativity
follows from

((ΨHH ◦∆)⊗ id)◦(ΨHH ◦∆) (11)= (ΨHH ⊗ id)◦(id⊗ΨHH)◦(ΨHH ⊗ id)◦(id⊗∆)◦∆
(1)= (id⊗ΨHH)◦(ΨHH ⊗ id)◦(id⊗ΨHH)◦(∆⊗ id)◦∆

(10)= (id⊗ (ΨHH ◦∆))◦(ΨHH ◦∆).

Furthermore, (id⊗ε)◦(ΨHH◦∆) = id = (ε⊗ id)◦(ΨHH◦∆) by the second relations
in (10) and (11). To verify the compatibility with the braiding, we compute that

(id⊗∆1)◦ΨHH
(10),(38)= (id⊗ΨHH)◦ (ΨHH ⊗ id)◦ (id⊗ΨHH)◦ (∆⊗ id)

(1)= (ΨHH ⊗ id)◦ (id⊗ΨHH)◦ (ΨHH ⊗ id)◦ (∆⊗ id)
(38)= (ΨHH ⊗ id)◦ (id⊗ΨHH)◦ (∆1 ⊗ id).

This shows the first relation of (10). The first relation of (11) is proved analogously,
and the second relations in (10) and (11) are trivially satisfied. Therefore (H,∆1, ε)
is a braided coalgebra.

By Lemma 2.4, the same arguments show that (H,∆−1, ε) yields also a braided
coalgebra. Similar to the above, since ∆k±1 = ∆k ◦ Ψ±1

HH , we can now proceed by
induction to conclude that (H,∆k, ε) is a braided coalgebra for all k ∈ Z.

Let H be a braided bialgebra. We first show that H(−1,0) is a braided bialgebra
with respect to Ψ−1

HH . From the first part of the proof and Lemma 2.4, we know
that Ψ−1

HH is compatible with the multiplication m−1 and the comultiplication ∆,
so it remains to verify (16). Again by Lemma 2.4, we conclude that Ψ−1

HH satisfies
(12). Therefore,

∆ ◦m−1
(16)= (m⊗m) ◦ (id ⊗ ΨHH ⊗ id) ◦ (∆ ⊗ ∆) ◦ Ψ−1

HH

(12)= (m⊗m)◦ (Ψ−1
HH ⊗Ψ−1

HH)◦ (id⊗Ψ−1
HH ⊗ id)◦ (∆⊗∆)

(37)= (m−1 ⊗m−1) ◦ (id ⊗ Ψ−1
HH ⊗ id) ◦ (∆ ⊗ ∆).

This finishes the proof that H(−1,0) is a braided bialgebra with respect to Ψ−1
HH .

To conclude the same for H(0,−1), note that (9) remains valid if we replace ΨHH

by Ψ−1
HH . Thus

∆−1 ◦m (16)= Ψ−1
HH ◦ (m⊗m) ◦ (id ⊗ ΨHH ⊗ id) ◦ (∆ ⊗ ∆)

(9)= (m⊗m) ◦ (id ⊗ Ψ−1
HH ⊗ id) ◦ (Ψ−1

HH ⊗ Ψ−1
HH) ◦ (∆ ⊗ ∆)

(38)= (m⊗m) ◦ (id ⊗ Ψ−1
HH ⊗ id) ◦ (∆−1 ⊗ ∆−1),
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hence (16) is satisfied. Together with the previous results, it follows that H(0,−1)

is a braided bialgebra with respect to Ψ−1
HH .

Now we proceed by induction. Let n ∈ N and assume that H(n−1,−n) is a
braided bialgebra with respect to Ψ−1

HH . From what has already been shown and
since ΨHH = (Ψ−1

HH)−1, we conclude that H(n,−n) with mn = mn−1 ◦ ΨHH and
∆−n is a braided bialgebra with respect to ΨHH . Likewise, if H(−n,n−1) is a
braided bialgebra with respect to Ψ−1

HH , then H(−n,n) with m−n and ∆n = ∆n−1 ◦
ΨHH is a braided bialgebra with respect to ΨHH . Continuing in this way, if
H(−n,n) is a braided bialgebra with respect to ΨHH , we can replace in the above
calculations H by H(−n,n) and see that H(−(n+1),n) with m−(n+1) = m−n ◦ Ψ−1

HH

and ∆−n is a braided bialgebra with respect to Ψ−1
HH . Finally, if H(n,−n) is a

braided bialgebra with respect to ΨHH , it follows that H(n,−(n+1)) with mn and
∆−(n+1) = ∆−n ◦Ψ−1

HH is a braided bialgebra with respect to Ψ−1
HH . Thus the usual

induction argument yields the result.
If H is a braided Hopf algebra, then, by (17),

mn◦(S⊗id)◦∆−n = m◦Ψn
HH ◦(S⊗id)◦Ψ−n

HH ◦∆ =
{
m◦ (S⊗ id)◦∆, n ∈ 2Z,
m◦ (id⊗S)◦∆, n ∈ 2Z+1.

Thus mn ◦ (S⊗ id) ◦ ∆−n = 1ε, and similarly, mn ◦ (id ⊗S) ◦ ∆−n = 1ε. Therefore
H(n,−n) is a Hopf algebra with antipode S. If S−1 exists, we obtain from (17) for
n ∈ 2Z that

mn−1 ◦ (id ⊗ S−1) ◦ ∆−n = m ◦ Ψn−1
HH ◦ (id ⊗ S−1) ◦ Ψ−n

HH ◦ ∆
= m ◦ (S−1 ⊗ id) ◦ Ψ−1

HH ◦ ∆
= m ◦ (id ⊗ S) ◦ (S−1 ⊗ S−1) ◦ Ψ−1

HH ◦ ∆
= m ◦ (id ⊗ S) ◦ ∆ ◦ S−1 = 1 ε ◦ S−1 = 1 ε.

The remaining cases, which prove that S−1 yields an antipode for H(n−1,−n), are
shown analogously.

Finally, let V be a left H-braided vector space. If ΨHV is compatible with the
multiplication on H, then

ΨHV ◦ (mk ⊗ id) (5),(37)= (id ⊗m) ◦ (ΨHV ⊗ id) ◦ (id ⊗ ΨHV ) ◦ (Ψk
HH ⊗ id)

(2)= (id ⊗m) ◦ (id ⊗ Ψk
HH) ◦ (ΨHV ⊗ id) ◦ (id ⊗ ΨHV )

(37)= (id ⊗mk) ◦ (ΨHV ⊗ id) ◦ (id ⊗ ΨHV ),

which shows the compatibility of ΨHV with the multiplication mk. Likewise, if
ΨHV is compatible with the comultiplication on H, then

(id ⊗ ∆n) ◦ ΨHV
(10),(38)= (id ⊗ Ψn

HH) ◦ (ΨHV ⊗ id) ◦ (id ⊗ ΨHV ) ◦ (∆ ⊗ id)
(2)= (ΨHV ⊗ id) ◦ (id ⊗ ΨHV ) ◦ (Ψn

HH ⊗ id) ◦ (∆ ⊗ id)
(38)= (ΨHV ⊗ id) ◦ (id ⊗ ΨHV ) ◦ (∆n ⊗ id)
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proves the compatibility of ΨHV with the comultiplication ∆n. The relations re-
garding the unmodified unit or counit remain trivially true. The proof for a right
H-braided vector space is completely analogous. □

Since, by (17), (S ⊗ S) ◦ ΨHH = ΨHH ◦ (S ⊗ S) and

Sk ◦m=m ◦ Ψk
HH ◦ (Sk ⊗ Sk) =mk ◦ (Sk ⊗ Sk),

(Sk ⊗ Sk) ◦ ∆ = Ψ−k
HH ◦ ∆ ◦ Sk = ∆−k ◦ Sk,

we obtain immediately the following corollary.

Corollary 3.2. Let H be a braided Hopf algebra and n ∈ Z. Then the antipode S
defines braided Hopf algebra homomorphisms Sk : H(n,−n) → H(n+k,−(n+k)) and
braided bialgebra homomorphisms Sk : H(n−1,−n) → H(n+k−1,−(n+k)), where k ∈ Z
if S is invertible and k ∈ N otherwise. For invertible S, all these homomorphisms
are isomorphisms of braided Hopf algebras.

In the unbraided case, a left action of an algebra yields a right action of the op-
posite algebra with flipped multiplication, and a left coaction of a coalgebra defines
a right coaction of the opposite coalgebra with the flipped coproduct. Evidently,
the same holds if left and right are interchanged. However, the usual flip is in
general not compatible with the braiding. A proper version in the braided setting
is given in the next proposition.

Proposition 3.3. Let (H,m) be a braided algebra and V a braided left H-module.
Then

ν◦
R : V ⊗H −→ H, ν◦

R := νL ◦ Ψ−1
HV (39)

turns V into a braided right H-module with respect to the multiplication m−1 :=
m◦Ψ−1

HH and the braiding Ψ−1
HH on H. If H is a braided bialgebra and V is a braided

left H-module algebra, then ν◦
R transforms V into a braided right H(−1,0)-module

algebra.
Analogously, if V is a braided right H-module, then

ν◦
L : H ⊗ V −→ H, ν◦

L := νR ◦ Ψ−1
V H

turns V into a braided left H-module with respect to the multiplication m−1 and
the braiding Ψ−1

HH on H. Furthermore, a braided right H-module algebra becomes
a braided left H(−1,0)-module algebra.

Given a coalgebra H with coproduct ∆ and a braided right H-comodule V , the
left coaction

ρ◦
L : V −→ H ⊗ V, ρ◦

L := Ψ−1
HV ◦ ρR

turns V into a braided left H-comodule with respect to the coproduct ∆−1 :=
∆ ◦ Ψ−1

HH and the braiding Ψ−1
HH on H. If H is a braided bialgebra and V is a

braided right H-comodule algebra, then ρ◦
L transforms V into a braided left H(0,−1)-

comodule algebra.
For a braided left H-comodule V , the right coaction

ρ◦
R : V −→ V ⊗H, ρ◦

R := Ψ−1
V H ◦ ρL
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turns V into a braided left H-comodule with respect to the coproduct ∆−1 and
the braiding Ψ−1

HH on H. Moreover, a braided left H-comodule algebra becomes a
braided right H(0,−1)-comodule algebra.

Proof. The compatibility of the inverse braidings with algebraic structures can be
deduced from Lemma 2.4. In particular, the braiding Ψ−1

HV turns V into a right
H-braided vector space and, by Proposition 3.1, is compatible with the multiplica-
tion m−1. Since

ν◦
R ◦ (ν◦

R ⊗ id) (39)= νL ◦ Ψ−1
HV ◦ (νL ⊗ id) ◦ (Ψ−1

HV ⊗ id)
(23)= νL ◦ (id ⊗ νL) ◦ (Ψ−1

HH ⊗ id) ◦ (id ⊗ Ψ−1
HV ) ◦ (Ψ−1

HV ⊗ id)
(2),(19)= νL ◦ (m⊗ id) ◦ (id ⊗ Ψ−1

HV ) ◦ (Ψ−1
HV ⊗ id) ◦ (id ⊗ Ψ−1

HH)
(5)= νL ◦ Ψ−1

HV ◦ (id ⊗m) ◦ (id ⊗ Ψ−1
HH) (39)= ν◦

R ◦ (id ⊗m−1),
and ν◦

R(v⊗ 1) = v by (6) and (19), it follows that ν◦
R defines a right H-action with

respect to the multiplication m−1. Next,

Ψ−1
HV ◦ (ν◦

R ⊗ id) (39)= Ψ−1
HV ◦ (νL ⊗ id) ◦ (Ψ−1

HV ⊗ id)
(23)= (id ⊗ νL) ◦ (Ψ−1

HH ⊗ id) ◦ (id ⊗ Ψ−1
HV ) ◦ (Ψ−1

HV ⊗ id)
(2),(39)= (id ⊗ ν◦

R) ◦ (Ψ−1
HV ⊗ id) ◦ (id ⊗ Ψ−1

HH)
proves (22). Therefore ν◦

R equips V with the structure of a braided right H-module
with respect to the multiplication m−1 and the braidings Ψ−1

HH and Ψ−1
HV .

If H is a braided bialgebra and V is a braided left H-module algebra, then

ν◦
R ◦ (mV ⊗ id) (7),(39)= νL ◦ (id ⊗mV ) ◦ (Ψ−1

HV ⊗ id) ◦ (id ⊗ Ψ−1
HV )

(32)= mV ◦ (νL ⊗ νL) ◦ (id ⊗ ΨHV ⊗ id) ◦ (∆ ⊗ id ⊗ id) ◦ (Ψ−1
HV ⊗ id) ◦ (id ⊗ Ψ−1

HV )
(10)= mV ◦ (νL ⊗ νL) ◦ (Ψ−1

HV ⊗ Ψ−1
HV ) ◦ (id ⊗ Ψ−1

HV ⊗ id) ◦ (id ⊗ id ⊗ ∆)
(39)= mV ◦ (ν◦

R ⊗ ν◦
R) ◦ (id ⊗ Ψ−1

HV ⊗ id) ◦ (id ⊗ id ⊗ ∆).
This shows that ν◦

R satisfies the compatibility condition of a braided rightH-module
algebra with respect to the unmodified coproduct ∆ and the braiding Ψ−1

HV , i.e.,
ν◦

R equips V with the structure of a braided right H(−1,0)-module algebra.
The proof of the opposite version and the proofs for the coactions are similar

and left to the reader. □

In the last proposition, we had to replace the product of the braided algebra by
the opposite one in order to interchange left and right actions. If H is a braided
Hopf algebra with bijective antipode, we can use the antipode to turn a left action
into a right action of the same algebra, but with a modified coproduct. To see
this, it suffices to observe that, if V is a braided left H-module and φ : H0 → H
is a Hopf algebra homomorphism, then V becomes a braided left H0-module in
the obvious way. Thus, setting H0 := H(1,−1) and φ := S−1 : H(1,−1) → H, we
obtain from Corollary 3.2 and Proposition 3.3 a right action of the Hopf algebra
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H(0,−1) with the unmodified product, the coproduct ∆−1 and the braiding Ψ−1
HH .

Similar arguments can be applied to right actions and left or right coactions. We
summarize these observations in the next corollary for (co)module algebras.

Corollary 3.4. Let H be a braided Hopf algebra with invertible antipode S. If V
is a left H-module algebra, then the right action

νR,S : V ⊗H −→ V, νR,S := νL ◦ Ψ−1
HV ◦ (id ⊗ S−1),

turns V into a right H(0,−1)-module algebra. Analogously, a right H-module algebra
V becomes a left H(0,−1)-module algebra for the left action defined by

νL,S : V ⊗H −→ V, νL,S := νR ◦ Ψ−1
V H ◦ (S−1 ⊗ id).

