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ON HOPF ALGEBRAS OVER BASIC HOPF ALGEBRAS OF
DIMENSION 24

RONGCHUAN XIONG

Abstract. We determine finite-dimensional Hopf algebras over an algebraically
closed field of characteristic zero, whose Hopf coradical is isomorphic to a
non-pointed basic Hopf algebra of dimension 24 and the infinitesimal braid-
ings are indecomposable objects. In particular, we obtain families of new
finite-dimensional Hopf algebras without the dual Chevalley property.

1. Introduction

Let k be an algebraically closed field of characteristic zero. It is a fundamental
and difficult question in Hopf algebra theory to classify finite-dimensional ones.
The research in this direction is very rich. Most of the classification results consist
of Hopf algebras that are basic or have the dual Chevalley property (that is, their
coradical is a subalgebra). But there are very few results on finite-dimensional Hopf
algebras without the dual Chevalley property in the literature, unless examples
without pointed duals were constructed in [11, 17, 24, 20, 23] via the generalized
lifting method [4].

As a generalization of the lifting method [8], the generalized lifting method gives
a technical framework to classify the Hopf algebras without the dual Chevalley
property. It consists of the following steps (see [4]):

• Step 1. Classify all Hopf algebras L that are generated by a cosemisimple
coalgebra.

• Step 2. Classify all connected graded Hopf algebras R in the category L
LYD

of left Yetter–Drinfeld modules over L.
• Step 3. Given L and R as in previous items, classify all Hopf algebras A

such that grA ∼= R♯L. Here A is called a lifting of R over L.
The method works because of the following facts. Suppose that A is a Hopf

algebra over k and denote by A[0] the Hopf coradical of A (it is generated by the
coradical A0 of A). If SA(A[0]) ⊆ A[0], then the standard filtration {A[n]}n≥0,
defined recursively by A[n] = A[n−1]

∧
A[0], is a Hopf algebra filtration. Therefore

2020 Mathematics Subject Classification. 16T05, 16S35, 18D10.
Key words and phrases. Nichols algebra, Hopf algebra, dual Chevalley property.
The paper was partially supported by the NSFC (grants 11926353, 11771142).

469

https://doi.org/10.33044/revuma.3018


470 RONGCHUAN XIONG

the associated graded coalgebra grA = ⊕∞
n=0A[n]/A[n−1] with A[−1] = 0 is a Hopf

algebra and so there is a connected graded braided Hopf algebra R = ⊕n≥0R(n)
in A[0]

A[0]
YD such that grA ∼= R♯A[0]. Here R and R(1) are called the diagram and

infinitesimal braiding of A, respectively.
In this paper, following the work [11], we fix a Hopf algebra K24,1 of dimension

24 that is basic and generated by the coradical, and continue the study on Steps 2
and 3 in the lifting procedure.

Using the equivalence K24,1
K24,1

YD ∼= D(Kcop
24,1)M, we determine simple Yetter–Drinfeld

modules over K24,1. It turns out there exist 144 simple objects in K24,1
K24,1

YD, among
which there are 24 one-dimensional objects kχi,j,k

with (i, j, k) ∈ I0,1 × I0,1 × I0,5
and 120 two-dimensional objects Vi,j,k,ι with (i, j, k, ι) ∈ Λ = {(i, j, k, ι) | i, j ∈
I0,5, k, ι ∈ I0,1, j + 3k ̸≡ 3(ι+ 1) mod 6}; see Theorem 3.8 for details.

Now we determine finite-dimensional Nichols algebras over simple objects in
K24,1
K24,1

YD and the liftings of their bosonizations. We first discard Nichols algebras
B(Vi,j,k,ι) of infinite dimension. Using the equivalence K24,1

K24,1
YD ∼= gr A24,1

gr A24,1
YD, we

transport the information of B(Vi,j,k,ι) from the category K24,1
K24,1

YD to gr A24,1
gr A24,1

YD,
where A24,1 is the dual Hopf algebra of K24,1; and we prove B(Vi,j,k,ι)♯ gr A24,1 is
infinite-dimensional by using the classification results in [15]. Then we prove the
remaining ones are finite-dimensional by computing their defining relations and
PBW bases in K24,1

K24,1
YD. Finally, we study the liftings of finite-dimensional Nichols

algebras following the techniques in [8, 11]. Consequently, we have the following
theorem.

Theorem 1.1 (Theorems 4.7 & 5.11). Let A be a finite-dimensional Hopf algebra
over K24,1 whose infinitesimal braiding V is indecomposable in K24,1

K24,1
YD. Then V

is isomorphic either to kχi,j,k
for (i, j, k) ∈ Λ0 or to Vi,j,k,ι for (i, j, k, ι) ∈ ∪6

i=1Λi,
and A is isomorphic to one of the following objects:

•
∧
kχi,j,k

♯K24,1 for (i, j, k) ∈ Λ0;
• B(Vi,j,k,ι)♯K24,1 for (i, j, k, ι) ∈ ∪6

i=1Λi − Λ1∗;
• Ci,j,k,ι(µ) for µ ∈ k and (i, j, k, ι) ∈ Λ1∗.

The Nichols algebra B(Vi,j,k,ι) for (i, j, k, ι) ∈ ∪6
i=4Λi is isomorphic as an algebra

to a quantum plane. They appeared in [5] and it was shown that the braidings are
of non-diagonal type. The Nichols algebra B(Vi,j,k,ι) for (i, j, k, ι) ∈ ∪3

i=1Λi is an
algebra of dimension 18 or 36 with no quadratic relations. They are examples of
Nichols algebra of non-diagonal type, which are (up to isomorphism) arising from
Nichols algebras of standard type B2 by using the techniques in [2].

The Hopf algebras
∧
kχi,j,k

♯K24,1 with (i, j, k) ∈ Λ0 are the duals of pointed Hopf
algebras of dimension 48. The Hopf algebras B(Vi,j,k,ι)♯K24,1 for (i, j, k, ι) ∈ ∪6

i=4Λi

are the duals of pointed Hopf algebras of dimension 96, 144 or 288. The Hopf
algebras B(Vi,j,k,ι)♯K24,1 for (i, j, k, ι) ∈ Λ1 or Λ2 ∪ Λ3 are the duals of pointed
Hopf algebras of dimension 432 or 864, respectively. The Hopf algebras Ci,j,k,ι(µ)
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with µ ̸= 0 are non-trivial liftings of B(Vi,j,k,ι)♯K24,1 for (i, j, k, ι) ∈ Λ1∗ ⊂ Λ1. They
constitute new examples of Hopf algebras without the dual Chevalley property.

The paper is organized as follows: In section 2, we recall some basic knowl-
edge and notations of Yetter–Drinfeld modules, Nichols algebras. In section 3, we
introduce the structure of the Hopf algebra K24,1. In section 4, we determine all
finite-dimensional Nichols algebras over simple objects in K24,1

K24,1
YD and present them

by generators and relations. In section 5, we determine all finite-dimensional Hopf
algebras over K24,1, whose infinitesimal braidings are simple objects in K24,1

K24,1
YD.

