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WEIGHTED MIXED WEAK-TYPE INEQUALITIES FOR
MULTILINEAR FRACTIONAL OPERATORS

M. BELÉN PICARDI

Abstract. The aim of this paper is to obtain mixed weak-type inequalities
for multilinear fractional operators, extending results by Berra, Carena and
Pradolini [J. Math. Anal. Appl. 479 (2019)]. We prove that, under certain
conditions on the weights, there exists a constant C such that∥∥∥∥Gα(f⃗ )

v

∥∥∥∥
Lq,∞(νvq)

≤ C

m∏
i=1

∥fi∥L1(ui),

where Gα(f⃗ ) is the multilinear maximal function Mα(f⃗ ) introduced by Moen
[Collect. Math. 60 (2009)] or the multilineal fractional integral Iα(f⃗ ). As an
application, a vector-valued weighted mixed inequality for Iα(f⃗ ) is provided.

1. Introduction

E. Sawyer proved in 1985 the following mixed weak-type inequality.

Theorem 1.1 ([18]). If u, v ∈ A1, then there is a constant C such that for all
t > 0,

uv

{
x ∈ R : M(fv)(x)

v(x) > t

}
≤ C

t

∫
R

|f(x)|u(x)v(x) dx. (1.1)

This estimate is a highly non-trivial extension of the classical weak type (1, 1)
inequality for the maximal operator due to the presence of the weight function v
inside the distribution set. Note that if v = 1, this result is a well-known estimate
due to C. Fefferman and E. Stein [6]. The inequality (1.1) also holds if u ∈ A1
when v ∈ A1; see [9].

In 2005, D. Cruz-Uribe, J. M. Martell and C. Pérez [5] extended (1.1) to Rn.
Furthermore, they settled that estimate for Calderón–Zygmund operators, answer-
ing affirmatively and extending a conjecture raised by E. Sawyer for the Hilbert
transform [18]. The precise statement of their result is the following.
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Theorem 1.2 ([5]). If u, v ∈ A1, or u ∈ A1 and uv ∈ A∞, then there is a constant
C such that, for all t > 0,

uv

{
x ∈ Rn : |T (fv)(x)|

v(x) > t

}
≤ C

t

∫
Rn

|f(x)|u(x)v(x) dx, (1.2)

where T is a Calderón–Zygmund operator with some regularity.

Quantitative versions of the previous result were obtained in [17] and also some
counterparts for commutators in [1].

In [5], D. Cruz-Uribe, J. M. Martell and C. Pérez conjectured that (1.2) and
(1.1) should hold for v ∈ A∞. This result is the most singular case, due to the fact
that the A∞ condition is the weakest possible asumption within the Ap classes.

Recently, K. Li, S. Ombrosi and C. Pérez [12] solved that conjecture. They
proved the following theorem.

Theorem 1.3 ([12]). Let v ∈ A∞ and u ∈ A1. Then there is a constant C
depending on the A1 constant of u and the A∞ constant of v such that∥∥∥∥∥T (fv)

v

∥∥∥∥∥
L1,∞(uv)

≤ C∥f∥L1,∞(uv),

where T can be the Hardy–Littlewood maximal function, any Calderón–Zygmund
operator or any rough singular integral.

In 2009, Lerner et al. [10] introduced the multi(sub)linear maximal function M
defined by

M(f⃗ )(x) = sup
Q∋x

m∏
i=1

1
|Q|

∫
Q

|fi(yi)| dyi,

where f⃗ = (f1, . . . , fm) and the supremum is taken over all cubes Q containing x.
This maximal operator is smaller than the product

∏m
i=1 Mfi, which was the

auxiliar operator used previously to estimate multilinear singular integral opera-
tors.

There is a connection between multilinear operators and mixed weak-type in-
equalities (see [10] or [12]). In fact, in a recent joint work with K. Li and S. Ombrosi
we proved the following theorem.

Theorem 1.4 ([13]). Let T be a multilinear Calderón–Zygmund operator, w⃗ =
(w1, . . . , wm) and ν = w

1
m
1 . . . w

1
m
m . Suppose that w⃗ ∈ A(1,...1) and νv

1
m ∈ A∞ or

w1, . . . , wm ∈ A1 and v ∈ A∞. Then there is a constant C such that∥∥∥∥∥T (f⃗ )
v

∥∥∥∥∥
L

1
m

,∞(νv
1
m )

≤ C

m∏
i=1

∥fi∥L1(wi).
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We refer the reader to Section 2 for the definition of A(1,...,1) and more details
about AP⃗ weights.