Given a right H-comodule algebra V , the left coaction
ρL,S : V −→ H ⊗ V, ρL,S := (S−1 ⊗ id) ◦ Ψ−1

HV ◦ ρR,

turns V into a left H(−1,0)-comodule algebra, and a left H-comodule algebra V
becomes a right H(−1,0)-comodule algebra for the right coaction defined by

ρR,S : V −→ V ⊗H, ρR,S := (id ⊗ S−1) ◦ Ψ−1
V H ◦ ρL.

4. Duality for infinite-dimensional braided algebras, coalgebras,
bialgebras and Hopf algebras

This section provides a detailed description of duality for braided algebras,
braided coalgebras, and both structures together, i.e., braided bialgebras and Hopf
algebras. As dual objects may not exist in a braided monoidal category, specifically
in the infinite-dimensional setting (cf. [29]), we continue with our non-categorical
approach. That is, we assume the existence of a dual space with certain properties
without proving its existence or uniqueness, which means that we will not define
a functor into a dual category. Furthermore, our definitions will be rather con-
structive in the sense that they are expressed by explicit formulas derived from the
given structures.

A dual pairing between two vector spaces U andH is a linear map ⟨·, ·⟩ : U⊗H →
K. Let H ′ denote the dual space of H. Given a subspace U ⊂ H ′, we define a dual
pairing between U and H by

⟨·, ·⟩ : U ⊗H −→ K, ⟨f, a⟩ := f(a). (40)
Identifying by a slight abuse of notation H with its image ι(H) ⊂ H ′′ under
the canonical embedding ι : H → H ′′, ι(a)(f) := f(a), the dual pairing (40)
becomes symmetric in the sense that ⟨f, a⟩ = ⟨a, f⟩. A subspace U ⊂ H ′ is called
non-degenerate, or synonymously the dual pairing is called non-degenerate, if the
associated bilinear map ⟨· , ·⟩ : U ×H → K is non-degenerate.

The dual pairing ⟨·, ·⟩ defined in (40) is actually the restriction of the funda-
mental evaluation map ev : H ′ ⊗ H → K, ev(f ⊗ a) := f(a). The problem in the
infinite setting is that the so-called coevaluation map coev : K → H ⊗ H ′ may
not exist (see e.g. [29]). In other words, the braided monoidal category may not
be rigid. Nevertheless, the evaluation map, or rather its restriction ⟨·, ·⟩, will play
a fundamental role in the dual pairing between tensor spaces. In particular, the
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dual pairing between n-fold tensor product spaces will entirely be traced back to
the evaluation map on adjacent tensor factors. That is, given linear spaces Hj and
subspaces Uj ⊂ H ′

j , j = 1, . . . , n, we define

⟨⟨ · , · ⟩⟩ : (Un ⊗ . . .⊗ U1) ⊗ (H1 ⊗ . . .⊗Hn) −→ K,
⟨⟨ · , · ⟩⟩ := ⟨ · , · ⟩ ◦

(
id ⊗ ⟨ · , · ⟩ ⊗ id

)
◦ · · · ◦

(
id ⊗ . . .⊗ ⟨ · , · ⟩ ⊗ . . .⊗ id

)
.

(41)

This definition is consistent with the representation of braided monoidal categories
by braided strings. Once a convention for a dual pairing between tensor product
spaces is agreed upon, it should be avoided to use isomorphisms between tensor
spaces in the dual pairing that do not arise from braidings. For instance, to pair
the second leg in H ′ ⊗H ′ with the second leg in H ⊗H, it is more appropriate to
apply first a braiding ΨH′H and to consider

(⟨· , ·⟩ ⊗ ⟨· , ·⟩) ◦ (id ⊗ ΨH′H ⊗ id) : H ′ ⊗H ′ ⊗H ⊗H −→ K.

In contrast, we will also make use of the embedding U1 ⊗· · ·⊗Un ⊂ (H1 ⊗. . .⊗Hn)′

(mind the order). In this case, we write
(f1 ⊗ · · · ⊗ fn)(a1 ⊗ · · · ⊗ an) := f1(a1) · · · fn(an).

Now let H be a braided vector space with braiding ΨHH . Our first aim is to
show that, for appropriate subspaces U ⊂ H ′, ΨHH induces braidings on U⊗U and
between U and H. Moreover, the braidings between U and H will be compatible
with the multiplication and comultiplication onH if these structures are compatible
with ΨHH . According to our non-categorical approach, we will not assume that U
is unique nor prove that it always exists.

To begin, consider the linear map
ΨH′H′ : H ′ ⊗H ′ −→ (H ⊗H)′, ΨH′H′(f ⊗ g)(b⊗ a) := ⟨⟨f ⊗ g,ΨHH(a⊗ b)⟩⟩,

(42)
where a, b ∈ H and f, g ∈ H ′. Note that we do not assume that ΨH′H′(H ′ ⊗H ′) ⊂
H ′ ⊗H ′. Similarly, using the fact that the canonical pairing ⟨· , ·⟩ : H ′ ⊗H → K is
non-degenerate, we define

ΨH′H : H ′ ⊗H −→ (H ′ ⊗H)′, ΨH′H(g⊗a)(f⊗b) := ⟨⟨f⊗g,ΨHH(a⊗b)⟩⟩, (43)
Ψ◦

H′H : H ′ ⊗H −→ (H ′ ⊗H)′, Ψ◦
H′H(g⊗a)(f⊗b) := ⟨⟨f⊗g,Ψ−1

HH(a⊗b)⟩⟩, (44)
ΨHH′ : H⊗H ′ −→ (H⊗H ′)′, ΨHH′(b⊗f)(a⊗g) := ⟨⟨f⊗g,ΨHH(a⊗b)⟩⟩, (45)
Ψ◦

HH′ : H⊗H ′ −→ (H⊗H ′)′, Ψ◦
HH′(b⊗f)(a⊗g) := ⟨⟨f⊗g,Ψ−1

HH(a⊗b)⟩⟩. (46)
It will be convenient to introduce some Sweedler-type notation. As usual, a

coproduct is written ∆(a) = a(1) ⊗ a(2) with increasing numbers for multiple co-
products. Analogously, left and right coactions are written ρL(v) = v(−1) ⊗ v(0)
and ρR(v) = v(0) ⊗ v(1), respectively. For a given braiding on a vector space H, we
employ the notation

ΨHH(a⊗ b) = b⟨1⟩ ⊗ a⟨2⟩, a, b ∈ H.

For multiple braidings, an index will be used to indicate the chronological order.
As an example, a combination of (1) and (10) gives for a and b from a braided
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coalgebra
b⟨1⟩1 ⊗ a⟨2⟩1 (2)

⟨1⟩2 ⊗ a⟨2⟩1 (1)
⟨2⟩2 = b⟨1⟩2⟨1⟩3 ⊗ a(2)

⟨1⟩1⟨2⟩3 ⊗ a(1)
⟨2⟩1⟨2⟩2 . (47)

We use a back-prime to denote the inverse of ΨHH , i.e.,

Ψ−1
HH(a⊗ b) = b⟨1⟩‵ ⊗ a⟨2⟩‵ , a, b ∈ H. (48)

Then clearly

a⟨2⟩⟨1⟩‵ ⊗ b⟨1⟩⟨2⟩‵ = a⊗ b = a⟨2⟩‵⟨1⟩ ⊗ b⟨1⟩‵⟨2⟩, a, b ∈ H. (49)
In a similar vein, (1) and (49) yield the identity

c⟨1⟩⟨1⟩‵1 ⊗ b⟨2⟩⟨1⟩‵2 ⊗ a⟨2⟩‵1⟨2⟩‵2 = c⟨1⟩‵2⟨1⟩ ⊗ b⟨1⟩‵1⟨2⟩ ⊗ a⟨2⟩‵1⟨2⟩‵2 , a, b, c ∈ H. (50)
The same notations will be used for subspaces U ⊂ H ′ such that ΨH′H′(U ⊗U) ⊂
U ⊗ U . Then (42) reads for instance

f ⟨2⟩(a)g⟨1⟩(b) = g(b⟨1⟩)f(a⟨2⟩), f, g ∈ U, a, b ∈ H. (51)
If ΨH′H(g ⊗ a), Ψ◦

H′H(g ⊗ a) ∈ H ⊗ U ⊂ (H ′ ⊗H)′ for g ⊗ a ∈ U ⊗H, we write

ΨH′H(g ⊗ a) := a{1} ⊗ g{2}, Ψ◦
H′H(g ⊗ a) := a{1}◦

⊗ g{2}◦
, (52)

and a similar notation will be employed for ΨHH′ and Ψ◦
HH′ . Under the assumption

that all maps belong to the tensor products of the corresponding spaces, (42)–(46)
yield in Sweedler-type notation

g(b⟨1⟩)f(a⟨2⟩) = g⟨1⟩(b)f ⟨2⟩(a) = f(a{1})g{2}(b) = f{1}(a)g(b{2}), (53)

g(b⟨1⟩‵)f(a⟨2⟩‵) = g⟨1⟩‵(b)f ⟨2⟩‵(a) = f(a{1}◦
)g{2}◦

(b) = f{1}◦
(a)g(b{2}◦

). (54)

Furthermore, if U ⊂ H ′ is non-degenerate, we conclude from (53) and (54) that

f(a{1})g{2} = f ⟨2⟩(a)g⟨1⟩, a{1} g{2}(b) = g(b⟨1⟩) a⟨2⟩, (55)

f(a{1}◦
)g{2}◦

= f ⟨2⟩‵(a)g⟨1⟩‵ , a{1}◦
g{2}◦

(b) = g(b⟨1⟩‵) a⟨2⟩‵ , (56)
for all f, g ∈ U and a, b ∈ H.

The next lemma shows that, under suitable conditions on U ⊂ H ′, the braiding
ΨHH induces braidings on U⊗U and between U and H which are compatible with
possibly additional structures on H.

Lemma 4.1. Let H be a braided vector space and U ⊂ H ′ a non-degenerate
subspace. Assume that

ΨUU = ΨH′H′↾U⊗ U : U ⊗ U −→ U ⊗ U (57)
is bijective. Then ΨUU defines a braiding on U . If

ΨUH := ΨH′H↾U⊗H : U ⊗H −→ H ⊗ U (58)
is bijective, then ΨUH turns H into a left U -braided vector space and U into a
right H-braided vector space with respect to the braidings ΨHH and Ψ−1

HH on H,
and ΨUU and Ψ−1

UU on U .
In case

Ψ◦
UH :=Ψ◦

H′H↾U⊗H : U ⊗H −→ H ⊗ U (59)
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is bijective, it also turns H into a left U -braided vector space and U into a right
H-braided vector space with respect to the braidings ΨHH and Ψ−1

HH on H, and
ΨUU and Ψ−1

UU on U .
If H is a braided (unital) algebra, then the braidings ΨUH and Ψ◦

UH are com-
patible with the multiplication on H. If H is a braided coalgebra, then the braidings
ΨUH and Ψ◦

UH are compatible with the comultiplication on H.
The analogous statements hold for the opposite versions with respect to the braid-

ings
ΨHU := ΨHH′↾H⊗ U : H ⊗ U −→ U ⊗H,

and
Ψ◦

HU := Ψ◦
HH′↾H⊗ U : H ⊗ U −→ U ⊗H.

Proof. Let f ⊗ g ⊗ h ∈ U ⊗ U ⊗ U . Since H ⊗ H ⊗ H separates the points of
U ⊗ U ⊗ U ⊂ H ′ ⊗ H ′ ⊗ H ′, we can prove (1) by evaluating both sides on all
x⊗ y ⊗ z ∈ H ⊗H ⊗H. In Sweedler-type notation, we get

h⟨1⟩2⟨1⟩3(x)g⟨1⟩1⟨2⟩3(y)f ⟨2⟩1⟨2⟩2(z) (51)= h(x⟨1⟩1⟨1⟩2)g(y⟨2⟩1⟨1⟩3)f(z⟨2⟩2⟨2⟩3)
(1)= h(x⟨1⟩2⟨1⟩3)g(y⟨1⟩1⟨2⟩3)f(z⟨2⟩1⟨2⟩2) (51)= h⟨1⟩1⟨1⟩2(x)g⟨2⟩1⟨1⟩3(y)f ⟨2⟩2⟨2⟩3(z).

(60)

As ⟨· , ·⟩ : U ⊗ H → K is non-degenerate, we conclude that ΨUU satisfies (1), and
so does Ψ−1

UU by Lemma 2.4.
To prove (2), we use again the non-degeneracy of the pairing ⟨· , ·⟩ : U ⊗H → K

and evaluate a{1}1{1}2 ⊗g⟨1⟩{2}2 ⊗f ⟨2⟩{2}1 ∈ H⊗U⊗U on all h⊗y⊗z ∈ U⊗H⊗H,
where a ∈ H and f, g ∈ U . This gives

h(a{1}1{1}2)g⟨1⟩{2}2(y)f ⟨2⟩{2}1(z) (53)= h⟨2⟩2(a⟨2⟩)g⟨1⟩1⟨1⟩2(y)f ⟨2⟩1(z⟨1⟩) (61)
(51)= h(a⟨2⟩1⟨2⟩2)g(y⟨1⟩2⟨1⟩3)f (z⟨1⟩1⟨2⟩3) (1)= h(a⟨2⟩2⟨2⟩3)g(y⟨1⟩1⟨1⟩2)f (z⟨2⟩1⟨1⟩3)
(51)= h⟨2⟩(a⟨2⟩2)g(y⟨1⟩1⟨1⟩2)f ⟨1⟩(z⟨2⟩1) (53)= h(a{1}1{1}2)g{2}1(y⟨1⟩)f{2}2(z⟨2⟩)
(51)= h(a{1}1{1}2)g{2}1⟨1⟩(y)f{2}2⟨2⟩(z).

Since U ⊗H ⊗H separates the points of H ⊗U ⊗U , these calculations show that
(2) is satisfied.