2. Preliminaries

Conventions. In the paper, the base field k is algebraically closed of characteristic
zero and ξ is a primitive 6th root of unity. Let Zn := Z/nZ and Ik,n := {k, k +
1, . . . , n} for n ≥ k ≥ 0.

Let H be a Hopf algebra over k. Denote by G(H) the set of group-like elements
of H. For any g, h ∈ G(H), Pg,h(H) = {x ∈ H | ∆(x) = x ⊗ g + h ⊗ x}. Our
references for Hopf algebra theory are [21, 22].

2.1. Yetter–Drinfeld modules and Hopf algebras with a projection. Sup-
pose that H has bijective antipode and denote by H

HYD the category of left Yetter–
Drinfeld modules over H. Then H

HYD is braided monoidal with the braiding cV,W

for V,W ∈ H
HYD given by

cV,W : V ⊗W → W ⊗ V, v ⊗ w 7→ v(−1) · w ⊗ v(0) ∀ v ∈ V,w ∈ W. (2.1)

In particular, c := cV,V is a linear isomorphism satisfying the braid equation (c ⊗
id)(id ⊗ c)(c⊗ id) = (id ⊗ c)(c⊗ id)(id ⊗ c), that is, (V, c) is a braided vector space.
Moreover, H

HYD is rigid. The left dual V ∗ is defined by

⟨h · f, v⟩ = ⟨f, S(h)v⟩, f(−1)⟨f(0), v⟩ = S−1(v(−1))⟨f, v(0)⟩.

If H is finite-dimensional, then by [6, Proposition 2.2.1], H
HYD ∼= H∗

H∗YD as
braided monoidal categories via the functor (F, η) defined as follows: F (V ) = V as
a vector space,

f · v = f(S(v(−1)))v(0), δ(v) =
∑

i

S−1(hi) ⊗ hi · v, and

η : F (V ) ⊗ F (W ) → F (V ⊗W ), v ⊗ w 7→ w(−1) · v ⊗ w(0),

(2.2)

where V,W ∈ H
HYD, f ∈ H∗, v ∈ V , w ∈ W , and {hi} and {hi} are the dual bases

of H and H∗.
For a Hopf algebra R ∈ H

HYD that is braided, set ∆R(r) = r(1) ⊗ r(2) for
the comultiplication. By the Radford biproduct or bosonization of R by H ([22]),
written as R♯H, we mean a usual Hopf algebra, as a vector space, R♯H = R⊗H,
whose multiplication and comultiplication are provided by the smash product and
smash coproduct, respectively:

(r♯g)(s♯h) = r(g(1) · s)♯g(2)h, ∆(r♯g) = r(1)♯(r(2))(−1)g(1) ⊗ (r(2))(0)♯g(2). (2.3)
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2.2. Nichols algebras and skew-derivations. Let H be a Hopf algebra with
bijective antipode and V ∈ H

HYD. The Nichols algebra B(V ) over V is a N-graded
Hopf algebra R = ⊕n≥0R(n) in H

HYD such that
R(0) = k, R(1) = V, R is generated as an algebra by R(1), P(R) = V.

The Nichols algebra B(V ) is isomorphic to T (V )/I(V ), where I(V ) ⊂ T (V ) is
the largest N-graded ideal and coideal in H

HYD such that I(V ) ∩V = 0. Moreover,
the ideal I(V ) is the kernel of the quantum symmetrizer associated to the braiding
c and B(V ) as a coalgebra and an algebra depends only on (V, c).

Remark 2.1. Suppose W is a subspace of (V, c) with c(W ⊗W ) ⊂ W ⊗W , then
dim B(W ) = ∞ means dim B(V ) = ∞. In particular, dim B(V ) = ∞ if the braiding
c has an eigenvector v ⊗ v ∈ V ⊗2 with eigenvalue 1 (cf. [12]).

Remark 2.2. The Nichols algebra B(V ) is of diagonal type if there is a linear
basis {xi, i ∈ I1,n} such that c(xi ⊗ xj) = qijxj ⊗ xi for some qij ∈ k. The
matrix q = (qij)i,j∈I1,n

is called the matrix of the braiding. The generalized Dynkin
diagram of the matrix q is a graph with n vertices, the vertex i labeled with qii, and
an arrow between the vertices i and j only if qijqji ̸= 1, labelled with qijqji. Finite-
dimensional Nichols algebras of diagonal type were classified by Heckenberger [15],
with the help of the Weyl groupoid and generalized root systems. Their defining
relations were given by Angiono [9, 10]. See [1] for a survey on Nichols algebras of
diagonal type.

Let C be a coalgebra, D a subcoalgebra of C and W ∈ CM. Denote the largest
D-subcomodule of W by

W (D) = {w ∈ W | δ(w) ∈ D ⊗W}.

Proposition 2.3 ([16, Proposition 8.8]). Let H be a Hopf algebra with bijective
antipode, N ∈ H

HYD and W ∈ B(N)♯H
B(N)♯HYD. Assume that W is a semisimple object in

the category of Z-graded left Yetter–Drinfeld modules over B(N)♯H. Let K = B(W )
in B(N)♯H

B(N)♯HYD, and define M = W (H). Then there is a unique isomorphism

K♯B(N) ∼= B(M ⊕N)
of braided Hopf algebras in H

HYD which is the identity on M ⊕N .

Now we recall the standard tool, the so-called skew-derivation, for working with
Nichols algebras. Let (V, c) be a (rigid) braided vector space of dimension n and
∆i,m−i : Tm(V ) → T i(V ) ⊗ Tm−i(V ) the (i,m − i)-homogeneous component of
the comultiplication ∆ : T (V ) → T (V ) ⊗ T (V ) for m ∈ N and k ∈ I0,m. Given
f ∈ V ∗, the skew-derivation ∂f ∈ EndT (V ) is given by
∂f (v) = (f ⊗ id)∆1,m−1(v) : Tm(V ) → Tm−1(V ), v ∈ Tm(V ), m ∈ N. (2.4)

Let {vi}1≤i≤n and {vi}1≤i≤n be the dual bases of V and V ∗. We write ∂i := ∂vi

for simplicity.
This is useful for seeking the relations of B(V ) due to

Im(V ) = {r ∈ Tm(V ) | ∂f1∂f2 · · · ∂fm
(r) = 0, ∀fi ∈ V ∗}. (2.5)
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Furthermore, ∂f can be defined on B(V ) and ∩
f∈V ∗

ker ∂f = k. For details, see

[7, 2].

3. The Hopf algebra K24,1 and the category K24,1
K24,1

YD

We introduce the structures of the Hopf algebra K24,1 and the category K24,1
K24,1

YD
of Yetter–Drinfeld modules over K24,1.