The study of fractional integrals and associated maximal functions is impor-
tant in harmonic analysis. We recall that the fractional integral operator or Riesz
potential is defined by

Iαf(x) =
∫
Rn

f(y)
|x − y|n−α

dy, 0 < α < n,

and the fractional maximal function by

Mαf(x) = sup
Q∋x

1
|Q|1− α

n

∫
Q

|f(y)| dy, 0 ≤ α < n,

where the supremum is taken over all cubes Q containing x. Note that in the case
α = 0 we recover the Hardy–Littlewood maximal operator. Properties of these
operators can be found in the books by Stein [19] and Grafakos [7].

F. Berra, M. Carena and G. Pradolini [2] proved the following mixed weak-type
inequality.

Theorem 1.5 ([2]). Let 0 < α < n, 1 ≤ p < n
α and q satisfying 1

q = 1
p − α

n . If u,

v are weights such that u, v
q
p ∈ A1 or uv

−q

p′ ∈ A1 and v ∈ A∞(uv
−q

p′ ), then there
exists a positive constant C such that for every t > 0

uv
q
p

{
x ∈ Rn : Iα(fv)(x)

v(x) > t

} 1
q

≤ C

t

(∫
Rn

|f(x)|pu(x)
p
q v(x)dx

) 1
p

,

where Iα is the fractional integral or the fractional maximal function.

In the multilinear setting, a natural way to extend fractional integrals is the
following.

Definition 1.6. Let α be a number such that 0 < α < mn and let f⃗ = (f1, . . . , fm)
be a collection of functions on Rn. We define the multilinear fractional integral as

Iαf⃗(x) =
∫

(Rn)m

f1(y1) . . . fm(ym) dy⃗

(|x − y1| + · · · + |x − ym|)mn−α
.

K. Moen [14] introduced the multi(sub)linear maximal operator Mα asociated
to the multilinear fractional integral Iα.

Definition 1.7. For 0 ≤ α < mn and f⃗ = (f1, . . . , fm) as above, we define the
multi(sub)linear maximal operator Mα by

Mαf⃗(x) = sup
Q∋x

m∏
i=1

(
1

|Q|1− α
nm

∫
Q

|fi(yi)| dyi

)
.
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Observe that the case α = 0 corresponds to the multi(sub)linear maximal func-
tion M studied in [10].

At this point we present our contribution. Our first result is a counterpart of
Theorem 1.5 for multilinear fractional maximal operators.

Theorem 1.8. Let 0 ≤ α < mn. Let q = n
mn−α , u⃗mq = (umq

1 , . . . , umq
m ) and

ν =
∏m

i=1 uq
i . Suppose that u⃗mq ∈ A(1,...,1) and νvq ∈ A∞, or umq

1 , . . . , umq
m ∈ A1

and vmq ∈ A∞. Then there exists a constant C such that∥∥∥∥∥Mα(f⃗ )
v

∥∥∥∥∥
Lq,∞(νvq)

≤ C

m∏
i=1

∥fi∥L1(ui).

Note that if α = 0 then q = 1
m and we obtain Theorem 1.4 for the multi(sub)linear

maximal operator M.

Remark. If in Theorem 1.8 we take m = 1 we get that 1
q = 1 − α

n and the
hypothesis on the weights reduces to uq ∈ A1 and v ∈ A∞. Then we recover
Theorem 1.5 in the case p = 1 for a more general class of weights v. The weight uq

in Theorem 1.8 plays the role of the weight u in Theorem 1.5.

By extrapolation arguments, we can extend this result to multilinear fractional
integrals. The theorem below was essentially obtained in [16]; however, for the sake
of completeness, we will give a complete proof in Appendix A.

Theorem 1.9 ([16]). Let 0 < α < mn. Let q = n
mn−α , u⃗mq = (umq

1 , . . . , umq
m ) ∈

A(1,...,1), vq ∈ A∞ and set ν =
∏m

i=1 uq
i . Then there exists a constant C such that∥∥∥∥∥Iα(f⃗ )

v

∥∥∥∥∥
Lq,∞(νvq)

≤ C

∥∥∥∥∥Mα(f⃗ )
v

∥∥∥∥∥
Lq,∞(νvq)

.