Much in the same way, for all f ⊗a⊗ b ∈ U ⊗H⊗H and g⊗h⊗z ∈ U ⊗U ⊗H,
we compute

g(b⟨1⟩{1}1)h(a⟨2⟩{1}2) f{2}1{2}2(z) (53)= g(b⟨1⟩1⟨2⟩3)h(a⟨2⟩1⟨2⟩2) f (z⟨2⟩2⟨1⟩3)
(1)= g(b⟨2⟩1⟨1⟩3)h(a⟨2⟩2⟨2⟩3) f (z⟨1⟩1⟨1⟩2) (53)= g⟨1⟩(b{1}2)h⟨2⟩(a{1}1) f{2}1{2}2(z)
(51)= g(b{1}2⟨1⟩)h(a{1}1⟨2⟩) f{2}1{2}2(z),

which proves (3). This finishes the proof of first part of the lemma regarding the
braidings ΨHH , ΨUU and ΨUH . By Lemma 2.4, the same holds with respect to
the braidings Ψ−1

HH , Ψ−1
UU and ΨUH . Replacing in the above calculations ΨHH by

Ψ−1
HH and ΨUU by Ψ−1

UU shows the analogous results for Ψ◦
UH .
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Let H be a braided algebra. Using the fact that ΨHH satisfies (5) and (6), we
get for all f, g ∈ U and a, b ∈ H,

f((ab){1})g{2}(c) (53)= f((ab)⟨2⟩)g(c⟨1⟩) (5)= f(a⟨2⟩2b⟨2⟩1)g(c⟨1⟩1⟨1⟩2)
(53)= f(a{1}1b{1}2)g{2}1{2}2(c)

(62)

and
f(1{1})g{2}(a) (53)= f(1⟨2⟩)g(a⟨1⟩) (6)= f(1)g(a). (63)

This implies the compatibility of ΨUH with the multiplication on H.
By Lemma 2.4, Ψ−1

HH is also compatible with the multiplication on H. Replacing
{k} by {k}◦ and ⟨k⟩ by ⟨k⟩‵ in (62) and (63) shows the compatibility of Ψ◦

UH with
the multiplication on H. Similarly, if H is a braided coalgebra, we obtain for
f, g, h ∈ U and a, b ∈ H that

f(a{1}
(1))g(a{1}

(2))h{2}(b) (55)= f(a⟨2⟩
(1))g(a⟨2⟩

(2))h(b⟨1⟩)
(10)= f(a(1)

⟨2⟩2)g(a(2)
⟨2⟩1)h(b⟨1⟩1⟨1⟩2) (53)= f(a(1)

{1}1)g(a(2)
{1}2)h{2}1{2}2(b)

and
ε(a{1})h{2}(b) (55)= ε(a⟨2⟩)h(b⟨1⟩) (10)= ε(a)h(b),

which proves (11) for ΨUH .
The same proof with the notational changes mentioned above shows the com-

patibility of Ψ◦
UH with the multiplication or the comultiplication (as applicable)

on H. The statements of the opposite versions are proved analogously. □

The following definition of a dual pairing between braided bialgebras is the
central definition of this section because it will also serve as a guiding principle for
duality between braided algebras and braided coalgebras. Similar definitions can
be found in [10, 13, 32, 26].

Definition 4.2. Let U and H be braided bialgebras and let ΥUH : U ⊗ H →
H ⊗ U be a braiding such that H is a left U -braided vector space, U is a right
H-braided vector space, and the braiding is compatible with the multiplications
and comultiplications of U and H. A dual pairing between U and H is a linear
map ⟨· , ·⟩ : U ⊗H → K such that

⟨· , ·⟩ ◦ (m⊗ id) = (⟨· , ·⟩ ⊗ ⟨· , ·⟩) ◦ (id ⊗ ΥUH ⊗ id) ◦ (id ⊗ id ⊗ ∆), (64)
⟨· , ·⟩ ◦ (id ⊗m) = (⟨· , ·⟩ ⊗ ⟨· , ·⟩) ◦ (id ⊗ ΥUH ⊗ id) ◦ (∆ ⊗ id ⊗ id), (65)
⟨1, a⟩ = ε(a), ⟨h, 1⟩ = ε(h), a ∈ H, h ∈ U. (66)

For a dual pairing between braided Hopf algebras, it is additionally required that

⟨· , ·⟩ ◦ (S ⊗ id) = ⟨· , ·⟩ ◦ (id ⊗ S). (67)

If the dual pairing is non-degenerate, U is called a left dual of H, and H is called
a right dual of U .
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Given a braided coalgebra H, the convolution product (15) turns H ′ into an
associative algebra. In general, this product will not be compatible with the dual
pairing of Definition 4.2. On the other hand, under the assumptions of Defini-
tion 4.2, the product on U ⊂ H ′ is uniquely determined by (64) since H separates
the points of H ′. For this reason, we will consider an alternative convolution
product on H ′ such that the equality in (64) is automatically met for subalgebras
U ⊂ H ′ satisfying the assumptions of Lemma 4.1.

Proposition 4.3. Let H be a braided coalgebra and set

∗ : H ′⊗H ′ −→ H ′, f ∗ g(a) := ⟨⟨f⊗ g ,ΨHH ◦∆(a)⟩⟩ = f(a(1)
⟨2⟩)g(a(2)

⟨1⟩), (68)

where f, g ∈ H ′ and a ∈ H. Then (68) turns H ′ into an associative unital algebra
with the unit element given by the counit of H.

Suppose that U ⊂ H ′ is a (unital) subalgebra separating the points of H. If
ΨUU defined in (57) is bijective, then it turns U into a braided algebra. In case
ΨUH or Ψ◦

UH satisfies the assumptions of Lemma 4.1, it defines a braiding that is
compatible with the multiplication on U . The same remains true for the opposite
version with ΨUH and Ψ◦

UH replaced by ΨHU and Ψ◦
HU , respectively.

Proof. The associativity of the product ∗ is equivalent to coassociativity of ∆1 :=
ΨHH ◦ ∆ which was proved in Proposition 3.1. Moreover, by (68) and the second
identity in (11),

f ∗ ε(a) = f ◦ (ε⊗ id) ◦ ΨHH ◦ ∆(a) = f ◦ (id ⊗ ε) ◦ ∆(a) = f(a),

and similarly ε∗ f(a) = f(a) for all f ∈ H ′ and a ∈ H. Therefore ε yields the unit
element in H ′ with respect to the product ∗ .

To show the compatibility of the multiplication with the braiding, we have to
verify Equations (5)–(8) for ΨUU but only (5) and (6) for ΨUH . Since U separates
the points of H and vice versa, we may again prove the required relations by
evaluating both sides on elements from U and H. Let a, b, c ∈ H and f, g, h ∈ U .
In Sweedler-type notation, the proof of (5) reads as follows:

h⟨1⟩(b)(f ∗ g)⟨2⟩(a) (51),(68)= h(b⟨1⟩1)g(a⟨2⟩1 (2)
⟨1⟩2)f(a⟨2⟩1 (1)

⟨2⟩2)
(47)= h(b⟨1⟩2⟨1⟩3)g(a(2)

⟨1⟩1⟨2⟩3)f(a(1)
⟨2⟩1⟨2⟩2) (51),(68)= h⟨1⟩1⟨1⟩2(b)(f ⟨2⟩2 ∗ g⟨2⟩1)(a).

(69)

Similarly,

(f ∗ g)⟨1⟩(b)h⟨2⟩(a) (51),(68)= g(b⟨1⟩1 (2)
⟨1⟩2)f(b⟨1⟩1 (1)

⟨2⟩2)h(a⟨2⟩1) (70)
(1),(11)= g(b(2)

⟨1⟩1⟨1⟩2)f(b(1)
⟨2⟩1⟨1⟩3)h(a⟨2⟩2⟨2⟩3) (51),(68)= (f ⟨1⟩1 ∗ g⟨1⟩2)(b)h⟨2⟩1⟨2⟩2(a),

which yields (7) for ΨUU . Moreover,

f ⟨1⟩(b)ε⟨2⟩(a) (51)= f(b⟨1⟩)ε(a⟨2⟩) (10)= ε(a)f(b) (11)= ε(a⟨1⟩)f(b⟨2⟩) (51)= ε⟨1⟩(a)f ⟨2⟩(b)
(71)
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shows that ΨUU fulfills (6) and (8). This finishes the proof that ΨUU is compatible
with the multiplication of U .

Applying (53) to both sides of (70) and the right side of (71) gives

h(a{1})(f ∗ g){2}(b) = h(a{1}1{1}2)(f{2}2 ∗ g{2}1)(b), f(b{1})ε{2}(a) = f(b)ε(a),

so that ΨUH is also compatible with the multiplication on U .
By Lemma 2.4, Ψ−1

HH is compatible with the comultiplication on H. Similar as
above,

h(a{1}◦
)(f ∗ g){2}◦

(b) (54),(68)= h(a⟨2⟩‵)g(b⟨1⟩‵
(2)

⟨1⟩)f(b⟨1⟩‵
(1)

⟨2⟩)
(11)= h(a⟨2⟩‵1⟨2⟩‵2)g(b(2)

⟨1⟩‵2⟨1⟩)f(b(1)
⟨1⟩‵1⟨2⟩) (50)= h(a⟨2⟩‵1⟨2⟩‵2)g(b(2)

⟨1⟩⟨1⟩‵1)f(b(1)
⟨2⟩⟨1⟩‵2)

(54)= h⟨2⟩‵(a{1}◦
)g{2}◦

(b(2)
⟨1⟩)f ⟨1⟩‵(b(1)

⟨2⟩) (54)= h(a{1}◦
1{1}◦

2 )g{2}◦
1 (b(2)

⟨1⟩)f{2}◦
2 (b(1)

⟨2⟩)
(68)= h(a{1}◦

1{1}◦
2 )(f{2}◦

2 ∗ g{2}◦
1 )(b),

hence Ψ◦
UH satisfies (5). By Lemma 2.4 and the second relation of (11),

f(a{1}◦
)ε{2}◦

(b) = f(a⟨2⟩‵)ε(b⟨1⟩‵) = f(a)ε(b),

which shows that Ψ◦
UH satisfies also (6). This proves the compatibility of Ψ◦

UH

with the multiplication on U .
The opposite version is shown in the same way. □

Recall that, for any unital algebra H, the dual space H ′ contains a largest
coalgebra H◦ such that ∆ : H◦ → H◦ ⊗ H◦, ∆(f)(a ⊗ b) := f(ab) for a, b ∈ H,
and ε(f) := f(1) (see e.g. [17]). However, the compatibility condition (65) of the
dual pairing requires to consider a modified coproduct, say ∆‵, on suitable subspaces
of H ′. To state an explicit formula, assume that H is a braided algebra and suppose
that U is a linear subspace of H ′ satisfying the assumptions of Lemma 4.1. Then,
for ∆‵ on U and ΥUH = ΨUH , (65) is equivalent to

⟨⟨∆‵(f),ΨHH(a⊗ b)⟩⟩ = ⟨f,m(a⊗ b)⟩, f ∈ U, a, b ∈ H,

which leads to

⟨⟨∆‵(f), a⊗ b⟩⟩ = ⟨f,m ◦ Ψ−1
HH(a⊗ b)⟩ f ∈ U, a, b ∈ H. (72)

If we replace ΨUH by Ψ◦
UH in (65), then Ψ−1

HH needs to be replaced by ΨHH in
(72).

Note that (72) determines uniquely ∆‵(f) ∈ (H ⊗H)′ but ∆‵(f) defined by the
right hand side of (72) may not belong to H ′ ⊗ H ′. The next proposition shows
that, similar to the unbraided case, H ′ contains a largest coalgebra such that the
coproduct is given as in (72) and any subcoalgebra U satisfying the assumptions
of Lemma 4.1 becomes a braided coalgebra such that the comultiplication is com-
patible with the braidings ΨUH and Ψ◦

UH .
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Proposition 4.4. Let H be a braided unital algebra and consider

∆ : H ′ −→ (H ⊗H)′, ⟨⟨∆(f), a⊗ b⟩⟩ := ⟨f, m◦ΨHH(a⊗ b)⟩ = f(b⟨1⟩a⟨2⟩), (73)

where f ∈ H ′, a, b ∈ H. Then there exists a largest coalgebra H◦ in H ′ such that
the coproduct is given by (73) and ε(f) := f(1).

Suppose that U ⊂ H◦ is a subcoalgebra separating the points of H. If ΨUU

defined in (57) is bijective, then it turns U into a braided coalgebra. In case ΨUH or
Ψ◦

UH satisfies the assumptions of Lemma 4.1, it defines a braiding that is compatible
with the comultiplication on U . The same remains true for the opposite version
with ΨUH and Ψ◦

UH replaced by ΨHU and Ψ◦
HU , respectively.

Proof. By Proposition 3.1, m1 := m◦ΨHH defines an associative multiplication on
H with unit element 1 ∈ H. Therefore the existence of a largest coalgebra follows
from the known result of the unbraided case, i.e., there exists a largest coalgebra,
say H◦, in H ′ with the coproduct given by (73) and ε(f) := f(1), see e.g. [17,
Section 1.2.8].

Assume that the subcoalgebra U ⊂ H◦ satisfies the assumptions of the proposi-
tion which guarantee that ΨUU and ΨUH are well-defined. Then, for all f, g ∈ U
and a, b, c ∈ H, we have

g⟨1⟩
(1)(c)g⟨1⟩

(2)(b)f ⟨2⟩(a) (73)= g⟨1⟩2(c⟨1⟩1b⟨2⟩1)f ⟨2⟩2(a) (53)= g((c⟨1⟩1b⟨2⟩1)⟨1⟩2)f(a⟨2⟩2)
(7)= g(c⟨1⟩1⟨1⟩2b⟨2⟩1⟨1⟩3)f(a⟨2⟩2⟨2⟩3) (1)= g(c⟨1⟩2⟨1⟩3b⟨1⟩1⟨2⟩3)f(a⟨2⟩1⟨2⟩2) (74)
(73)= g(1)(c⟨1⟩2)g(2)(b⟨1⟩1)f(a⟨2⟩1⟨2⟩2) (53)= g(1)

⟨1⟩1(c) g(2)
⟨1⟩2(b)f ⟨2⟩1⟨2⟩2(a)

which proves that ΨUU satisfies the first relation of (11). The second relation of
(11) follows from

ε(g⟨1⟩)f ⟨2⟩(a) = g⟨1⟩(1)f ⟨2⟩(a) (53)= g(1⟨1⟩)f(a⟨2⟩) (8)= g(1)f(a) = ε(g)f(a).

In exactly the same way, one shows that ΨUU satisfies (10), hence U is a braided
coalgebra with respect to braiding ΨUU .

Applying ∆ to (55), evaluating on b⊗ c ∈ H ⊗H and using (74) gives

f(a{1})g{2}
(1)(c)g{2}

(2)(b)
(55)= f ⟨2⟩(a)g⟨1⟩

(1)(c)g⟨1⟩
(2)(b)

(74)= f ⟨2⟩1⟨2⟩2(a)g(1)
⟨1⟩1(c) g(2)

⟨1⟩2(b) (53)= f(a{1}1{1}2)g(1)
{2}2(c)g(2)

{2}1(b).