3.1. The Hopf algebra K24,1.

Definition 3.1. Let K24,1 be the algebra generated by the elements a, b, c, d,
subject to the relations
a6 = 1, b2 = 0, c2 = 0, d6 = 1, a2 = d2, ad = da, bc = 0 = cb,

ab = ξba, ac = ξca, db = −ξbd, dc = −ξcd, bd = ca, ba = cd.
(3.1)

K24,1 admits a Hopf algebra structure, where the coalgebra structure and an-
tipode are given as follows:

∆(a) = a⊗ a+ b⊗ c, ∆(b) = a⊗ b+ b⊗ d,

∆(c) = c⊗ a+ d⊗ c, ∆(d) = d⊗ d+ c⊗ b,

ϵ(a) = 1, ϵ(b) = 0, ϵ(c) = 0, ϵ(d) = 1,
S(a) = a−1, S(b) = −ξ−1ca−2, S(c) = ξ−1ba−2, S(d) = d−1 = da−2.

(3.2)

Remark 3.2.
(1) The set {ai, dai, bai, cai, i ∈ I0,5} is a linear basis of K24,1.
(2) G(K24,1) = k{1, a3, da2, da5}, P1,da5(K24,1) = k{1 − da5, ca5} and

P1,g(K24,1) = k{1 − g} for g ∈ k{a3, da2}.
(3) Let {(ai)∗, (bai)∗, (cai)∗, (dai)∗, i ∈ I0,5} be the dual basis of K24,1 and set

x̃ =
5∑

i=0
(bai)∗ + (cai)∗, g̃ =

5∑
i=0

ξi(ai)∗ + ξi+1(dai)∗, h̃ =
5∑

i=0
(ai)∗ − (dai)∗.

The multiplication of K24,1 implies that

g̃6 = 1, h̃2 = 1, h̃g̃ = g̃h̃, g̃x̃ = x̃g̃, h̃x̃ = −x̃h̃,

∆(x̃) = x̃⊗ ϵ+ g̃h̃⊗ x̃, ∆(g̃) = g̃ ⊗ g̃, ∆(h̃) = h̃⊗ h̃.

In particular, G(K∗
24,1) ∼= Z6 ⊗Z2 with generators g̃ and h̃.

Let A24,1 be the Hopf algebra generated by elements g, h, x subject to the
relations

g6 = 1, h2 = 1, gh = hg, gx = xg, hx = −xh, x2 = 1 − g2,

where g, h ∈ G(A24,1) and x ∈ P1,gh(A24,1). This is a pointed Hopf algebra of
dimension 24, which appeared in [13] (see also [18]). We now build the Hopf
algebra isomorphism A24,1 ∼= K∗

24,1.
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Lemma 3.3. Let ψ : A24,1 7→ K∗
24,1 be the algebra map given by

ψ(g) = g̃, ψ(h) = h̃, ψ(x) =
√

1 − ξ2x̃.

Then ψ is a Hopf algebra isomorphism.

Proof. By Remark 3.2 (3), ψ is a bialgebra morphism and ψ(A24,1) contains prop-
erly G(K∗

24,1). Since dim G(K∗
24,1) = 12, by the Nichols–Zoeller theorem, ψ must be

epimorphic. The lemma follows since dim A24,1 = dim K∗
24,1 = 24. □

Remark 3.4.
(1) The set {gj , gjh, gjx, gjhx, j ∈ I0,5} is a linear basis of A24,1. We have

ψ(gj) =
5∑

i=0
ξij(ai)∗ + ξij+j(dai)∗, ψ(gjh) =

5∑
i=0

ξij(ai)∗ − ξij+j(dai)∗,

ψ(gjx) =
√

1 − ξ2
5∑

i=0
ξij+j(bai)∗ + ξij+j(cai)∗,

ψ(gjhx) =
√

1 − ξ2
5∑

i=0
ξij+j(bai)∗ − ξij+j(cai)∗.

(2) It is clear that gr A24,1 = B(X)♯k[Γ], where Γ ∼= Z6 × Z2 with generators
g, h and X := k{x} ∈ Γ

ΓYD with g · x = x, h · x = −x and δ(x) = gh ⊗ x.
Furthermore, by [14, Proposition 4.2], gr A24,1 ∼= (A24,1)σ, where σ is a
Hopf 2-cocycle given by

σ = ϵ⊗ ϵ− ζ, where ζ(xigjhk, xmgnhl) = (−1)mkδ2,i+m (3.3)

for i, k,m, l ∈ I0,1, j, n ∈ I0,5. Then by [19, Theorem 2.7], A24,1
A24,1

YD ∼=
gr A24,1
gr A24,1

YD as braided monoidal categories via the tensor functor (G, γ)
defined as follows: G(V ) = V as vector spaces and coactions, transforming
the action · to

k ·σ v = σ(k(1), v(−2))σ−1(k(2)v(−1)S(k(4)), k(5))k(3) · v(0), k ∈ gr A24,1,

γ : G(V ) ⊗G(W ) → G(V ⊗W ), v ⊗ w 7→ σ(v(−1), w(−1))v(0) ⊗ w(0).
(3.4)

Now we give explicitly the structure of the Drinfeld double D(Kcop
24,1) of Kcop

24,1.
From now on, we set D := D(Kcop

24,1) := Acop op
24,1 ⊗ Kcop

24,1 for convenience. Recall that
D(Hcop) = H∗ op cop ⊗ Hcop is a Hopf algebra with the tensor product coalgebra
structure and the algebra structure given by (p ⊗ a)(q ⊗ b) = p⟨q(3), a(1)⟩q(2) ⊗
a(2)⟨q(1), S

−1(a(3))⟩b.

Proposition 3.5. D = Acop op
24,1 ⊗ Kcop

24,1 is isomorphic to the algebra generated by
the elements g, h, x, a, b, c, d, subject to the relations in Kcop

24,1, the relations in
Acop op

24,1 and
ag = ga, ah = ha, dg = gd, dh = hd,

bg = gb, bh = −hb, cg = gc, ch = −hc,
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ax− ξ−1xa = −
√

1 − ξ2ξ−1(c− ghb), dx+ ξ−1xd = −
√

1 − ξ2ξ−1(ghc− b),

bx− ξ−1xb = −
√

1 − ξ2ξ−1(d− gha), cx+ ξ−1xc = −
√

1 − ξ2ξ−1(ghd− a).

3.2. The representation of D(Kcop
24,1). We begin this subsection by describing

one-dimensional objects in DM.

Lemma 3.6. For (i, j, k) ∈ I0,1 × I0,1 × I0,5, there is a one-dimensional object
kχi,j,k

∈ DM, where χi,j,k is given by

χi,j,k(g) = (−1)i, χi,j,k(h) = (−1)j , χi,j,k(x) = 0,
χi,j,k(a) = ξk, χi,j,k(b) = 0, χi,j,k(c) = 0, χi,j,k(d) = (−1)i(−1)jξk.

Any one-dimensional object in DM is isomorphic to kχi,j,k
for some (i, j, k) ∈

I0,1 × I0,1 × I0,5.