Finally, as a consequence of Theorem 1.8 and Theorem 1.9, we obtain the main
result of this paper.

Theorem 1.10. Let 0 < α < mn. Let q = n
mn−α , u⃗mq = (umq

1 , . . . , umq
m ) and

ν =
∏m

i=1 uq
i . Suppose that u⃗mq ∈ A(1,...,1) and νvq ∈ A∞, or umq

1 , . . . , umq
m ∈ A1

and vmq ∈ A∞. Then there exists a constant C such that∥∥∥∥∥Iα(f⃗ )
v

∥∥∥∥∥
Lq,∞(νvq)

≤ C

m∏
i=1

∥fi∥L1(ui).

The rest of the article is organized as follows. In Section 2 we recall the definition
of the Ap and AP⃗ classes of weights. Section 3 is devoted to the proof of Theo-
rem 1.8. In Section 4, as an application of Theorem 1.10, we obtain a vector-valued
extension of the mixed weighted inequalities for multilinear fractional integrals. We
end this paper with an appendix, in which we give a proof of Theorem 1.9.
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2. Preliminaries

By a weight we mean a non-negative locally integrable function defined on Rn

such that 0 < w(x) < ∞ almost everywhere. We recall that a weight w belongs to
the class Ap, introduced by B. Muckenhoupt [15], 1 < p < ∞, if

sup
Q

(
1

|Q|

∫
Q

w(y) dy

)(
1

|Q|

∫
Q

w(y)1−p′
dy

)p−1

< ∞,

where p′ is the conjugate exponent of p defined by the equation 1
p + 1

p′ = 1. A weight
w belongs to the A1 class if there exists a constant C such that

1
|Q|

∫
Q

w(y) dy ≤ C inf
Q

w.

Since the Ap classes are increasing with respect to p, it is natural to define the A∞
class of weights by A∞ = ∪p≥1Ap.

In 2009, Lerner et al. [10] showed that there is a way to define an analogue of
the Muckenhoupt Ap classes for multiple weights.

Definition 2.1. Let m be a positive integer. Let 1 ≤ p1, . . . , pm < ∞. We denote
by p the number given by 1

p = 1
p1

+ · · ·+ 1
pm

, and by P⃗ the vector P⃗ = (p1, . . . , pm).

Definition 2.2. Let 1 ≤ p1, . . . , pm < ∞. Given w⃗ = (w1, . . . , wm), set

νw⃗ =
m∏

i=1
w

p
pi
i .

We say that w⃗ satisfies the AP⃗ condition if

sup
Q

(
1

|Q|

∫
Q

νw⃗

) 1
p m∏

i=1

(
1

|Q|

∫
Q

w
1−p′

i
i

) 1
p′

i

< ∞.

When pi = 1,
(

1
|Q|
∫

Q
w

1−p′
i

i

) 1
p′

i is understood as (infQ wi)−1. Then we will say
that w⃗ ∈ A(1,...,1) if

sup
Q

(
1

|Q|

∫
Q

νw⃗

) 1
p m∏

i=1
(inf

Q
wi)−1 < ∞.

The multilinear AP⃗ condition has the following characterization in terms of the
linear Ap classes.

Theorem 2.3 ([10, Theorem 3.6]). Let w⃗ = (w1, . . . , wm) and 1 ≤ p1, . . . , pm < ∞.
Then w⃗ ∈ AP⃗ if and only if{

w
1−p′

i
i ∈ Amp′

i
, i = 1, . . . , m,

νw⃗ ∈ Amp,

where the condition w
1−p′

i
i ∈ Amp′

i
in the case pi = 1 is understood as w

1
m
i ∈ A1.
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A more general result can be found in [11, Lemma 3.2].
Observe that in the particular case where every pi = 1 we have p = 1

m . By
Theorem 2.3, given w⃗ = (w1, . . . , wm), we have that the following statements hold:

• If w⃗ = (w1, . . . , wm) ∈ A(1,...,1) then νw⃗ = w
1
m
1 . . . w

1
m
m ∈ A1.

• If w⃗ ∈ A(1,...,1) then w
1
m
i ∈ A1 for all i = 1, . . . , m.