Moreover,

f
(
a{1} ε(g{2})

)
= g{2}(1)f(a{1}) (53)= g(1⟨1⟩)f(a⟨2⟩) (8)= g(1)f(a) = f

(
ε(g)a

)
.

From the last two computations, we conclude that ΨUH satisfies (10), i.e., the
braiding ΨUH is compatible with the comultiplication on U .
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Much in the same way, by applying Lemma 2.4 to ΨHH ,

f(a{1}◦
)g{2}◦

(1)(c)g{2}◦

(2)(b)
(56)= f ⟨2⟩‵(a)g⟨1⟩‵

(1)(c) g⟨1⟩‵
(2)(b)

(73)= f ⟨2⟩‵(a)g⟨1⟩‵(c⟨1⟩b⟨2⟩)
(54)= f(a⟨2⟩‵2)g((c⟨1⟩1b⟨2⟩1)⟨1⟩‵2) (7)= f(a⟨2⟩‵1⟨2⟩‵2)g(c⟨1⟩⟨1⟩‵1b⟨2⟩⟨1⟩‵2)
(50)= f(a⟨2⟩‵1⟨2⟩‵2)g(c⟨1⟩‵2⟨1⟩b⟨1⟩‵1⟨2⟩) (73)= f(a⟨2⟩‵1⟨2⟩‵2)g(1)(c⟨1⟩‵2)g(2)(b⟨1⟩‵1)
(54)= f ⟨2⟩‵2(a⟨2⟩‵1)g(1)

⟨1⟩‵2(c)g(2)(b⟨1⟩‵1) (54)= f(a{1}◦
1{1}◦

2 )g(1)
{2}◦

2 (c)g(2)
{2}◦

1 (b),
and

f
(
a{1} ε(g{2}◦

)
)

= g{2}◦
(1)f(a{1}◦

) (54)= g(1⟨1⟩‵)f(a⟨2⟩‵) (6)= g(1)f(a) = f
(
ε(g)a

)
.

Therefore, if the braiding Ψ◦
UH exists, it is compatible with the comultiplication

on U .
The opposite version is proved analogously. □

Given a braided bialgebra H, Lemma 4.1, Proposition 4.3 and Proposition 4.4
tell us how to define braidings, a product and a coproduct, respectively, on ap-
propriate subspaces of H ′. The next theorem shows that these structures fit well
together, i.e., they can be used to obtain a braided bialgebra U ⊂ H ′ such that the
canonical pairing yields a dual pairing between braided bialgebras. It is noteworthy
to mention that the braiding ΥUH in Definition 4.2 will not be implemented by
ΨUH , but by Ψ◦

UH .

Theorem 4.5. Let H be a braided bialgebra and consider the product m : H ′ ⊗
H ′ → H ′ defined by

⟨m(f ⊗ g), a⟩ := ⟨⟨f ⊗ g,Ψ−1
HH ◦∆(a)⟩⟩ = f(a(1)

⟨2⟩‵)g(a(2)
⟨1⟩‵), a ∈ H, f, g ∈ H ′.

(75)
Assume that U ⊂ H ′ is a unital subalgebra which is also a subcoalgebra of H◦ for
the coproduct ∆ defined in Proposition 4.4.

Suppose that U satisfies the left-handed version of Lemma 4.1 such that ΨUU and
Ψ◦

UH define braidings. Then U is a braided bialgebra with respect to the braiding
ΨUU , and the canonical pairing ⟨· , ·⟩ : U⊗H → K defines a pairing between braided
bialgebras with respect to the braiding Ψ◦

UH such that U becomes a left dual of H.
In case U satisfies the right-handed version of Lemma 4.1 such that ΨUU and

Ψ◦
HU yield braidings, the canonical pairing ⟨· , ·⟩ : H ⊗ U → K defines a pairing

between braided bialgebras with respect to the braiding Ψ◦
HU and U becomes a right

dual of H.
If H is a braided Hopf algebra and f ◦ S ∈ U for all f ∈ U , then U is a braided

Hopf algebra with antipode S(f) := f ◦ S.

Proof. By Lemma 2.4, Ψ−1
HH defines a braiding on H which is compatible with the

comultiplication on H. Therefore, by Proposition 4.3, the product (75) is well-
defined. Note that the braiding in (75) is the inverse of that in (68). Combining
Proposition 4.3 with Lemma 2.4 shows that the multiplication on U is compatible
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with ΨUU so that U becomes a braided algebra. From Proposition 4.4, it follows
directly that U is a braided coalgebra with respect to ΨUU . Therefore, to complete
the proof that U yields a braided bialgebra, it suffices to prove (16).

As in the previous proofs, we will verify (16) by evaluating both sides on a⊗ b ∈
H ⊗ H. It was shown in Proposition 3.1 that H(1,−1) is a braided bialgebra with
respect to ΨHH . Therefore, for all f ⊗ g ∈ U ⊗ U ,

⟨⟨∆ ◦m(f ⊗ g), a⊗ b⟩⟩ (73),(75)= ⟨⟨f ⊗ g,∆−1 ◦m1(a⊗ b)⟩⟩
(16)= ⟨⟨f ⊗ g, (m1 ⊗m1) ◦ (id ⊗ ΨHH ⊗ id) ◦ (∆−1 ⊗ ∆−1)(a⊗ b)⟩⟩
(73)= ⟨⟨(∆ ⊗ ∆)(f ⊗ g) , (id ⊗ ΨHH ⊗ id) ◦ (∆−1 ⊗ ∆−1)(a⊗ b)⟩⟩

(42),(57)= ⟨⟨(id ⊗ ΨUU ⊗ id) ◦ (∆ ⊗ ∆)(f ⊗ g) ,∆−1 ⊗ ∆−1(a⊗ b)⟩⟩
(75)= ⟨⟨(m⊗m) ◦ (id ⊗ ΨUU ⊗ id) ◦ (∆ ⊗ ∆)(f ⊗ g), a⊗ b⟩⟩,

which implies that the product and the coproduct on U satisfy the compatibility
condition (16) with respect to the braiding ΨUU . Thus we have proved that U is
a braided bialgebra.

Our next aim is to show that the canonical pairing defines a pairing between
braided bialgebras with respect to the braiding Ψ◦

UH . From Lemma 4.1, Proposi-
tion 4.3 and Proposition 4.4, we conclude that Ψ◦

UH is compatible with the multi-
plications and the comultiplications on U and H. By Definition 4.2, it remains to
prove Equations (64)–(66).

Equation (66) is trivially satisfied by the stated unit element in Proposition 4.3
and the definition of the counit in Proposition 4.4. Let f, g ∈ U and a, b ∈ H.
Equation (64) follows from

m(f ⊗ g)(a) (75)= g(a(2)
⟨1⟩‵)f(a(1)

⟨2⟩‵) (54)= f(a(1)
{1}◦

)g{2}◦
(a(2)),

and

f(ab) (49)= f(a⟨2⟩‵⟨1⟩ b⟨1⟩‵⟨2⟩) (73)= f(1)(a⟨2⟩‵)f(2)(b⟨1⟩‵) (54)= f(1)(a{1}◦
)f(2)

{2}◦
(b)

implies (65).
Now assume that H is a braided Hopf algebra with antipode S and that f◦S ∈ U

for all f ∈ U . With the definition S(f) := f ◦ S, we compute for all a ∈ H

⟨m◦ (id⊗S)◦∆(f) , a⟩ (75)= ⟨⟨(id⊗S)◦∆(f) ,∆−1(a)⟩⟩ (41)= ⟨⟨∆(f), (S⊗ id)◦∆−1(a)⟩⟩
(73)= ⟨f ,m1 ◦ (S⊗ id)◦∆−1(a)⟩ = ε(a)⟨f, 1⟩ = ⟨ε(f)1, a⟩,

where we used the fact from Proposition 3.1 that H(1,−1) is a braided Hopf algebra
with antipode S. This yields m◦(id⊗S)◦∆(f) = ε(f)1. Interchanging the positions
of S and id in the above calculations shows that also m ◦ (S⊗ id) ◦ ∆(f) = ε(f)1,
therefore the linear mapping S : U → U defined above turns U into a braided Hopf
algebra.
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Since f{1}◦(a) g(b{2}◦) = f(a⟨2⟩‵) g(b⟨1⟩‵) = f(a{1}◦) g{2}◦(b) by (54), and ⟨·, ·⟩ is
symmetric in the sense that ⟨a, f⟩ = f(a) = ⟨f, a⟩, the proof of the opposite version
is essentially the same. □

Note that the same bialgebra U serves as a left and as a right dual of H by
considering either the braiding Ψ◦

UH or the braiding Ψ◦
HU . From now on, we

restrict ourselves mainly to the left version, the right version differs essentially
only in notation.

Our definitions of the product and the coproduct on U ⊂ H ′ deviate from
those given in [24] for rigid (= “finite”) braided monoidal categories. By evaluating
elements of B∗ (∼ U) on elements of B (∼ H) in [24], it can be seen that the main
difference boils down to omitting the braiding ΥUH in Definition 4.2 and using the
pairing ⟨⟨·, ·⟩⟩ instead. For a finite dimensional braided bialgebra, the dual braided
bialgebra in the sense of [24, Proposition 2.4] is a special case of our construction
and corresponds to U (1,−1). We present this result in the following corollary, whose
proof is straightforward by applying the corresponding definitions.

Corollary 4.6. Let H be a braided bialgebra and assume that U ⊂ H ′ fulfills
the assumptions of Theorem 4.5. Then the product m1 and the coproduct ∆−1 of
U (1,−1) satisfy

⟨m1(f ⊗ g), a⟩ = ⟨⟨f ⊗ g,∆(a)⟩⟩, ⟨⟨∆−1(f), a⊗ b⟩⟩ = ⟨f,m(a⊗ b)⟩

for all f, g ∈ U and a, b ∈ H.

Note that, for a finite-dimensional braided bialgebra H, the non-degeneracy
condition implies U = H ′, and H ′ satisfies automatically the assumptions on U
in the above theorem. In this case, the left dual U = H ′ is unique. For an
infinite-dimensional braided bialgebra, this need not be the case (see e.g. [17, Sec-
tion 11.2.3]) with all braidings given by the usual flip.

Now let H be a possibly infinite-dimensional braided bialgebra and U ⊂ H ′ a
left dual of H. If H ⊂ U ′ satisfies the conditions in Lemma 4.1, then we can apply
Theorem 4.5 to construct a multiplication m and a coproduct ∆ on H such that
H becomes a left dual of U . The next proposition shows that this left dual is
isomorphic to the braided bialgebra H. In this sense the construction is reflexive,
i.e., taking twice the left dual yields the same braided bialgebra.

Proposition 4.7. Let H be a braided bialgebra and let U ⊂ H ′ be a left dual of H
with braiding ΨUU satisfying (57). Assume that the map Ψ◦

HU defined in Lemma 4.1
is a bijection. Consider the canonical embedding ι : H → ι(H) ⊂ U ′ given by
ι(a)(f) := f(a). Then ι(H) with the multiplication m and the comultiplication ∆
from Theorem 4.5 becomes a left dual of U , and ι : H → ι(H) yields an isomorphism
of braided bialgebras.

Analogously, if U ⊂ H ′ is a right dual of H and Ψ◦
UH in (59) is a bijection, then

ι(H) ∼= H becomes a right dual of U .
If H is a braided Hopf algebra, then ι yields an isomorphism of braided Hopf

algebras.

Rev. Un. Mat. Argentina, Vol. 65, No. 2 (2023)



DUALITY FOR INFINITE-DIMENSIONAL BRAIDED BIALGEBRAS 449

Proof. Let a, b ∈ H and f, g ∈ U . Since

Ψι(H)ι(H)(ι(a)⊗ι(b))(g⊗f) (42)= ⟨⟨a⊗b,ΨUU (f⊗g)⟩⟩ (57)= ⟨⟨(ι⊗ ι)◦ΨHH(a⊗b), f⊗g⟩⟩,
we conclude that Ψι(H)ι(H) : ι(H)⊗ ι(H) → ι(H)⊗ ι(H) yields a bijection and that
ι intertwines the braidings on H and ι(H). In the same manner, it follows from
(42) and (46) that Ψ◦

ι(H)U ◦ (ι ⊗ id) = (id ⊗ ι) ◦ Ψ◦
HU which shows that Ψ◦

ι(H)U is
bijective. Thus, by Lemma 4.1, it defines a braiding.

By (42), (73) and (75), we have
⟨m(ι(a)⊗ ι(b)), f⟩ = ⟨⟨a⊗b,Ψ−1

UU ◦ ∆(f)⟩⟩ = ⟨m(a⊗b), f⟩ = ⟨ι ◦m(a⊗b), f⟩,
hence ι ◦m = m ◦ (ι⊗ ι). This implies that ι(H) ⊂ U ′ is a unital subalgebra and
that ι yields an algebra isomorphism.

Next we prove that ι determines a coalgebra isomorphism. From

⟨⟨∆(ι(a)), f⊗g⟩⟩ (73)= ⟨a ,m ◦ ΨUU (f⊗g)⟩
(42),(75)= ⟨⟨∆(a), f⊗g⟩⟩ = ⟨⟨(ι⊗ ι) ◦ ∆(a), f⊗g⟩⟩

(76)

we conclude that (ι ⊗ ι) ◦ ∆ = ∆ ◦ ι. As a consequence, ∆(ι(H)) ⊂ ι(H) ⊗
ι(H). Moreover, ε(ι(a)) = ⟨a, 1⟩ = ε(a). Therefore ι(H) ⊂ U◦ is a subcoalgebra
isomorphic to H.

Summarizing, we have shown that ι(H) satisfies the assumption of Theorem 4.5
so that it becomes a left dual of U with multiplication and comultiplication given in
(75) and (73), and that ι : H → ι(H) yields an isomorphism of braided bialgebras.
If H is a braided Hopf algebra, then ι lifts to a braided Hopf algebra isomorphism
with S ◦ ι = ι ◦ S. The opposite version is proved analogously. □

Given a braided bialgebra H, Proposition 3.1 allows us to construct a count-
able family of braided bialgebras. The next proposition gives a description of the
corresponding dual bialgebras obtained from a left (or right) dual of H.

Proposition 4.8. Let H be a braided bialgebra and let U be a left dual of H with
respect to the braidings ΨUU and Ψ◦

UH given in (57) and (59), respectively. For
n ∈ Z, U (−n,n) is a left dual of H(n,−n) with respect to the braiding Ψ◦

UH , and
if ΨUH is bijective, then U (−n,n−1) is a left dual of H(n−1,n) with respect to the
braiding ΨUH . The analogous statements are true for Hopf algebras, and for the
opposite versions with Ψ◦

UH and ΨUH replaced by Ψ◦
HU and ΨHU , respectively.