Proof. Let χ ∈ G(D∗). The relations a6 = 1 = g6, d6 = 1 = h2, b2 = 0 = c2

imply that χ(a)6 = 1 = χ(g)6, χ(d)6 = 1 = χ(h)2, χ(b) = 0 = χ(c). Then the
relations hx = −xh and x2 = 1 − g2 yield χ(x) = 0 and χ(g)2 = 1. From the
relation bx− ξ−1xb = −

√
1 − ξ2ξ−1(d− gha), it follows that χ(d) = χ(g)χ(g)χ(a).

Therefore, χ is completely determined by χ(a), χ(g) and χ(h) and then χ = χi,j,k

for some (i, j, k) ∈ I0,1 × I0,1 × I0,5. Consequently, any one-dimensional D-module
is isomorphic to kχi,j,k

for some (i, j, k) ∈ I0,1 × I0,1 × I0,5. It is clear that these
modules are pairwise non-isomorphic in DM. □

Next, we describe two-dimensional simple objects in DM. Let

Λ := {(i, j, k, ι) | i, j ∈ I0,5, k, ι ∈ I0,1, j + 3k ̸= 3(ι+ 1) mod 6}.

Clearly, |Λ| = 120.

Lemma 3.7. For any (i, j, k, ι) ∈ Λ, there is a 2-dimensional simple object Vi,j,k,ι ∈
DM, whose matrices defining the D-action on a fixed basis are given by

[a] =
(

(−1)ι+1ξi 0
0 (−1)ι+1ξi−1

)
, [d] =

(
ξi 0
0 −ξi−1

)
, [b] =

(
0 (−1)ι

0 0

)
,

[c] =
(

0 1
0 0

)
, [g] =

(
ξj 0
0 ξj

)
, [h] =

(
(−1)k 0

0 (−1)k+1

)
,

[x] =
(

0 (1 − ξ2)− 1
2 ξ1−i(ξj(−1)k − (−1)ι)

−
√

1 − ξ2ξi−1(ξj(−1)k + (−1)ι) 0

)
.

Any two-dimensional simple object in DM is isomorphic to Vi,j,k,ι for some
(i, j, k, ι) ∈ Λ. Furthermore, Vi,j,k,ι

∼= Vp,q,r,κ if and only if (i, j, k, ι) = (p, q, r, κ).

Proof. Let V be a simple D-module of dimension 2. As the generators g, h, a, d
commute with each other and g6 = h2 = a6 = d6 = 1, we may assume that the
matrices defining the action on V are of the form

[g] =
(
g1 0
0 g2

)
, [h] =

(
h1 0
0 h2

)
, [x] =

(
x1 x2
x3 x4

)
, [a] =

(
a1 0
0 a2

)
,
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[d] =
(
d1 0
0 d2

)
, [b] =

(
b1 b2
b3 b4

)
, [c] =

(
c1 c2
c3 c4

)
,

where a6
1 = 1 = a6

2, d6
1 = 1 = d6

2, g6
1 = 1 = g6

2 , h2
1 = 1 = h2

2. The relations
xh = −hx, bh = −hb and ch = −hc imply that

x1 = 0 = x4, (h1 + h2)x2 = 0 = (h1 + h2)x3,

b1 = 0 = b4, (h1 + h2)b2 = 0 = (h1 + h2)b3,

c1 = 0 = c4, (h1 + h2)c2 = 0 = (h1 + h2)c3.

We claim that h1 = −h2. Indeed, if h1 + h2 ̸= 0, then x2 = 0 = x3, b2 = 0 = b3,
c2 = 0 = c3, which implies that [b], [c], [x] are zero matrices and hence V is not a
simple D-module.

Now we claim that g1 = g2. Indeed, if g1 ̸= g2, then the relations gx = xg,
bg = gb and cg = gc yield (g1−g2)x2 = 0 = (g1−g2)x3, (g1−g2)b2 = 0 = (g1−g2)b3,
(g1 − g2)c2 = 0 = (g1 − g2)c3, which implies that [b], [c], [x] are zero matrices and
hence V is not simple.

From the relations b2 = 0 = c2 and bc = 0 = cb, we have that
b2b3 = 0 = c2c3, b2c3 = 0 = b3c2, c2b3 = 0 = c3b2.

By permuting the elements of the basis, we may assume that b3 = 0 = c3. The rela-
tions ax−ξ−1xa = −

√
1 − ξ2ξ−1(c−ghb) and dx+ξ−1xd = −

√
1 − ξ2ξ−1(ghc−b)

imply that
a1x2 − ξ−1a2x2 = −

√
1 − ξ2ξ−1(c2 − g1h1b2),

a2x3 − ξ−1a1x3 = −
√

1 − ξ2ξ−1(c3 − g2h2b3),

d1x2 + ξ−1d2x2 = −
√

1 − ξ2ξ−1(g1h1c2 − b2),

d2x3 + ξ−1d1x3 = −
√

1 − ξ2ξ−1(g2h2c3 − b3).

(3.5)

We claim that b2 ̸= 0 or c2 ̸= 0. Suppose that b2 = 0 = c2. Then x2x3 ̸= 0 and
by equations (3.5) we have

a1x2 − ξ−1a2x2 = 0, a2x3 − ξ−1a1x3 = 0,
d1x2 + ξ−1d2x2 = 0, d2x3 + ξ−1d1x3 = 0.

Hence a1 − ξ−1a2 = 0 and a2 − ξ−1a1 = 0, which implies that a1 = 0 = a2, a
contradiction. Thus the claim follows. We may also assume that c2 = 1.

The relations ab = ξba, ac = ξca, db = −ξbd and dc = −ξcd imply a1 = ξa2,
d1 = −ξd2. The relations bd = ca and ba = cd yield b2

2 = 1 and a2 = b2d2. From the
relations bx−ξ−1xb = −

√
1 − ξ2ξ−1(d−gha) and cx+ξ−1xc = −

√
1 − ξ2ξ−1(ghd−

a), it follows that

b2x3 = −
√

1 − ξ2ξ−1(d1 − g1h1a1), b2x3 =
√

1 − ξ2(d2 − g2h2a2),

x3 = −
√

1 − ξ2ξ−1(g1h1d1 − a1), x3 = −
√

1 − ξ2(g2h2d2 − a2),

which implies that x3 = −
√

1 − ξ2ξ−1(b2 + g1h1)d1. By equations (3.5), x2 =
(1 − ξ2)− 1

2 ξd−1
1 (g1h1 − b2).
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The relations x2 = 1 − g2 and a2 = d2 imply x2x3 = 1 − g2
1 and a2

1 − d2
1 =

0 = a2
2 − d2

2. Indeed, since a2 = b2d2, a1 = ξa2 and d2 = −ξ−1d1, it follows that
a1 = −b2d1 and hence a2

1 − d2
1 = 0 = a2

2 − d2
2. Similarly, the relation x2x3 = 1 − g2

1
holds.