Observe that w⃗ ∈ A(1,...,1) does not imply that wi ∈ A1 for every i = 1, . . . , m.
We can see this with a simple counterexample. Let m = 2 and consider the weights
w1 = 1 and w2 = 1

|x| . Then w⃗ ∈ A(1,...,1), w
1
2
1 , w

1
2
2 ∈ A1, w1 ∈ A1, but w2 ̸∈ A1.

3. Proof of Theorem 1.8

In order to prove Theorem 1.8 we need the following pointwise estimate for Mα

in terms of the multilinear maximal operator M. This is a multilinear version of
Lemma 4 in [2], and to prove it, we follow a similar approach to the one that is
used there.

Lemma 3.1. Let q = n
mn−α . Then

Mα(f1, . . . , fm)(x) ≤ M
(
f1u1−mq

1 , . . . , fmu1−mq
m

) 1
mq (x)

m∏
i=1

(∫
Rn

fiui

) α
mn

.

Proof. Let us fix x ∈ Rn and let Q be a cube containing x. Applying Hölder’s
inequality with 1

1− α
mn

and mn
α we obtain

m∏
i=1

(
1

|Q|1− α
mn

∫
Q

fi

)
=

m∏
i=1

(
1

|Q|1− α
mn

∫
Q

f
1− α

mn
i f

α
mn

i u
1

mq −1
i u

mq−1
mq

i

)

≤
m∏

i=1

( 1
|Q|

∫
Q

fiu
1−mq
i

) 1
mq
(∫

Q

fiui

) α
mn


=

m∏
i=1

(
1

|Q|

∫
Q

fiu
1−mq
i

) 1
mq m∏

i=1

(∫
Rn

fiui

) α
mn

≤ M
(
f1u1−mq

1 , . . . , fmu1−mq
m

) 1
mq

m∏
i=1

(∫
Rn

fiui

) α
mn

.

□

Now we have all the tools that we need to prove Theorem 1.8.
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Proof of Theorem 1.8. By applying Lemma 3.1 and Theorem 1.4, we get

νvq

{
x ∈ Rn : Mα(f⃗ )(x)

v(x) > λ

} 1
q

≤ uq
1 . . . uq

mvq

{
x ∈ Rn : M(f1u1−mq

1 , . . . , fmu1−mq
m )

1
mq (x)

v(x) >
λ∏m

i=1 (
∫
Rn fiui)

α
mn

} 1
q

= uq
1 . . . uq

mvq(Eλ)

= (umq
1 ) 1

m . . . (umq
m ) 1

m (vmq) 1
m (Eλ)m 1

mq

≤ C

λ

m∏
i=1

(∫
Rn

fiui

) α
mn

m∏
i=1

(∫
Rn

fiu
1−mq
i umq

i

) 1
mq

= C

λ

m∏
i=1

(∫
Rn

fiui

)

= C

λ

m∏
i=1

∥fi∥L1(ui),

where

Eλ =
{

x ∈ Rn : M(f1u1−mq
1 , . . . , fmu1−mq

m )(x)
vmq(x) >

(
λ∏m

i=1 (
∫
Rn fiui)

α
mn

)mq} 1
q

.

□

4. A vector-valued extension of Theorem 1.10

Recently, D. Carando, M. Mazzitelli and S. Ombrosi [4] obtained a generalization
of the Marcinkiewicz–Zygmund inequalities to the context of multilinear operators.
We recall one of the results in that work that extends previously known results
from [8] and [3].

Theorem 4.1 ([4]). Let 0 < p, q1, . . . , qm < r < 2 or r = 2 and 0 < p, q1, . . . , qm <
∞ and, for each 1 ≤ i ≤ m, consider {f i

ki
}ki ⊂ Lqi(µi). Let S be a multilinear

operator such that S : Lq1(µ1) × · · · × Lqm(µm) → Lp,∞(ν). Then, there exists a
constant C > 0 such that∥∥∥∥∥∥
( ∑

k1,...,km

|S(f1
k1

, . . . , fm
km

)|r
) 1

r

∥∥∥∥∥∥
Lp,∞(ν)

≤ C∥S∥weak

m∏
i=1

∥∥∥∥∥∥
(∑

ki

|f i
ki

|r
) 1

r

∥∥∥∥∥∥
Lqi (µi)

.