Proof. Let n ∈ Z. As

⟨m−n(f ⊗ g), a⟩ (37)= ⟨m ◦ Ψ−n
UU (f ⊗ g), a⟩ (42),(75)= ⟨⟨f ⊗ g,Ψ−n

HH ◦ Ψ−1
HH ◦ ∆(a)⟩⟩

(38)= ⟨⟨f ⊗ g,Ψ−1
HH ◦ ∆−n(a)⟩⟩

and

⟨⟨∆n(f), a⊗ b⟩⟩ (38)= ⟨⟨Ψn
UU ◦ ∆(f), a⊗ b⟩⟩ (42),(73)= ⟨f, m◦ΨHH ◦Ψn

HH(a⊗ b)⟩
(37)= ⟨f, mn◦ΨHH(a⊗ b)⟩
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for f, g ∈ U and a, b ∈ H, it follows from Proposition 3.1 and Theorem 4.5 that
U (−n,n) is a left dual of H(n,−n).

In the case of H(n−1,n), we have to replace the braiding ΨHH on H by Ψ−1
HH

and therefore Ψ◦
UH by ΨUH . A careful look at Proposition 4.8, Lemma 4.1 and

Theorem 4.5 reveals that the assumptions of Theorem 4.5 are still satisfied after
these substitutions. Now the same calculations, but with with ∆n replaced by
∆n−1, show the result.

The opposite versions are proved similarly. The statement about Hopf algebras
follows from Proposition 3.1 and the definition of the antipode on the dual Hopf
algebras. □

5. Modules and comodules in the braided setting

A typical application of duality is to turn a comodule of a coalgebra into a
module of a dual algebra. Adding more structure, a braided comodule algebra of
a braided bialgebra should become a braided module algebra of a dual braided
bialgebra. This will be discussed in Theorem 5.4. The dual version, i.e., turning
a braided module into a braided comodule of a dual coalgebra, will be presented
in Theorem 5.6. Propositions 5.8 and 5.9 elaborate the same idea on duals of
(co)modules. Similarly to Lemma 4.1, we start by lifting braidings on vector spaces
to dual spaces.

As in the previous section, we will make frequent use of the Sweedler-type no-
tation:

ΨV W (v ⊗ w) := w{1} ⊗ v{2}, Ψ−1
V W (w ⊗ v) := v{1}‵

⊗ w{2}‵

,

Ψ◦
V W (v ⊗ w) := w{1}◦

⊗ v{2}◦
, Ψ◦ −1

V W (w ⊗ v) := v{1}◦‵

⊗ w{2}◦‵

,

where v ∈ V , w ∈ W , and Ψ◦
V W denotes a braiding that is constructed from the

inverse of a given one. In this notation, we have

w{2}‵{1} ⊗ v{1}‵{2} = w ⊗ v, v{2}{1}‵

⊗ w{1}{2}‵

= v ⊗ w, (77)
and the same holds for Ψ◦

V W . It turns out that the braidings of the type Ψ◦
V W will

be the correct ones for obtaining our desired result as it happened in Theorem 4.5.
For this reason, we will give four versions of the auxiliary results on braidings, a
left version, a right version and the corresponding versions arising from the inverse
braidings.

Lemma 5.1. Let V be a right H-braided vector space. Consider the linear map
ΨHV ′ : H⊗V ′ −→ (V ⊗H ′)′, ΨHV ′(a⊗e)(v⊗f) := ⟨⟨e⊗ f,ΨV H(v ⊗ a)⟩⟩, (78)

for a ∈ H, v ∈ V , f ∈ H ′ and e ∈ V ′. Let W ⊂ V ′ be a non-degenerate subspace
such that

ΨHW := ΨHV ′↾H⊗W : H ⊗W −→ W ⊗H ⊂ (V ⊗H ′)′ (79)
is bijective. Then ΨHW turns W into a left H-braided vector space.

If H is a braided coalgebra and ΨV H is compatible with the comultiplication, then
ΨHW is also compatible with the comultiplication of H. If H is a braided (unital)
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algebra and ΨV H is compatible with the multiplication, then ΨHW is compatible
with the multiplication of H.

For a left H-braided vector space V , it is required that
ΨW H := ΨV ′H↾W ⊗H : W ⊗H −→ H ⊗W ⊂ (H ′ ⊗ V )′, (80)

is bijective, where
ΨV ′H : V ′ ⊗H −→ (H ′ ⊗V )′, ΨV ′H(e⊗a)(f⊗v) := ⟨⟨f ⊗ e,ΨHV (a⊗ v)⟩⟩. (81)

In this case, ΨW H turns W into a right H-braided vector space and the other
implications remain the same under identical assumptions.

The analogous statements hold for Ψ◦
W H and Ψ◦

HW if
Ψ◦

V ′H : V ′ ⊗H −→ (H ′ ⊗V )′, Ψ◦
V ′H(e⊗a)(f ⊗v) := ⟨⟨f ⊗ e,Ψ−1

V H(a⊗ v)⟩⟩ (82)
yields a bijective map

Ψ◦
W H := Ψ◦

V ′H↾W ⊗H : W ⊗H −→ H ⊗W ⊂ (H ′ ⊗ V )′, (83)
and if
Ψ◦

HV ′ : H⊗V ′ −→ (V ⊗H ′)′, Ψ◦
HV ′(a⊗e)(v⊗f) := ⟨⟨e⊗ f,Ψ−1

HV (v ⊗ a)⟩⟩ (84)
yields a bijective map

Ψ◦
HW := Ψ◦

HV ′↾H⊗W : H ⊗W −→ W ⊗H ⊂ (V ⊗H ′)′. (85)

Proof. Let a, b ∈ H, f ∈ H ′, v ∈ V and e ∈ W . In Sweedler-type notation, we can
write (78) in the form e{1}(v) f(a{2}) = e(v{2}) f(a{1}), which is equivalent to

e{1}(v) a{2} = e(v{2}) a{1}. (86)
The proof is now straightforward, nevertheless we give parts of the proof in order
to show how (86) enables us to move the action of the new braiding to the spaces
where the given braiding is defined. For instance,

e{1}1{1}2(v) b⟨1⟩{2}2 ⊗ a⟨2⟩{2}1
(86)= e(v{2}1{2}2) b⟨1⟩{1}1 ⊗ a⟨2⟩{1}2

(3)= e(v{2}1{2}2) b{1}2⟨1⟩ ⊗ a{1}1⟨2⟩ (86)= e{1}1{1}2(v) b{2}1⟨1⟩ ⊗ a{2}2⟨2⟩

proves (2). Furthermore,

e{1}1{1}2(v) a(1)
{2}2 ⊗ a(2)

{2}1
(86)= e(v{2}1{2}2) a(1)

{1}1 ⊗ a(2)
{1}2

(11)= e(v{2}) a{1}
(1) ⊗ a{1}

(2)
(86)= e{1}(v) a{2}

(1) ⊗ a{2}
(2)

implies the first relation of (10). The second relation follows from

ε(a{2})e{1}(v) (86)= ε(a{1})e(v{2}) (11)= ε(a)e(v).
Likewise,

e{1}(v) (ab){2} (86)= e(v{2}) (ab){1} (7)= e(v{2}1{2}2) a{1}1b{1}2

(86)= e{1}1{1}2(v) a{2}2 b{2}1,

which yields (5). If 1 ∈ H, then (6) follows from (8) and (86) with a = 1.
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The proof of the opposite version with the braiding ΨW H uses similar arguments.
Combining the obtained results with Lemmas 2.4 proves the statements for Ψ◦

W H

and Ψ◦
HW . □

Given an H-braided vector space V , the previous lemma showed how to define
braidings between H and appropriate subspaces of V ′. The next lemma fixes V
and shows how to induce braidings between V and appropriate subspaces U ⊂ H ′.
Moreover, if U inherits a (co)multiplication from H, then the braidings between U
and V inherit the compatibility properties from the corresponding braiding between
H and V .

Lemma 5.2. Let V be a right H-braided vector space and consider the linear map
ΨH′V : H ′ ⊗V −→ (V ′ ⊗H)′, ΨH′V (f⊗v)(e⊗a) := ⟨⟨e⊗ f,ΨV H(v ⊗ a)⟩⟩, (87)

for a ∈ H, v ∈ V , f ∈ H ′ and e ∈ V ′. Assume that U ⊂ H ′ is a non-degenerate
subspace such that ΨUU given in (57) defines a braiding. If

ΨUV := ΨH′V ↾U⊗V : U ⊗ V −→ V ⊗ U ⊂ (V ′ ⊗H)′ (88)
is bijective, then ΨUV turns V into a left U -braided vector space.

If H is a braided coalgebra, ΨV H is compatible with the comultiplication on H,
and U satisfies the assumptions of Proposition 4.3, then ΨUV is compatible with
the multiplication ∗ from (68) on U . If H is a braided unital algebra, ΨV H is
compatible with the multiplication on H, and U satisfies the assumptions of Propo-
sition 4.4, then ΨUV is compatible with the comultiplication ∆ from (73) on U .

Assume that V is an algebra and ΨV H is compatible with the multiplication on V .
Then ΨUV is compatible with the multiplication on V . If V is a coalgebra and ΨV H

is compatible with the comultiplication on V , then ΨUV is also compatible with the
comultiplication on V .

Given a left H-braided vector space V such that
ΨV U := ΨV H′↾V ⊗U : V ⊗ U −→ U ⊗ V ⊂ (H ⊗ V ′)′

is bijective, where
ΨV H′ : V ⊗H ′ −→ (H⊗V ′)′, ΨV H′(v⊗f)(a⊗e) := ⟨⟨f ⊗ e,ΨHV (a⊗ v)⟩⟩, (89)

the map ΨV U defines a braiding that turns V into a right U -braided vector space
and the opposite versions of the above compatibility statements remain true.

The analogous assertions hold if
Ψ◦

V H′ : V ⊗H ′ −→ (H⊗V ′)′, Ψ◦
V H′(v⊗f)(a⊗e) := ⟨⟨f ⊗ e,Ψ−1

V H(a⊗ v)⟩⟩, (90)
yields a bijective map

Ψ◦
V U := Ψ◦

V H′↾V ⊗U : V ⊗ U −→ U ⊗ V ⊂ (H ⊗ V ′)′, (91)
and if
Ψ◦

H′V : H ′ ⊗V −→ (V ′ ⊗H)′, Ψ◦
H′V (f⊗v)(e⊗a) := ⟨⟨e⊗ f,Ψ−1

HV (v ⊗ a)⟩⟩, (92)
yields a bijective map

Ψ◦
UV := Ψ◦

H′V ↾U⊗V : U ⊗ V −→ V ⊗ U ⊂ (V ′ ⊗H)′. (93)
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Proof. Although the lemma is proved along the lines of the previous ones, we will
state the proof in order to demonstrate where the duality between H and U is used.
Let f, g ∈ U , u, v ∈ V , a, b ∈ H and e ∈ W . First note that e(v{1})f{2}(a) (87)=
e(v{2})f(a{1}) implies

f{2}(a) v{1} = f(a{1}) v{2} (94)
and

g{2}2(b) f{2}1(a) v{1}1{1}2
(94)= g{2}2(b) f(a{1}1) v{2}1{1}2

(94)= g(b{1}2) f(a{1}1) v{2}1{2}2 .
(95)

Thus

f ⟨2⟩{2}1(a) g⟨1⟩{2}2(b) v{1}1{1}2
(53),(95)= f(a{1}1⟨2⟩) g(b{1}2⟨1⟩) v{2}1{2}2

(3)= f(a⟨2⟩{1}2) g(b⟨1⟩{1}1) v{2}1{2}2
(53),(95)= f{2}2⟨2⟩(a) g{2}1⟨1⟩(b) v{1}1{1}2 ,

which proves (2), so V becomes a left U -braided vector space with respect to the
braidings ΨUU and ΨUV .

To prove compatibility with the multiplication ∗ from (68) on U , we compute

(f ∗ g){2}(a) v{1} (94)= (f ∗ g)(a{1}) v{2} (68)= f(a{1}
(1)

⟨2⟩) g(a{1}
(2)

⟨1⟩) v{2}

(3),(11)= f(a(1)
⟨2⟩{1}2) g(a(2)

⟨1⟩{1}1) v{2}1{2}2
(95)= f{2}2(a(1)

⟨2⟩) g{2}1(a(2)
⟨1⟩) v{1}1{1}2

(68)= (f{2}2 ∗ g{2}1)(a) v{1}1{1}2 .

This implies (5), and (6) follows from ε{2}(a)v{1} (94)= ε(a{1})v{2} (11)= ε(a)v since
ε yields the unit element in dual algebra U ⊂ H ′.

To prove the compatibility with the comultiplication of U , we proceed in the
same manner:

f{2}
(1)(b) f{2}

(2)(a) v{1} (73)= f{2}(b⟨1⟩a⟨2⟩) v{1} (94)= f((b⟨1⟩a⟨2⟩){1}) v{2}

(7)= f(b⟨1⟩{1}1a⟨2⟩{1}2) v{2}1{2}2
(3)= f(b{1}2⟨1⟩a{1}1⟨2⟩) v{2}1{2}2

(73)= f(1)(b{1}2) f(2)(a{1}1) v{2}1{2}2
(95)= f(1)

{2}2(b) f(2)
{2}1(a) v{1}1{1}2

shows the first relation of (10). The second relation of (10) follows from

ε(f{2}) v{1} = f{2}(1) v{1} (94)= f(1{1}) v{2} (8)= f(1) v = ε(f) v.
If V is an algebra and ΨV H is compatible with the multiplication, then

f{2}(a)(vu){1} (94)= f(a{1})(vu){2} (5)= f(a{1}1{1}2)v{2}2u{2}1

(94)= f{2}1{2}2(a)v{1}1u{1}2 .

Furthermore, if 1 ∈ V , we have f{2}(a)1{1} (94)= f(a{1})1{2} (6)= f(a)1. This and
the previous computation show the compatibility of ΨUV with the multiplication
of V .
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Assume now that V is a coalgebra and that ΨV H is compatible with the comul-
tiplication. Then

f{2}1{2}2(a)v(1)
{1}1 ⊗ v(2)

{1}2
(94)= f(a{1}1{1}2)v(1)

{2}2 ⊗ v(2)
{2}1

(10)= f(a{1})v{2}
(1) ⊗ v{2}

(2)

(94)= f{2}(a)v{1}
(1) ⊗ v{1}

(2),

and f{2}(a) ε(v{1}) (94)= f(a{1}) ε(v{2}) (10)= f(a) ε(v). Hence ΨUV is also compatible
with the comultiplication of V .