Consequently, we have

[a] =
(

−λ4λ1 0
0 −ξ−1λ4λ1

)
, [d] =

(
λ1 0
0 −ξ−1λ1

)
, [b] =

(
0 λ4
0 0

)
,

[c] =
(

0 1
0 0

)
, [g] =

(
λ2 0
0 λ2

)
, [h] =

(
λ3 0
0 −λ3

)
,

[x] =
(

0 (1 − ξ2)− 1
2 ξλ−1

1 (λ2λ3 − λ4)
−

√
1 − ξ2ξ−1λ1(λ2λ3 + λ4) 0

)
,

where λ6
1 = 1, λ6

2 = 1, λ2
3 = 1, λ2

4 = 1 and λ2λ3 + λ4 ̸= 1. Set λ1 = ξi, λ2 = ξj ,
λ3 = (−1)k and λ4 = (−1)ι for some (i, j, k, ι) ∈ Λ. Then V ∼= Vi,j,k,ι.

Now we claim that Vi,j,k,ι
∼= Vp,q,r,κ if and only if (i, j, k, ι) = (p, q, r, κ) in Λ.

Let Φ : Vi,j,k,ι 7→ Vp,q,r,κ be an isomorphism of D-modules and [Φ] = (pi,j)i,j=1,2
the matrix of Φ in the given basis. Then [c][Ψ] = [Ψ][c] and [a][Ψ] = [Ψ][a],
which implies that p21 = 0, p11 = p22 and (ξp − ξi)p11 = 0, (ξp − ξi+1)p12 = 0.
Consequently, ξi = ξp and then p12 = 0 and [Φ] = p11I, where I is the identity
matrix. Similarly, we have ξj = ξq, k = r, ι = κ. The claim follows. □

Finally, we describe all simple objects in DM up to isomorphism.

Theorem 3.8. There exist 144 simple objects in DM up to isomorphism, among
which 24 one-dimensional objects are given in Lemma 3.6 and 120 two-dimensional
simple objects are given in Lemma 3.7.

Proof. By [21, Proposition 10.6.16], [6, Proposition 2.2.1] and Remark 3.4, DM ∼=
K24,1
K24,1

YD ∼= A24,1
A24,1

YD ∼= gr A24,1
gr A24,1

YD ∼= D(gr A24,1)M. On the other hand, D(gr A) is
isomorphic to a lifting of a quantum plane, which is generated by the elements
g1, g2, g3, g4, x1, x2, subject to the relations

gigj = gjgi, g6
1+k = g2

2+k = 1, x2
k = 0, i, j ∈ I0,5, k ∈ I0,1,

x1x2 + x2x1 = g1g2g4 − 1, gix1 = χ(gi)x1gi, gix2 = χ−1(gi)x2gi,

where χ(g1) = 1, χ(g2) = χ(g4) = −1, χ(g3) = ξ, ∆(gi) = gi ⊗ gi, ∆(x1) =
x1 ⊗ 1 + g1g2 ⊗ x1 and ∆(x2) = x2 ⊗ 1 + g4 ⊗ x2. Then by [3, Theorem 3.5],
dimV < 3 for any simple D(gr A24,1)-module V . Consequently, the proposition
follows. □

3.3. The category K24,1
K24,1

YD. Using the equivalence D(Kcop
24,1)M ∼= K24,1

K24,1
YD, we

describe explicitly simple objects in K24,1
K24,1

YD. Using the equivalences K24,1
K24,1

YD ∼=
A24,1
A24,1

YD ∼= gr A24,1
gr A24,1

YD, we transport the information from the category K24,1
K24,1

YD to
gr A24,1
gr A24,1

YD.

Rev. Un. Mat. Argentina, Vol. 65, No. 2 (2023)



478 RONGCHUAN XIONG

Lemma 3.9. Let kχi,j,k
= k{v} ∈ DM for (i, j, k) ∈ I0,1 × I0,1 × I0,5. Then

kχi,j,k
∈ K24,1

K24,1
YD with

a · v = ξkv, b · v = 0, c · v = 0, d · v = (−1)i+jξkv; δ(v) = dja3i−j ⊗ v.

Proof. The K24,1-action is given by the restriction of the character of D. The
coaction is of the form δ(v) = t ⊗ v, where t ∈ G(K24,1) = {1, a3, da2, da−1} such
that ⟨g, t⟩v = (−1)iv and ⟨h, t⟩v = (−1)jv. Therefore, δ(v) = dja3i−j ⊗ v. □

Corollary 3.10. Let kχi,j,k
= k{v} ∈ K24,1

K24,1
YD. Then kχi,j,k

∈ gr A24,1
gr A24,1

YD with

g · v = (−1)iv, h · v = (−1)jv, x · v = 0, δ(v) = g−khi+j ⊗ v.

Proof. Since K24,1 ∼= A∗
24,1, by [6, Proposition 2.2.1], we have the equivalence

K24,1
K24,1

YD ∼= A24,1
A24,1

YD via the functor (F, η) defined by (2.2). More precisely, by
the formula (2.2), Lemma 3.9 and Remark 3.4 (1), we have F (kχi,j,k

) = kχi,j,k
∈

A24,1
A24,1

YD with

g · v = ⟨g, S(dja3i−j)⟩v = ⟨g, dja−j−3i⟩v = (−1)iv,

h · v = ⟨h, dja−j−3i⟩v = (−1)jv, x · v = ⟨x, dja−j−3i⟩v = 0,

δ(v) =
∑

i

S−1((ai)∗) ⊗ ai · v + S−1((dai)∗) ⊗ dai · v

= S−1(gkhi+j) ⊗ v = g−khi+j ⊗ v.

Then by Remark 3.4 (2), we have A24,1
A24,1

YD ∼= gr A24,1
gr A24,1

YD via the functor (G, γ)
defined by the formulae (3.3)–(3.4), and then GF (kχi,j,k

) = kχi,j,k
∈ gr A24,1

gr A24,1
YD

with the module structure given by
h ·σ v = σ(h(1), v(−2))σ−1(h(2)v(−1)S(h(4)), h(5))h(3) · v(0)

= σ(h, g−khi+j)σ−1(g−khi+j , h)h · v = h · v = (−1)jv,

g ·σ v = σ(g, g−khi+j)σ−1(gg−khi+jS(g), g)g · v

= σ(g, g−khi+j)σ−1(g−khi+j , g)g · v = g · v = (−1)iv,

x ·σ v = σ(x(1), v(−2))σ−1(x(2)v(−1)S(x(4)), x(5))x(3) · v(0)

= σ(x, g−khi+j)σ−1(g−khi+j , 1)1 · v + σ(gh, g−khi+j)σ−1(xg−khi+j , 1)1 · v

+ σ(gh, g−khi+j)σ−1(ghg−khi+j , 1)x · v

+ σ(gh, g−khi+j)σ−1(ghg−khi+jS(x), 1)gh · v

+ σ(gh, g−khi+j)σ−1(ghg−khi+jS(gh), x)gh · v

= σ(x, g−khi+j)σ−1(g−khi+j , 1)v + σ(gh, g−khi+j)σ−1(xg−khi+j , 1)v
+ σ(gh, g−khi+j)σ−1(g1−khi+j+1, 1)x · v