As a consequence of this theorem and Theorem 1.10 we obtain the following
mixed weighted vector valued inequality for a multilinear fractional operator Iα.

Corollary 4.2. Let S(f⃗ ) = Iα(f⃗ )
v , where Iα is a multilinear fractional operator.

Let q = n
mn−α , u⃗mq = (umq

1 , . . . , umq
m ) and ν =

∏m
i=1 uq

i . Suppose that u⃗mq ∈
A(1,...,1) and νvq ∈ A∞, or umq

1 , . . . , umq
m ∈ A1 and vmq ∈ A∞. For each 1 ≤ i ≤ m,
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consider {f i
ki

}ki ⊂ L1(ui). Then, there exists a constant C > 0 such that

∥∥∥∥∥∥
( ∑

k1,...,km

|S(f1
k1

, . . . , fm
km

)|r
) 1

r

∥∥∥∥∥∥
Lq,∞(νvq)

≤ C

m∏
i=1

∥∥∥∥∥∥
(∑

ki

|f i
ki

|r
) 1

r

∥∥∥∥∥∥
L1(ui)

.

Observe that under the hypothesis of Corollary 4.2, S satisfies S : L1(u1)×· · ·×
L1(um) → Lq,∞(νvq). So we are under the hypothesis of Theorem 4.1.

5. Appendix A. Proof of Theorem 1.9

In order to prove Theorem 1.9 we will need two known results. The first one is
due to K. Moen.

Theorem 5.1 ([14, Theorem 3.1]). Suppose that 0 < α < mn; then for every
w ∈ A∞ and all 0 < s < ∞ we have∫

Rn

|Iαf⃗(x)|s w(x) dx ≤ C

∫
Rn

Mαf⃗(x)s w(x) dx

for all functions f⃗ with fi bounded with compact support.

The second result we will rely upon is due to D. Cruz-Uribe, J. M. Martell and
C. Pérez.

Theorem 5.2 ([5, Theorem 1.7]). Let F be a family of pairs of functions that
satisfies that there exists a number p0, 0 < p0 < ∞, such that, for all w ∈ A∞,

∫
Rn

f(x)p0 w(x) dx ≤ C

∫
Rn

g(x)p0 w(x) dx

for all (f, g) ∈ F such that the left hand side is finite, and with C depending only
on [w]A∞ . Then, for all weights u, v such that u ∈ A1 and v ∈ A∞, we have that

∥fv−1∥L1,∞(uv) ≤ C∥gv−1∥L1,∞(uv) (f, g) ∈ F .

Having those results at our disposal we proceed as follows. First of all observe
that if u⃗mq = (umq

1 , . . . , umq
m ) ∈ A(1,...,1), then ν = uq

1 . . . uq
m ∈ A1. Then, by
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Theorem 5.1 and Theorem 5.2,∥∥∥∥∥Iα(f⃗ )
v

∥∥∥∥∥
q

Lq,∞(νvq)

= sup
λ>0

λq

(
νvq

{
x ∈ Rn :

∣∣∣∣∣Iα(f⃗ )(x)
v(x)

∣∣∣∣∣ > λ

})

= sup
λ>0

λq

(
νvq

{
x ∈ Rn :

∣∣∣∣∣T (f⃗ )(x)
v(x)

∣∣∣∣∣
q

> λq

})

= sup
t>0

t

(
νvq

{
x ∈ Rn :

∣∣∣∣∣T (f⃗ )(x)
v(x)

∣∣∣∣∣
q

> t

})

=

∥∥∥∥∥
(

Iα(f⃗ )
v

)q∥∥∥∥∥
L1,∞(νvq)

≤ C

∥∥∥∥∥
(

Mα(f⃗ )
v

)q∥∥∥∥∥
L1,∞(νvq)

= sup
λ>0

λ

(
νvq

{
x ∈ Rn :

(
Mα(f⃗ )(x)

v(x)

)q

> λ

})

= sup
t>0

tq

(
νvq

{
x ∈ Rn :

(
Mα(f⃗ )(x)

v(x)

)q

> tq

})

= sup
t>0

tq

(
νvq

{
x ∈ Rn : Mα(f⃗ )(x)

v(x) > t

})

=

∥∥∥∥∥Mα(f⃗ )
v

∥∥∥∥∥
q

Lq,∞(νvq)

.
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