The opposite versions are proved analogously, and the last part of the lemma
follows from the first part by applying Lemma 2.4. □

Given a left H-braided vector space V and subspaces U ⊂ H ′ and W ⊂ V ′ sat-
isfying the assumptions of Lemmas 5.1 and 5.2, there are two ways of constructing
a braiding ΨUW on U ⊗ W , either by the restriction of ΨUV ′ from (78) or by the
restriction of ΨH′W from (87). The next lemma shows that both constructions
coincide whenever one of them can be realized. Equally, we can use either Ψ◦

V U or
Ψ◦

W H to construct a braiding on U ⊗ W . In this case, the resulting braiding will
be denoted by Ψ•

UW . Analogous results hold for right H-braided vector spaces.

Lemma 5.3. Let V be a left H-braided vector space. Assume that U ⊂ H ′ and
W ⊂ V ′ satisfy the conditions of Lemmas 5.1 and 5.2 such that the braidings
ΨW H and ΨV U are well-defined. If either ΨH′W ↾U⊗W : U ⊗ W → W ⊗ U or
ΨUV ′↾U⊗W : U ⊗W → W ⊗ U is bijective, then so is the other and ΨH′W↾U⊗W =
ΨUV ′↾U⊗W =: ΨUW .

Similarly, if Ψ◦
HW and Ψ◦

UV are well-defined and if either Ψ•
V ′U ↾W ⊗U or

Ψ•
W H′↾W ⊗U yields a bijective map between W⊗ U and U⊗W, then Ψ•

V ′U↾W⊗U =
Ψ•

W H′↾W⊗U =: Ψ•
W U , where

Ψ•
V ′U : V ′ ⊗U −→ (H⊗V )′, Ψ•

V ′U (e⊗f)(a⊗v) := ⟨⟨a⊗e,Ψ◦
UV (f⊗v)⟩⟩, (96)

Ψ•
W H′ :W ⊗H ′ −→ (H⊗V )′, Ψ•

W H′(e⊗f)(a⊗v) := ⟨⟨f⊗v,Ψ◦
HW (a⊗e)⟩⟩. (97)

If V is a right H-braided vector space, then the analogous statements hold for
ΨW U and Ψ•

UW under homologous assumptions, where
Ψ•

UW (f ⊗ e)(a⊗ v) = ⟨⟨e⊗ a,Ψ◦
V U (v ⊗ f)⟩⟩ = ⟨⟨v ⊗ f,Ψ◦

W H(e⊗ a)⟩⟩.

Proof. The claim ΨH′W↾U⊗W = ΨUV ′↾U⊗W follows from the equation

ΨUV ′(f ⊗ e)(v ⊗ a) (78)= e(v{2}) f{1}(a) (89)= e(v{1}) f(a{2}) (81)= e{2}(v) f(a{1})
(87)= ΨH′W (f ⊗ e)(v ⊗ a)

for a ∈ H, v ∈ V , f ∈ U and e ∈ W . Similarly,

Ψ•
V ′U (e⊗ f)(a⊗ v) (96)= e(v{1}◦

) f{2}◦
(a) (92)= e(v{2}‵

) f(a{1}‵

) (84)= e{1}◦
(v) f(a{2}◦

)
(97)= Ψ•

W H′(e⊗ f)(a⊗ v)
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implies that Ψ•
V ′U ↾W ⊗U = Ψ•

W H′ ↾W ⊗U . The opposite versions are proved analo-
gously. □

The next theorem shows how to transform a comodule V of a coalgebra H into
a module of a dual algebra of H. Note that we will use again a braiding that is
constructed from the inverse of the given one as it happened in Theorem 4.5. The
same observation can be made for subsequent results.

Theorem 5.4. Let H be a braided coalgebra and V a braided right H-comodule
with coaction ρR : V → V ⊗H. Let U ⊂ H ′ be a non-degenerate (unital) subalgebra
with product given by (75) such that ΨUU and Ψ◦

UV introduced in (57) and (93),
respectively, are bijective. Then V becomes a braided left U -module with respect to
the braiding Ψ◦

UV and the left action νL : U ⊗ V → V given by

νL(f ⊗ v) := ⟨f, v(1)
{1}‵

⟩v(0)
{2}‵

. (98)

If H is a braided bialgebra, V is a braided right H-comodule algebra, and U is a
left dual of H as in Theorem 4.5, then the action νL turns V into a braided left
U -module algebra.

In case V is a braided left H-comodule, the analogous statements for the opposite
versions hold under homologous assumptions for the right action νR : V ⊗ U → V
given by

νR(v ⊗ f) := ⟨f, v(−1)
{2}‵

⟩v(0)
{1}‵

, (99)

and with respect to the braiding Ψ◦
V U .

Proof. From Proposition 4.3 and Lemma 5.2, we conclude that U is a braided
algebra with respect to braiding ΨUU and V is a left U -braided vector space such
that the braiding Ψ◦

UV is compatible with the multiplication of U . To show that
the action νL equips V with the structure of a left braided U -module, we need to
prove (19) and (20).

Let f, g ∈ U and v ∈ V . Using the notation (25), we compute that

f ▷ (g ▷ v) (98)= g(v(1)
{1}‵

1) f(v(0)
{2}‵

1(1)
{1}‵

2) v(0)
{2}‵

1 (0)
{2}‵

2

(28),(31)= g(v(2)
⟨1⟩‵{1}‵

1) f(v(1)
⟨2⟩‵{1}‵

2) v(0)
{2}‵

1{2}‵
2

(3)= g(v(2)
{1}‵

2⟨1⟩‵) f(v(1)
{1}‵

1⟨2⟩‵) v(0)
{2}‵

1{2}‵
2

(11)= g(v(1)
{1}‵

(2)
⟨1⟩‵) f(v(1)

{1}‵

(1)
⟨2⟩‵) v(0)

{2}‵ (75)= f ∗ g(v(1)
{1}‵

) v(0)
{2}‵ (98)= (f ∗ g) ▷ v.

This yields (19).
Note that, since V ′ separates the points of V , Equations (92) and (93) give

f{2}◦
(a) v{1}◦

= f(a{1}‵

) v{2}‵

, f ∈ U, v ∈ V, a ∈ H. (100)
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Therefore, for f, g ∈ U , v ∈ V and a ∈ H,

f ⟨2⟩{2}◦
(a)(g⟨1⟩ ▷ v{1}◦

) (98)= f ⟨2⟩{2}◦
(a) g⟨1⟩(v{1}◦

(1)
{1}‵

) v{1}◦

(0)
{2}‵

(100)= f ⟨2⟩(a{1}‵
1) g⟨1⟩(v{2}‵

1(1)
{1}‵

2) v{2}‵
1(0)

{2}‵
2

(31)= f ⟨2⟩(a⟨1⟩‵{1}‵
1 ) g⟨1⟩(v(1)

⟨2⟩‵{1}‵
2 ) v(0)

{2}‵
1{2}‵

2

(3)= f ⟨2⟩(a{1}‵
2⟨1⟩‵) g⟨1⟩(v(1)

{1}‵
1⟨2⟩‵) v(0)

{2}‵
1{2}‵

2

(49),(51)= f(a{1}‵
2) g(v(1)

{1}‵
1) v(0)

{2}‵
1{2}‵

2

(98)= f(a{1}‵

) (g ▷ v){2}‵ (100)= f{2}◦
(a) (g ▷ v){1}◦

,

which implies (20).
Now assume that H is a braided bialgebra, V is a braided right H-comodule

algebra, and U is a left dual of H. Then, for u, v ∈ V and f ∈ U ,

(f(1) ▷ u
{1}◦

)(f(2)
{2}◦

▷ v) (98)= f(1)(u{1}◦

(1)
{1}‵

2) f(2)
{2}◦

(v(1)
{1}‵

1)u{1}◦

(0)
{2}‵

2 v(0)
{2}‵

1

(100)= f(1)(u{2}‵
2 (1)

{1}‵
3) f(2)(v(1)

{1}‵
1{1}‵

2)u{2}‵
2 (0)

{2}‵
3 v(0)

{2}‵
1

(31)= f(1)(u(1)
⟨2⟩‵{1}‵

3) f(2)(v(1)
{1}‵

1⟨1⟩‵{1}‵
2)u(0)

{2}‵
2{2}‵

3 v(0)
{2}‵

1

(3)= f(1)(u(1)
{1}‵

2⟨2⟩‵) f(2)(v(1)
{1}‵

1{1}‵
3⟨1⟩‵)u(0)

{2}‵
2{2}‵

3 v(0)
{2}‵

1

(49),(73)= f(u(1)
{1}‵

2 v(1)
{1}‵

1{1}‵
3)u(0)

{2}‵
2{2}‵

3 v(0)
{2}‵

1

(7)= f
(
(u(1) v(1)

{1}‵
1){1}‵

2
)
u(0)

{2}‵
2 v(0)

{2}‵
1

(77)= f
(
(u(1)

{2}{1}‵
1 v(1)

{1}‵
2){1}‵

3
)
u(0)

{2}‵
3 v(0)

{1}{2}‵
1{2}‵

2

(7)= f
(
(u(1)

{2} v(1)){1}‵
1{1}‵

2
)
u(0)

{2}‵
2 v(0)

{1}{2}‵
1

(5)= f
(
(u(1)

{2} v(1)){1}‵)
(u(0) v(0)

{1}){2}‵

(34)= f
(
(uv)(1)

{1}‵)
(uv)(0)

{2}‵ (98)= f ▷ (uv).

This proves (32). Furthermore, if 1 ∈ V , then f ▷ 1 (35)= f(1{1}‵) 1{2}‵ (6)= f(1) 1 =
ε(f) 1. Since, by Lemma 5.2, Ψ◦

UV is compatible with the comultiplication of U
and with the multiplications of U and V , we conclude that V is a braided left
U -module algebra.

The opposite versions are shown analogously. □

Let H be a braided bialgebra and U a left dual of H. Since U ⊂ H ′ is an
algebra, there is a natural left (resp., right) U -action on H given by right (resp.,
left) multiplication on U . On the other hand, the coproduct on H equips H trivially
with the structure of a right (resp., left) H-comodule so that we may consider the
left (resp., right) U -action on H described in Theorem 5.4. The next corollary
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shows that these actions coincide and turn H into a left (resp., right) U -module
algebra. Similar results hold for U and H interchanged.

Corollary 5.5. Let H be a braided bialgebra and let U be a left dual of H as in
Theorem 4.5. Then the natural left U -action ▷ : U ⊗H → H defined by f(g ▷ a) :=
(fg)(a), a ∈ H, f, g ∈ U , satisfies

g ▷ a = ⟨g, a(2)
⟨1⟩‵ ⟩a(1)

⟨2⟩‵ (101)

and turns H into a left U -module algebra. The natural right U -action ◁ : H⊗U →
H defined by g(a ◁ f) := (fg)(a) satisfies

a ◁ f = ⟨f, a(1)
⟨2⟩‵ ⟩a(2)

⟨1⟩‵ (102)

and turns H into a right U -module algebra.
The same formulas with a ∈ U , f, g ∈ H hold for the natural left (resp., right)

H-action on U and turn U into a left (resp., right) H-module algebra.

Proof. Setting V := H in Theorem 5.4 shows that the right-hand side in (101)
(resp., (102)) defines a left (resp., right) U -action on H such that H becomes a
left (resp., right) U -module algebra. The equalities in (101) and (102) follow from
(64) for the braiding Ψ◦

UH by applying (54). The proof for the H-actions on U is
identical but uses (65) instead of (64). □

Theorem 5.4 shows how to turn a comodule of a braided coalgebra into a module
of an appropriate dual algebra. The dual construction corresponds to turning a
module of a braided algebra into a comodule of a dual coalgebra. This will be
done in the next theorem. Similar to Proposition 4.4, we will need an additional
condition to ensure that the coaction belongs to the correct (algebraic) tensor
product.

Theorem 5.6. Let H be a braided unital algebra and V a braided left H-module
with action νL : H ⊗ V → V denoted by νL(a ⊗ v) := a ▷ v. Let U be a non-
degenerate subcoalgebra of H◦ as defined in Proposition 4.4 such that ΨUU and
Ψ◦

UV given in (57) and (93), respectively, are bijective. Consider the linear map

ρR : V −→ (V ′ ⊗H)′, ρR(v)(e⊗ a) := e(a{1}‵

▷ v{2}‵

), (103)

where v ∈ V , a ∈ H and e ∈ V ′. If

ρR : V −→ V ⊗ U ⊂ (V ′ ⊗H)′, (104)

then ρR yields a right U -coaction on V such that V becomes a braided right U -
comodule with respect to the braiding Ψ◦

UV and the coproduct ∆−2 := Ψ−2
UU ◦ ∆

on U , where ∆ denotes the coproduct introduced in (73).
If H is a braided bialgebra, V is a braided left H-module algebra, and U is a left

dual of H as in Theorem 4.5, then the coaction ρR turns V into a braided right
U (2,−2)-comodule algebra.

In case V is a braided right H-module, the analogous statements hold under
homologous assumptions for the opposite versions with respect to the left coaction

Rev. Un. Mat. Argentina, Vol. 65, No. 2 (2023)



458 ELMAR WAGNER

determined by

ρL : V −→ U ⊗ V ⊂ (H ⊗ V ′)′, ρL(v)(a⊗ e) := e(v{1}‵

◁ a{2}‵

), (105)

and again for the braided coalgebra (U,∆−2, ε) and the braided bialgebra U (2,−2).