+ σ(gh, g−khi+j)σ−1(g1−khi+j+1S(x), 1)gh · v
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+ σ(gh, g−khi+j)σ−1(g−khi+j , x)gh · v
= x · v = 0. □

Lemma 3.11. Let Vi,j,k,ι = k{v1, v2} ∈ DM for any (i, j, k, ι) ∈ Λ. Then Vi,j,k,ι ∈
K24,1
K24,1

YD with the module structure given by

a · v1 = (−1)ι+1ξiv1, b · v1 = 0, c · v1 = 0, d · v1 = ξiv1,

a · v2 = (−1)ι+1ξi−1v2, b · v2 = (−1)ιv1, c · v2 = v1, d · v2 = −ξi−1v2;

and the following comodule structure:
(1) for k = 0,

δ(v1) = aj ⊗ v1 + (1 − ξ2)− 1
2x2ba

j−1 ⊗ v2,

δ(v2) = daj−1 ⊗ v2 + (1 − ξ2)− 1
2x1ca

j−1 ⊗ v1;

(2) for k = 1,

δ(v1) = daj−1 ⊗ v1 + (1 − ξ2)− 1
2x2ca

j−1 ⊗ v2,

δ(v2) = aj ⊗ v2 + (1 − ξ2)− 1
2x1ba

j−1 ⊗ v1,

where x1 = (1 − ξ2)− 1
2 ξ1−i(ξj(−1)k − (−1)ι) and x2 = −

√
1 − ξ2ξi−1(ξj(−1)k +

(−1)ι).

Proof. Let {hi}i∈I1,24 and {hi}i∈I1,24 be the dual bases of K24,1 and K∗
24,1. The

K24,1-action is given by the restriction of the D-action and the K24,1-comodule
structure is given by δ(v) =

∑24
i=1 hi ⊗ hi · v for any v ∈ Vi,j,k. By Lemma 3.3 and

Remark 3.4, we have

(gl)∗ = 1
12

5∑
i=0

ξ−ilai + ξ−(i+1)ldai, (glh)∗ = 1
12

5∑
i=0

ξ−ilai − ξ−(i+1)ldai,

(glx)∗ = 1
12

√
1 − ξ2

5∑
i=0

ξ−(i+1)lbai + ξ−(i+1)lcai,

(glhx)∗ = 1
12

√
1 − ξ2

5∑
i=0

ξ−(i+1)lbai − ξ−(i+1)lcai.

Then the lemma follows by direct computation. □

Remark 3.12. V ∗
i,j,k,ι

∼= V−i+4,−j,k+1,ι+1 for all (i, j, k, ι) ∈ Λ.

In this section, for (i, j, k, ι) ∈ Λ, set

x1 := (1 − ξ2)− 1
2 ξ1−i(ξj(−1)k − (−1)ι),

x2 := −
√

1 − ξ2ξi−1(ξj(−1)k + (−1)ι).
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Corollary 3.13. Let Vi,j,k,ι = k{v1, v2} ∈ K24,1
K24,1

YD for (i, j, k, ι) ∈ Λ. Then
Vi,j,k,ι ∈ gr A24,1

gr A24,1
YD with the module structure given by

g · v1 = ξ−jv1, h · v1 = (−1)kv1, x · v1 = (−1)k+1x2ξ
−jv2,

g · v2 = ξ−jv2, h · v2 = (−1)k+1v2, x · v2 = 0;

and the comodule structure given as follows:
(1) for ι = 0,

δ(v1) = g−3−ih⊗ v1, δ(v2) = g−2−i ⊗ v2 + ξ1−i(1 − ξ2)− 1
2 g−3−ihx⊗ v1;

(2) for ι = 1,

δ(v1) = g−i ⊗ v1, δ(v2) = g−i+1h⊗ v2 − ξ1−i(1 − ξ2)− 1
2 g−ix⊗ v1.

Proof. Similar to the proof of Corollary 3.10, using the equivalence K24,1
K24,1

YD ∼=
A24,1
A24,1

YD via the functor (F, η) defined by (2.2), by Lemma 3.11, we have F (Vi,j) ∈
A24,1
A24,1

YD with the comodule structure given in the corollary and the module struc-
ture given by

g · v1 = ξ−jv1, h · v1 = (−1)kv1, x · v1 = (−1)k+1x2ξ
−jv2,

g · v2 = ξ−jv2, h · v2 = (−1)k+1v2, x · v2 = (−1)k+1x1ξ
−jv1;

Then using the equivalence A24,1
A24,1

YD ∼= gr A24,1
gr A24,1

YD via the functor (G, γ) defined by
the formulae (3.3)–(3.4), by a direct and tedious computation we get GF (Vi,j,k,ι) =
Vi,j,k,ι ∈ gr A24,1

gr A24,1
YD with the structure given in the corollary. □

Finally, we describe the braiding of simple objects in K24,1
K24,1

YD.

Lemma 3.14. Let kχi,j,k
= k{v} ∈ K24,1

K24,1
YD for (i, j, k) ∈ I0,1 × I0,1 × I0,5. Then

the braiding of kχi,j,k
is given by c(v ⊗ v) = (−)i(j+k)+jv ⊗ v.

Proof. By the formula (2.1) of the braiding in K24,1
K24,1

YD and Lemma 3.9, we have

c(v ⊗ v) = dja3i−j · v ⊗ v = ξ(3i−j)k(−1)(i+j)jξjkv ⊗ v = (−1)ik+ij+j2
v ⊗ v.

□

For (i, j, k, ι) ∈ Λ, we set

a12 := [(−1)(ι+1)jξij + (−1)(j−1)ιξ(i+2)j ],

a11 := 1
1 − ξ2 (−1)ι(j−1)ξ(j−2)i+2j−1[ξj − (−1)ι],

b12 := [(−1)(j−1)(ι+1)ξij + (−1)jιξ(i+2)j ],

b11 := 1
1 − ξ2 (−1)jιξ2j+2+ij+4i[ξj + (−1)ι].
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Lemma 3.15. Let Vi,j,k,ι = k{v1, v2} ∈ K24,1
K24,1

YD for (i, j, k, ι) ∈ Λ. Then the
braiding of Vi,j,k,ι is given as follows:

(1) If k = 0, then

c

([
v1
v2

]
⊗

[
v1 v2

])
=

[
(−1)(ι+1)jξijv1 ⊗ v1 (−1)jιξ(i+2)jv2 ⊗ v1 + a12v1 ⊗ v2

(−1)(ι+1)(j−1)ξijv1 ⊗ v2 (−1)(j−1)ιξ(i+2)jv2 ⊗ v2 + a11v1 ⊗ v1

]
.

(2) If k = 1, then

c

([
v1
v2

]
⊗

[
v1 v2

])
=

[
(−1)(j−1)(ι+1)ξijv1 ⊗ v1 (−1)(j−1)ιξ(i+2)jv2 ⊗ v1 + b12v1 ⊗ v2

(−1)(ι+1)jξijv1 ⊗ v2 (−1)jιξ(i+2)jv2 ⊗ v2 + b11v1 ⊗ v1

]
.

Proof. If k = 0, then by Lemma 3.11 and the formula (2.1), we have

c(v1 ⊗ v1) = aj · v1 ⊗ v1 + (1 − ξ2)− 1
2x2ba

j−1 · v1 ⊗ v2 = (−1)(ι+1)jξijv1 ⊗ v1,

c(v1 ⊗ v2) = (−1)jιξ(i+2)jv2 ⊗ v1 + a12v1 ⊗ v2,

c(v2 ⊗ v1) = daj−1 · v1 ⊗ v2 + (1 − ξ2)− 1
2x1ca

j−1 · v1 ⊗ v1

= (−1)(ι+1)(j−1)ξijv1 ⊗ v2,

c(v2 ⊗ v2) = (−1)(j−1)ιξ(i+2)jv2 ⊗ v2 + a11v1 ⊗ v1.

Similarly, we can obtain the matrix of the braiding associated with Vi,j,1,ι. □

4. Nichols algebras in K24,1
K24,1

YD

We determine all finite-dimensional Nichols algebras over simple objects in
K24,1
K24,1

YD. Let

Λ0 := {(i, j, k) ∈ I0,1 × I0,1 × I0,5 | i(j + k) + j ≡ 1 mod 2}.

We shall show that finite-dimensional Nichols algebras over one-dimensional objects
in K24,1

K24,1
YD are parametrized by Λ0.

Proposition 4.1. Let kχi,j,k
= k{v} for (i, j, k) ∈ I0,1 × I0,1 × I0,5. Then

B(kχi,j,k
) =


∧
kχi,j,k

, (i, j, k) ∈ Λ0;

k[v], otherwise.

Proof. It follows directly from Lemma 3.14 and Remark 2.1. □

Let Vi,j,k,ι = k{v1, v2} ∈ K24,1
K24,1

YD for (i, j, k, ι) ∈ Λ. Then using the equivalence
K24,1
K24,1

YD ∼= gr A24,1
gr A24,1

YD, we have Vi,j,k,ι ∈ gr A24,1
gr A24,1

YD, that is, Vi,j,k,ι ∈ B(X)♯k[Γ]
B(X)♯k[Γ]YD

with the structure given by Corollary 3.13.
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By Proposition 2.3 (see also [2, Theorem 1.1]), we have B(Vi,j,k,ι)♯B(X) ∼= B(X⊕
Xi,j,k,ι) in Γ

ΓYD which is the identity on X⊕Xi,j,k,ι, where Xi,j,k,ι = k{v1} ∈ Γ
ΓYD

with

g · v1 = ξ−jv1, h · v1 = (−1)kv1, δ(v1) = g−3(ι−1)−ihι−1 ⊗ v1.

It is clear that B(X ⊕ Xi,j,k,ι) is of diagonal type with the generalized Dynkin
diagram given by

−1◦
x

(−1)k+ι−1ξ−j (−)(k+j)(ℓ−1)ξij

◦
v1

.

Now we show that infinite-dimensional Nichols algebras over two-dimensional
simple objects in K24,1

K24,1
YD are parametrized by the following subsets:

Λ0∗ := {(i, j, k, ι) ∈ Λ | 3(k + j)(ι− 1) + ij or
3(k + ι) + 3(k + j)(ι− 1) + (i− 1)j ≡ 0 mod 6};

Λ0∗∗ := {(i, j, k, ι) ∈ Λ | i = 5, j ∈ {1, 5}, k + ι+ 1 ≡ 0 mod 2},

and present finite-dimensional ones by generators and relations.

Lemma 4.2. Let (i, j, k, ι) ∈ Λ0∗ ∪ Λ0∗∗. Then dim B(Vi,j,k,ι) = ∞.

Proof. It suffices to show that dim B(X ⊕ Xi,j,k,ι) = ∞. If (i, j, k, ι) ∈ Λ0∗, then
the Dynkin diagram is

−1◦
x

(−1)k+ι−1ξ−j (−)(k+j)(ι−1)ξij

◦
v1

.

If (i, j, k, ι) ∈ Λ0∗∗, then the Dynkin diagram of X ⊕Xi,j,k,ι is given by

−1◦
x

ξ−j ξ−j

◦
v1

.

These diagrams do not appear in [15, Table 1], that is, they have infinite root
systems. Therefore, dim B(X ⊕Xi,j,k,ι) = ∞. □

Proposition 4.3. Let Λ1 = {(i, j, k, ι) ∈ Λ | 3(k + ι − 1) − j ≡ ±1 mod 6,
3(k+j)(ι−1)+ij ≡ 3±1 mod 6}. The Nichols algebra B(Vi,j,k,ι) for (i, j, k, ι) ∈ Λ1

is generated by v1, v2, subject to the relations

v3
1 = 0, ξ2jv2

1v2 + (−1)ιξ−2jv1v2v1 + v2v
2
1 = 0, (4.1)

v1v
2
2 + (−1)ιv2v1v2 + v2

2v1 = 0, (4.2)
(−1)ι(1 − ξ2j)ξ4

1 + ξ5 v2
1v2 + (1 − ξ−2j)ξ4

1 + ξ5 v1v2v1 + v3
2 = 0. (4.3)

Proof. By Lemma 3.15, the braiding of Vi,j,k,ι is given by

c

([
v1
v2

]
⊗

[
v1 v2

])
=

[
ξ2jv1 ⊗ v1 (−1)ιξ−2jv2 ⊗ v1 − v1 ⊗ v2

(−1)ι+1ξ2jv1 ⊗ v2 ξ−2jv2 ⊗ v2 +Av1 ⊗ v1

]
,
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where A = [(−1)ιξ−2j+(−1)ι+1ξ2j ]ξ4

1+ξ5 . Since c(v1 ⊗ v1) = ξ2jv1 ⊗ v1, it follows by the
formulae (2.3) and (2.4) that

∂1(v3
1) = (v1 ⊗ id⊗2)∆1,2(v3

1) = (1 + ξ2j + ξ4j)v2
1 = 0,

∂2(v3
1) = (v2 ⊗ id⊗2)∆1,2(v3

1) = 0.

Similarly, we obtain

∂1(v2
1v2) = v1v2 + (−1)ι+1ξ−2jv2v1, ∂2(v2

1v2) = ξ2jv2
1 ;

∂1(v1v2v1) = (−1)ι+1ξ−2jv1v2, ∂2(v1v2v1) = (−1)ιξ−2jv2
1 ;

∂1(v2v
2
1) = (−1)ιv2v1, ∂2(v2v

2
1) = v2

1 ;
∂1(v3

2) = (1 + ξ4j)Av1v2 + (−1)ι+1ξ2jAv2v1, ∂2(v3
2) = 0;

∂1(v1v
2
2) = Aξ2jv2

1 − ξ4jv2
2 , ∂2(v1v

2
2) = (−)ι+1v1v2;

∂1(v2
2v1) = Av2

1 + ξ4jv2
2 , ∂2(v2

2v1) = −ξ2jv2v1;
∂1(v2v1v2) = (−1)ιξ−2jAv2

1 , ∂2(v2v1v2) = v1v2 + (−1)ιξ2jv2v1.