Proof. As shown in Proposition 4.4, the braiding ΨUU equips (U,∆, ε) with the
structure of a braided coalgebra. From Lemma 5.2, we know that Ψ◦

UV turns
V into a left U -braided vector space such that the braiding is compatible with
the comultiplication of U and, if defined, with the multiplications of U and V .
Furthermore, by Proposition 3.1, the compatibility conditions are also fulfilled
with respect to the modified coproduct ∆−2 = Ψ−2

UU ◦ ∆ and the modified product
m2 = m ◦ Ψ2

UU .
Throughout this proof, let u, v ∈ V , a, b ∈ H and f, g ∈ U . To show that ρR

turns V into a braided right U -comodule, it remains to prove (28) and (29). First
note that, since V ′ separates the points of V , (103) is equivalent to

v(0) v(1)(a) = a{1}‵

▷ v{2}‵

. (106)
Moreover, to distinguish between ∆−2 and the coproduct ∆ on U defined in Propo-
sition 4.4, we will employ the Sweedler notation ∆−2(f) := f(1)‵ ⊗ f(2)‵ . Then it
follows from (42), (57) and (73) that

f(1)‵(b) f(2)‵(a) = f(b⟨1⟩‵a⟨2⟩‵). (107)
Using Lemma 2.4 for the relations concerning the inverse braiding, we obtain

(v(0))(0) v(1)(a) (v(0))(1)(b)
(106)= b{1}‵

2 ▷ (a{1}‵
1 ▷v{2}‵

1){2}‵
2

(23)= b{1}‵
2⟨1⟩‵ ▷ (a{1}‵

1⟨2⟩‵ ▷v{2}‵
1{2}‵

2) (2)= b⟨1⟩‵{1}‵
1 ▷ (a⟨2⟩‵{1}‵

2 ▷v{2}‵
1{2}‵

2)
(19)= (b⟨1⟩‵{1}‵

1a⟨2⟩‵{1}‵
2)▷v{2}‵

1{2}‵
2

(5)= (b⟨1⟩‵a⟨2⟩‵){1}‵

▷v{2}‵

(106)= v(0) v(1)(b⟨1⟩‵a⟨2⟩‵) (107)= v(0) (v(1))(1)‵(b) (v(1))(2)‵(a).
Therefore

v(0) ⊗ (v(1))(1)‵ ⊗ (v(1))(2)‵ = (v(0))(0) ⊗ (v(0))(1) ⊗ v(1) =: v(0) ⊗ v(1) ⊗ v(2),

which shows the first relation of (28). The second relation of (28) follows from the
definition of ε in Proposition 4.4 and

v(0) ε(v(1)) = v(0) v(1)(1) (106)= 1{1}‵

▷ v{2}‵ (6)= 1 ▷ v (19)= v.

Furthermore,

v(0)
{1}◦

v(1)
⟨1⟩(b) f{2}◦⟨2⟩(a) (53)= v(0)

{1}◦
v(1)(b⟨1⟩) f{2}◦

(a⟨2⟩)
(100)= v(0)

{2}‵

v(1)(b⟨1⟩) f(a⟨2⟩{1}‵

) (106)= (b⟨1⟩{1}‵
1 ▷ v{2}‵

1){2}‵
2 f(a⟨2⟩{1}‵

2)
(23)= (b⟨1⟩{1}‵

1⟨2⟩‵ ▷ v{2}‵
1{2}‵

2) f(a⟨2⟩{1}‵
2⟨1⟩‵) (2),(49)= (b{1}‵

2 ▷ v{2}‵
1{2}‵

2) f(a{1}‵
1)

(106)= v{2}‵

(0) v
{2}‵

(1)(b) f(a{1}‵

) (100)= v{1}◦

(0) v
{1}◦

(1)(b) f{2}◦
(a),
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which proves (29). Hence ρR turns V into a braided right U -module.
Now let H be a braided bialgebra, V a braided right H-module algebra, and U

a left dual of H as in Theorem 4.5. The compatibility of the braiding Ψ◦
UV with

the (modified) comultiplication on U and the (modified) multiplications on U and
V has been discussed in the beginning of the proof. To show that V becomes a
braided right U (2,−2)-comodule algebra, we need to verify (34).

First note that

m2(f ⊗ g)(a) (37),(75)= ⟨⟨Ψ2
UU (f ⊗ g),Ψ−1

HH ◦∆(a)⟩⟩ (42),(57)= ⟨⟨f ⊗ g,ΨHH ◦∆(a)⟩⟩
(41)= f(a(1)

⟨2⟩)g(a(2)
⟨1⟩) (68)= f ∗ g(a). (108)

Starting with the right hand side of (34), we compute that

u(0) v(0)
{1}◦

(u(1)
{2}◦

∗ v(1))(a) (108)= u(0) v(0)
{1}◦

u(1)
{2}◦

(a(1)
⟨2⟩) v(1)(a(2)

⟨1⟩)
(100)= u(0) v(0)

{2}‵

u(1)(a(1)
⟨2⟩{1}‵

) v(1)(a(2)
⟨1⟩)

(106)= u(0)
(
a(2)

⟨1⟩{1}‵
1 ▷ v{2}‵

1
){2}‵

2 u(1)(a(1)
⟨2⟩{1}‵

2)
(23)= u(0)

(
a(2)

⟨1⟩{1}‵
1⟨2⟩‵ ▷ v{2}‵

1{2}‵
2
)
u(1)(a(1)

⟨2⟩{1}‵
2⟨1⟩‵)

(2),(49)= u(0)
(
a(2)

{1}‵
2 ▷ v{2}‵

1{2}‵
2
)
u(1)(a(1)

{1}‵
1) (10)= u(0)

(
a{1}‵

(2) ▷ v
{2}‵)

u(1)(a{1}‵

(1))
(106)= (a{1}‵

1(1)
{1}‵

2 ▷ u{2}‵
2)(a{1}‵

1(2) ▷ v
{2}‵

1)
(10)= (a{1}‵

1{1}‵
2(1) ▷ u

{2}‵
2{1})(a{1}‵

1{1}‵
2(2)

{2} ▷ v{2}‵
1) (32)= a{1}‵

1{1}‵
2 ▷ (u{2}‵

2 v{2}‵
1)

(7)= a{1}‵

▷ (uv){2}‵ (106)= (uv)(0) (uv)(1)(a),

which implies (34). Finally, if 1 ∈ V , then 1(0) 1(1)(a) (106)= a{1}‵
▷ 1{2}‵ (8)= a ▷ 1 (33)=

1 ε(a), from which we conclude that ρR(1) = 1 ⊗ 1. This finishes the proof that V
is a braided right U (2,−2)-comodule algebra.

The opposite versions are proved analogously. □

Taking V := H in the previous theorem and the multiplication of H as left
action, the right coaction ρR : H → H ⊗ U is determined by

ρR(a)(f ⊗ b) (103)= f(b⟨1⟩‵a⟨2⟩‵) (73)= ⟨⟨∆−2(f), a⊗ b⟩⟩,

which is equivalent to
a(0)(f) a(1) = f(2)‵(a) f(1)‵ , ∆−2(f) := f(1)‵ ⊗ f(2)‵ .

However, if we consider H as a braided algebra with respect to the inverse braiding
Ψ−1

HH , then ρR(a)(f ⊗ b) = f(b⟨1⟩a⟨2⟩) and thus
f(a(0)) a(1) = f(2)(a) f(1), ∆(f) := f(1) ⊗ f(2).

The corresponding left U -coaction ρL(a)(b⊗ f) = f(a⟨1⟩b⟨2⟩) satisfies
f(a(0)) a(−1) = f(1)(a) f(2).
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These observations may be viewed as the dual version of Corollary 5.5.
Note that the coproduct of the dual coalgebra (U,∆, ε) had to be changed to

∆−2 in Theorem 5.6. Therefore, combining repeatedly Theorems 5.4 and 5.6 may
turn V into a (co)module for a whole family of (co)algebras, each time with respect
to a potentially different (co)action. The starting point for this observation is the
next corollary.

Corollary 5.7. (i) Let (H,∆, ε) be a braided coalgebra and V a braided right
H-comodule with coaction ρR : V → V ⊗H. Let U ⊂ H ′ be a non-degenerate unital
subalgebra with product given by (75) such that ΨUU , Ψ◦

UH and Ψ◦
UV introduced in

(57), (59) and (93), respectively, are bijective. Assume that

Ψ◦◦
HV : H⊗V −→ (V ′ ⊗U)′, Ψ◦◦

HV (a⊗v)(e⊗f) := ⟨⟨e⊗ a,Ψ◦−1
UV (v ⊗ f)⟩⟩, (109)

yields a bijection Ψ◦◦
HV : H ⊗ V → V ⊗H ⊂ (V ′ ⊗ U)′. If the map

ρ‵R : V −→ (V ′ ⊗ U)′, ρ‵R(v)(e⊗ f) := e(v(0)) f{1}◦‵

(v(1)
{2}◦‵

) (110)
satisfies ρ‵R : V → V ⊗ H ⊂ (V ′ ⊗ U)′, then it defines a right H-coaction that
turns V into a braided right H-comodule with respect to the braiding Ψ◦◦

HV and the
coproduct ∆−2 := Ψ−2

HH ◦ ∆ on H.
If H is a braided bialgebra, V is a braided right H-comodule algebra, and U is

a left dual of H as in Theorem 4.5, then the right coaction defined in (110) turns
V into a braided right H(2,−2)-comodule algebra.

(ii) Let (H,m) be a braided unital algebra and V a braided left H-module with left
action νL : H ⊗ V → V . Let U be a non-degenerate subcoalgebra of H◦ as defined
in Proposition 4.4 such that ΨUU and Ψ◦

UV given in (57) and (93), respectively,
are bijective, and suppose that ρR defined in (103) satisfies (104). Assume that the
map Ψ◦◦

HV introduced in (109) yields a bijection Ψ◦◦
HV : H ⊗ V → V ⊗H, and that

there exists a non-degenerate subspace W ⊂ V ′ such that
Ψ◦◦

W H : W ⊗H −→ (U⊗V )′, Ψ◦◦
W H(e⊗a)(f⊗v) := ⟨⟨f ⊗ e,Ψ◦◦

HV (a⊗ v)⟩⟩, (111)
yields a bijection Ψ◦◦

W H : W⊗H → H⊗W ⊂ (U⊗V )′. Then the map ν‵L : H⊗V →
W ′,
ν‵L(a⊗ v)(e) := ⟨·,·⟩ ◦ (νL ⊗ id) ◦ (Ψ−1

HV ⊗ id) ◦ (id ⊗ Ψ◦◦
W H) ◦ (v ⊗ e⊗ a), (112)

turns V into a braided left H-module with respect to the braiding Ψ◦◦
HV and the

multiplication m−2 := m ◦ Ψ−2
HH on H.

If H is a braided bialgebra, V is a braided left H-module algebra, and U is a left
dual of H as in Theorem 4.5, then the left action defined in (112) turns V into a
braided left H(−2,2)-module algebra.

Analogous statements hold for the opposite versions.

Proof. (i) First note that the braided coalgebra (H,∆, ε) and the subalgebra U ⊂
H ′ in (i) satisfy the assumptions of Theorem 5.4. Hence the left action (98) turns
V into a braided left U -module with respect to the braiding Ψ◦

UV . From (76), it
follows that H ∼= ι(H) ⊂ U◦ is a non-degenerate subcoalgebra. Furthermore, Ψ◦◦

HV

corresponds to Ψ◦
UV in Theorem 5.6, where H and U swap the roles in the present
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situation. Applying Theorem 5.6, we conclude that the H-coaction defined in (103)
turns V into a braided right H-comodule with respect to the braiding Ψ◦◦

HV and
the coproduct ∆−2 = Ψ−2

HH ◦ ∆. But, before we can apply Theorem 5.6, we need
to prove that the coaction resulting from this construction coincides with (110) so
that (104) is fulfilled by assumption.

Let v ∈ V . To distinguish the new coaction ρ‵R from the original one, we use the
Sweedler notation ρ‵R(v) := v(0)‵ ⊗v(1)‵ . Evaluating ρ‵R(v) ∈ V ⊗H on e⊗f ∈ W⊗U
yields

e(v(0)‵) f(v(1)‵)
(103)= e(f{1}◦‵

▷ v{1}◦‵ ) (98)= f{1}◦‵(v{2}◦‵

(1)
{1}‵) e(v{2}◦‵

(0)
{2}‵)

(92)= f{1}◦‵{2}◦(v{2}◦‵

(1)) e(v{2}◦‵

(0)
{1}◦),

which is equivalent to

v(0)‵ f(v(1)‵) = f{1}◦‵{2}◦
(v{2}◦‵

(1)) v{2}◦‵

(0)
{1}◦

. (113)

Furthermore,

f{2}◦
(a) v{1}◦

(0) ⊗ v{1}◦

(1)
(100)= f(a{1}‵

) v{2}‵

(0) ⊗ v{2}‵

(1)

(31)= f(a⟨1⟩‵{1}‵

) v(0)
{2}‵

⊗ v(1)
⟨2⟩‵ (56),(100)= f{2}◦

1{2}◦
2 (a) v(0)

{1}◦
1 ⊗ v(1)

{1}◦
2

gives
(ρR ⊗ id) ◦ Ψ◦

UV = (id ⊗ Ψ◦
UH) ◦ (Ψ◦

UV ⊗ id) ◦ (id ⊗ ρR).

Applying on both sides the corresponding inverse braidings, we obtain

(id ⊗ Ψ◦−1
UH ) ◦ (ρR ⊗ id) = (Ψ◦

UV ⊗ id) ◦ (id ⊗ ρR) ◦ Ψ◦−1
UV . (114)

Inserting (114) into (113) yields

v(0)‵ f(v(1)‵)
(114),(113)= f{1}◦‵

(v(1)
{2}◦‵

) v(0).

This proves (110) for the given right H-coaction ρR(v) = v(0) ⊗ v(1) on V and with
the braiding Ψ◦ −1

UH (a⊗ f) = f{1}◦‵ ⊗ a{2}◦‵ on H ⊗ U .
Assume now that H is a braided bialgebra and V is a braided right H-comodule

algebra. Then, by Theorem 5.4, V becomes a left U -module algebra. In Proposi-
tion 4.7, it has been shown that H ∼= ι(H) is a left dual of U . Applying Theorem 5.6
with the roles of U and H reversed shows that the new coaction ρ‵R turns V into
a braided right H(2,−2)-comodule algebra.

(ii) Consider a braided unital algebra (H,m), a braided left H-module V and a
non-degenerate subcoalgebra U ⊂H◦ as described in (ii). From Theorem 5.6, we
conclude that V becomes a braided right U -comodule with respect to the coproduct
∆−2 := Ψ−2

UU ◦∆ on U , the right coaction defined in (103), and the braiding Ψ◦
UV .

As in the proof of (i), Ψ◦◦
HV corresponds to the braiding Ψ◦

UV in Theorem 5.4 with
the roles of H and U reversed. Furthermore, the multiplication on H ∼= ι(H) ⊂ U ′

corresponding to the coproduct ∆−2 on U in (75) is given by m−2 = m ◦ Ψ−2
HH .
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Indeed, for all a, b ∈ H and f ∈ U , we have

⟨m(ι(a) ⊗ ι(b)), f⟩ (75)= ⟨⟨a⊗ b,Ψ−1
UU ◦∆−2(f)⟩⟩ (38),(42)= ⟨⟨Ψ−3

HH(a⊗ b),∆(f)⟩⟩
(73)= ⟨m ◦ Ψ−2

HH(a⊗ b), f⟩ (37)= ⟨m−2(a⊗ b), f⟩.
Applying now Theorem 5.4 shows that V becomes a braided left H-module with
respect to the left H-action defined in (98), the multiplication m−2 := m ◦ Ψ−2

HH

on H, and the braiding Ψ◦◦
HV .

Let ν‵L denote the new left H-action on V . To show that ν‵L is given by (112),
we use the Sweedler-type notation

Ψ◦◦
HV (a⊗ v) := v{1}◦◦

⊗ a{2}◦◦
, Ψ◦◦

W H(e⊗ a) := a{1}◦◦
⊗ e{2}◦◦

,

for a ∈ H, v ∈ V and e ∈ W , and compute that

e(ν‵L(a⊗ v)) (98)= e(v(0)
{2}◦‵) v(1)

{1}◦‵(a) (109)= e(v(0)
{1}◦◦) v(1)(a{2}◦◦)

(111)= e{2}◦◦(v(0)) v(1)(a{1}◦◦) (106)= e{2}◦◦(a{1}◦◦{1}‵
▷ v{2}‵).

(115)

This shows that ν‵L is given by (112). In particular, we have ν‵L : H⊗V → V ⊂ W ′.
If H is a braided bialgebra, V is a braided left H-module algebra, and U is a left

dual of H as in Theorem 4.5, then we conclude from Theorem 5.6 that V becomes
a braided right U (2,−2)-comodule algebra. Since H(−2,2) is a left dual of U (2,−2) by
Proposition 4.8, we deduce from Theorem 5.4 that the left action ν‵L turns V into
a braided left H(−2,2)-module algebra.

The opposite versions are proved analogously. □

The results of the last corollary may be seen as an induction step. Starting with
an H-(co)module V , Corollary 5.7 produces another H-(co)action on V but for the
modified coproduct ∆−2 or product m−2. If the assumptions of the corollary are
again satisfied, we can repeat the process, and so on, obtaining thus for all n ∈ N
an H-(co)action on V for the coproduct ∆−2n or the product m−2n. If H is a
braided bialgebra and V a braided (co)module algebra, then we get a coaction of
the braided bialgebra H(2n,−2n) or an action of H(−2n,2n).

Theorem 5.4 shows how to turn a braided comodule of a braided coalgebra into
a braided module of the dual algebra. However, it is more natural to dualize a
coaction in such a way that a dual space of the comodule becomes a module of
the dual algebra. This will be done in the next proposition. Unlike Theorem 5.4,
a braided comodule algebra will not dualize to a braided module algebra. The
correct way would be to dualize it to a braided module coalgebra but, as mentioned
in Remark 2.3, we do not discuss these structures here.

Proposition 5.8. Let H be a braided coalgebra and V a braided right H-comodule
with coaction ρR : V → V ⊗H. Let U ⊂ H ′ and W ⊂ V ′ satisfy the assumptions
of Lemmas 4.1, 5.1, 5.2 and 5.3 which guarantee that the braidings ΨUU , Ψ◦

HW ,
Ψ◦

UV and Ψ•
W U are well-defined. Assume that U ⊂ H ′ is a (unital) subalgebra with

respect to the product defined in (75). Consider

νR : W ⊗ U −→ V ′, νR(e⊗ f)(v) := f(v(1)
{1}‵

) e(v(0)
{2}‵

). (116)
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If νR : W ⊗ U → W ⊂ V ′, then it defines a right U -action on W such that W
becomes a braided right U -module with respect to the braidings Ψ−1

UU and Ψ•
W U .

For a braided left H-comodule V , it is required that U and W satisfy the as-
sumptions of Lemmas 4.1, 5.1, 5.2 and 5.3 which guarantee that the braidings
ΨUU , Ψ◦

W H , Ψ◦
V U and Ψ•

UW are well-defined. If

νL : U ⊗W −→ V ′, νL(f ⊗ e)(v) := f(v(−1)
{2}‵

) e(v(0)
{1}‵

) (117)

yields a map νL : U⊗W → W ⊂ V ′, then it defines a left U -action on W such that
W becomes a braided left U -module with respect to the braidings Ψ−1

UU and Ψ•
UW .

Proof. As customary, we denote the map defined in (116) by νR(e ⊗ f) := e ◁ f
and the left action given in (98) by νL(f ⊗ v) := f ▷ v. Since

(e ◁ f)(v) (116)= f(v(1)
{1}‵

) e(v(0)
{2}‵

) (98)= e(f ▷ v), f ∈ U, v ∈ V, e ∈ V ′,

it follows immediately from Theorem 5.4 that (116) defines a right U -action on V ′.
Assuming that νR : W ⊗ U → W , we need to prove the compatibility with the
braiding Ψ•

W U .
Although the proof of (22) goes along the lines of previous ones, we present the

computations in order to show where all the listed braidings and Lemma 5.3 are
needed. Let now f, g ∈ U , a ∈ H, e ∈ W and v ∈ V . Employing the Sweedler-type
notation Ψ•

W U (e⊗ f) := f{1}• ⊗ e{2}• , we have

f{1}•
(a) (e ◁ g){2}•

(v) (96)= f{2}◦
(a) (e ◁ g)(v{1}◦

) (92)= f(a{1}‵

) (e ◁ g)(v{2}‵

)
(116)= f(a{1}‵

1 ) g(v{2}‵
1(1)

{1}‵
2) e(v{2}‵

1(0)
{2}‵

2)
(2),(31)= f(a{1}‵

2⟨1⟩‵) g(v(1)
{1}‵

1⟨2⟩‵) e(v(0)
{2}‵

1{2}‵
2)

(54),(84)= f ⟨1⟩‵(a{2}◦
) g⟨2⟩‵(v(1)

{1}‵

) e{1}◦
(v(0)

{2}‵

)
(97)= f ⟨1⟩‵{1}•

(a) g⟨2⟩‵(v(1)
{1}‵

) e{2}•
(v(0)

{2}‵

) (116)= f ⟨1⟩‵{1}•
(a) (e{2}•

◁ g⟨2⟩‵)(v),

which implies (22) for the braidings Ψ•
W U and Ψ−1

UU . Furthermore, we know from
Lemma 2.4 that U is a braided algebra with respect to the braiding Ψ−1

UU , so this
finishes the proof of the first part. The second part is proved similarly. □

The analog of dualizing a coaction to an action as in the last proposition consists
in dualizing an action to obtain a coaction of the dual coalgebra on the dual space.
This is the purpose of our last proposition.

Proposition 5.9. Let H be a braided unital algebra and V a braided left H-module
with action νL : H ⊗ V → V . Let U ⊂ H ′ and W ⊂ V ′ satisfy the assumptions
of Lemmas 4.1, 5.1, 5.2 and 5.3 which guarantee that the braidings ΨUU , Ψ◦

HW ,
Ψ◦

UV and Ψ•
W U are well-defined. Assume that U ⊂ H◦ is a subcoalgebra as in

Proposition 4.4 but with respect to the braiding Ψ−1
HH on H, i.e., ∆◦(f) ∈ U ⊗ U

for all f ∈ U , where

⟨⟨∆◦(f), a⊗ b⟩⟩ := ⟨f, m◦Ψ−1
HH(a⊗ b)⟩ = f(b⟨1⟩‵a⟨2⟩‵), a, b ∈ H. (118)
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Consider the linear map

ρL : W −→ (H ⊗ V )′, ρL(e)(a⊗ v) := e(a{1}‵

▷ v{2}‵

). (119)
If ρL : W → U ⊗W ⊂ (H ⊗ V )′, then it defines a left U -coaction on W such that
W becomes a braided left U -comodule with respect to the coalgebra (U,∆◦, ε), the
braiding Ψ−1

UU on U and the braiding Ψ•
W U between W and U .

For a braided right H-comodule V , it is required that U and W satisfy the as-
sumptions of Lemmas 4.1, 5.1, 5.2 and 5.3 which guarantee that the braidings ΨUU ,
Ψ◦

W H , Ψ◦
V U and Ψ•

UW are well-defined. If the linear map

ρR : W −→ (V ⊗H)′, ρR(e)(v ⊗ a) := e(v{1}‵

◁ a{2}‵

), (120)
fulfills ρR : W → W ⊗U ⊂ (V ⊗H)′, then it defines a right U -coaction on W such
that W becomes a braided right U -comodule with respect to the coalgebra (U,∆◦, ε),
the braiding Ψ−1

UU on U and the braiding Ψ•
UW between U and W .

Proof. As in the proof of the previous proposition, we prove (26) and (27) in order
to show that the correct braidings and the correct coproduct are used. Let f ∈ U ,
a, b ∈ H, e ∈ W and v ∈ V . Then

e(−1)(a) (e(0))(−1)(b) (e(0))(0)(v) (119)= e(a{1}‵
2 ▷ (b{1}‵

1 ▷ v{2}‵
1){2}‵

2)
(2),(23)= e(a⟨1⟩‵{1}‵

1 ▷ (b⟨2⟩‵{1}‵
2 ▷ v{2}‵

1{2}‵
2)) (19)= e((a⟨1⟩‵{1}‵

1b⟨2⟩‵{1}‵
2) ▷ v{2}‵

1{2}‵
2)

(5)= e((a⟨1⟩‵b⟨2⟩‵){1}‵

▷ v{2}‵

) (119)= e(−1)(a⟨1⟩‵b⟨2⟩‵) e(0)(v)
(118)= (e(−1))(1)(a) (e(−1))(2)(b) e(0)(v),

so that the first relation of (26) holds for the coproduct given in (118). Moreover,

ε(e(−1)) e(0)(v) = e(−1)(1) e(0)(v) (119)= e(1{1}‵

▷ v{2}‵

) (6),(19)= e(v).
Hence ρL defines a left U -coaction for the coalgebra (U,∆◦, ε).

Recall from (54) that Ψ−1
UU is the braiding on U which corresponds to Ψ−1

HH on
H according to (42). Now,

f{1}•⟨1⟩‵(a) e(−1)
⟨2⟩‵(b) e(0)

{2}•
(v) (54)= f{1}•

(a⟨1⟩‵ ) e(−1)(b⟨2⟩‵) e(0)
{2}•

(v)
(92),(96)= f(a⟨1⟩‵{1}‵

) e(−1)(b⟨2⟩‵) e(0)(v{2}‵

) (119)= f(a⟨1⟩‵{1}‵
1) e(b⟨2⟩‵{1}‵

2 ▷ v{2}‵
1{2}‵

2)
(2),(23)= f(a{1}‵

2) e((b{1}‵
1 ▷ v{2}‵

1){2}‵
2) (92),(96)= f{1}•

(a) e{2}•
(b{1}‵

▷ v{2}‵

)
(119)= f{1}•

(a) e{2}•

(−1)(b) e{2}•

(0)(v),

which proves (27) for the braidings Ψ−1
UU on U and Ψ•

W U between W and U .
The proof of the opposite version is similar. □

Note that we used all the lemmas of this section in the proofs of Propositions 5.8
and 5.9. As a closing remark, let us point out that the relevance of the inverse braid-
ings is undeniable throughout this paper, not only for turning right braided vector
spaces into left braided vector spaces and vice versa, but also in the definitions
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of the braidings of the type Ψ◦
XY , in the definitions of actions and coactions in

Theorems 5.4 and 5.6, and in our final propositions.

6. Examples

Example 6.1. Finite-dimensional braided (co)algebras, bialgebras and Hopf alge-
bras and their finite-dimensional (co)modules yield examples of all the structures
presented [25, 30]. In the finite-dimensional situation, the non-degenerated dual
spaces are obviously unique. Explicit formulas can be deduced by using the coeval-
uation map

coevH : K −→ H ⊗H ′, coevH(1) =
n∑

j=1
ej ⊗ ej , (121)

where {e1, . . . , en} ⊂ H is a linear basis and {e1, . . . , en} ⊂ H ′ its dual basis. Under
the identification K ⊗ H ∼= H ∼= H ⊗ K, (121) yields (id ⊗ ev) ◦ (coevH ⊗ id) =
id : H → H and (ev ⊗ id) ◦ (id ⊗ coevH′) = id : H → H. From the dual versions
of these identities, we obtain for instance the following formulas for the induced
braidings ΨH′H′ and ΨH′H :

g⟨1⟩ ⊗ f ⟨2⟩ =
n∑

j,k=1
g(e⟨1⟩

j ) f(e⟨2⟩
k ) ej ⊗ ek, a⟨1⟩ ⊗ f ⟨2⟩ =

n∑
j=1

f(e⟨1⟩
j ) a⟨2⟩ ⊗ ej ,

and similar formulas for all other induced braidings. Furthermore, the coproduct
(73) and the product (75) may be written in the form

∆(f) =
n∑

j,k=1
f(e⟨1⟩

j e
⟨2⟩
k ) ej ⊗ ek

and
m(f ⊗ g) =

n∑
j=1

f(ej(1)
⟨2⟩‵) g(ej(2)

⟨1⟩‵) ej ,

respectively. Analogous expressions can be derived for actions and coactions. For
example, the coaction ρR : H → H ⊗ H ′ in (103) for V = H and with the
multiplication as left action is given by

ρR(a) =
n∑

j=1
e

⟨1⟩‵
j a⟨2⟩‵ ⊗ ej .

Similarly, the left action νL : H ⊗H ′ → H ′ in (98) for U = H, V = H ′, and with
the right H ′-coaction on H ′ given by the coproduct ρR = ∆ : H ′ → H ′ ⊗H ′ from
(73), becomes

νL(a⊗ f) =
n∑

j=1
f(eja) ej .

Example 6.2. Graded braided (co)algebras, bi- and Hopf algebras and their
graded (co)modules [27] provide examples if the spaces of homogeneous elements
are finite-dimensional for all grades (i.e., if they are locally finite). The dual space
may then be given as the direct sum of the duals of the spaces of homogeneous ele-
ments (i.e., as the graded dual) so that the existence of the presented structures can
be deduced grade by grade from Example 6.1. In this way, we obtain a large class

Rev. Un. Mat. Argentina, Vol. 65, No. 2 (2023)



466 ELMAR WAGNER

of infinite-dimensional examples. With some care, these arguments can be gen-
eralized to ascending, exhaustive, locally finite filtered (co)algebras, bi- and Hopf
algebras [1]. Presumably the most prominent examples are infinite-dimensional
Nichols algebras generated by a finite-dimensional Yetter–Drinfeld module (see
e.g. [1, 2, 4, 3, 5, 6, 8, 9]). For a convenient PBW basis, [15] may be consulted. For
examples related to the upper triangular part of a quantized enveloping algebra,
see [28].
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