It is easy to verify that ∂1(r) = 0 = ∂2(r) for any relation r given in (4.1)–(4.3).
Then by (2.5), the quotient B of T (Vi,j,k,ι) by the relations (4.1)–(4.3) projects
onto B(Vi,j,k,ι). We claim that I = k{vi

1(v2v1)jvk
2 , i, k ∈ I0,2, j ∈ I0,1} is a left

ideal. Indeed, from (4.1)–(4.3) and (v2v1)2 = (−1)ιv2
1v

2
2 , we have v1I, v2I ⊂ I.

Hence I linearly generates B since 1 ∈ I.
We claim that dim B(Vi,j,k,ι) ≥ 18 = |I|. Indeed, the Dynkin diagram of X ⊕

Xi,j,k,ι is −1◦
−ξ2j ξ2j

◦ . Since j /∈ {0, 3}, it is of standard type B2. By [9, 10],
dim B(X ⊕ Xi,j,k,ι) = 36. The claim follows since dim B(Vi,j,k,ι) ≥ 1

2 dim B(X ⊕
Xi,j,k,ι). Consequently, B ∼= B(Vi,j,k,ι). □

Proposition 4.4. Let Λ2 = {(i, j, k, ι) ∈ Λ | 3(k + ι − 1) − j ≡ ±2 mod 6,
3(k+j)(ι−1)+ ij ≡ ±2 mod 6}. The Nichols algebra B(Vi,j,k,ι) for (i, j, k, ι) ∈ Λ2

is generated by v1, v2, subject to the relations

v3
1 = 0, ξ2jv2

1v2 + (−1)kξjv1v2v1 + v2v
2
1 = 0, (4.4)

v2
2v1 + [(−1)ιξ2j + (−1)kξj ]v2v1v2 − v1v

2
2 = 0, v6

2 = 0. (4.5)

Proof. The braiding of Vi,j,k,ι is given by

c

([
v1
v2

]
⊗

[
v1 v2

])
=

[
ξ2jv1 ⊗ v1 (−1)kξjv2 ⊗ v1 + [ξ2j + (−1)k+ιξj ]v1 ⊗ v2

(−1)ι+1ξ2jv1 ⊗ v2 (−1)k+ιξjv2 ⊗ v2 − (−1)ι ξ
1−ξ2 v1 ⊗ v1

]
.

Then a direct computation shows that the relations (4.4) and (4.5) are zero
in B(Vi,j,k,ι) being annihilated by ∂1, ∂2 and hence the quotient B of T (Vi,j,k,ι)
by the relations (4.4) and (4.5) projects onto B(Vi,j,k,ι). We claim that I =
k{vi

1(v2v1)jvk
2 , i ∈ I0,2, j ∈ I0,1, k ∈ I0,5} is a left ideal. Indeed, from (4.4),
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(4.5) and (v2v1)2 = −[(−1)ιξ2j + (−1)kξj ]v2
1v

2
2 − 2(v1v2)2, it is easy to show that

v1I, v2I ⊂ I. Hence I linearly generates B since 1 ∈ I.
We claim that dim B(Vi,j,k,ι) ≥ 36 = |I|. Indeed, the Dynkin diagram of X ⊕

Xi,j,k,ι is −1◦
ξ2j ξ2j

◦ . Since j /∈ {0, 3}, it is of standard type B2 and
by [9, 10], dim B(X ⊕ Xi,j,k,ι) = 72. The claim follows since dim B(Vi,j,k,ι) ≥
1
2 dim B(X ⊕Xi,j,k,ι). Consequently, B ∼= B(Vi,j,k,ι). □

Proposition 4.5. Let Λ3 = {(i, j, k, ι) ∈ Λ | 3(k + ι − 1) − j ≡ ∓2 mod 6,
3(k+j)(ι−1)+ ij ≡ ±1 mod 6}. The Nichols algebra B(Vi,j,k,ι) for (i, j, k, ι) ∈ Λ3

is generated by v1, v2, subject to the relations

v6
1 = 0, (−1)k+ιξ−jv2

1v2 + [(−1)ι + (−1)kξ−j ]v1v2v1 + v2v
2
1 = 0,

(−)ι+1 1
3(ξ + ξ2)v3

1 + v1v
2
2 + (−1)ιv2v1v2 + v2

2v1 = 0,

(−1)ιξ1−2j

1 + ξ5 v2
1v2 + (−1)k+ιξ1−j

1 + ξ5 v1v2v1 + v3
2 = 0.

(4.6)

Proof. The braiding of Vi,j,k,ι is given by

c

([
v1
v2

]
⊗

[
v1 v2

])
=

[
(−1)k+ιξ−jv1 ⊗ v1 (−1)ιξ−2jv2 ⊗ v1 + [ξ−2j + (−1)k+ιξ−j ]v1 ⊗ v2
(−1)k+1ξ−jv1 ⊗ v2 ξ−2jv2 ⊗ v2 + (−1)ι ξ

1−ξ2 v1 ⊗ v1

]
.

Then a direct computation shows that the relations (4.6) are zero in B(Vi,j,k,ι)
being annihilated by ∂1, ∂2 and hence the quotient B of T (Vi,j,k,ι) by the relations
(4.6) projects onto B(Vi,j,k,ι). We claim that I = k{vi

1(v2v1)jvk
2 , i ∈ I0,5, j ∈

I0,1, k ∈ I0,2} is a left ideal. Indeed, from (4.6) and (v2v1)2 = −(ξ2j + ξ2j+1)v2
1v

2
2 −

2ξ2j(v1v2)2, it is easy to show that v1I, v2I ⊂ I. Hence I linearly generates B
since clearly 1 ∈ I.

We claim that dim B(Vi,j,k,ι) ≥ 36 = |I|. Indeed, the generalized Dynkin dia-

gram of B(X ⊕Xi,j,k,ι) is −1◦
(−1)k+ι+1ξ−j (−1)k+ιξ−j

◦ . Since j /∈ {0, 3}, it is of
standard type B2. By [9, 10], dim B(X ⊕ Xi,j,k,ι) = 72. The claim follows since
dim B(Vi,j,k,ι) ≥ 1

2 dim B(X ⊕Xi,j,k,ι). Consequently, B ∼= B(Vi,j,k,ι). □

Proposition 4.6.
(1) Let (i, j, k, ι) ∈ Λ4 = {(i, 3, 0, 1), (i, 3, 1, 0), i ∈ {1, 3, 5}}. The Nichols alge-

bra B(Vi,j,k,ι) is generated as an algebra by v1, v2, subject to the relations

v2
1 = 0, v1v2 + (−1)ιv2v1 = 0, v2

2 = 0. (4.7)

(2) Let Λ5 = {(i, j, k, ι) ∈ Λ−Λ4 | 3(k+j)(ι−1)+ ij ≡ 3 mod 6}. The Nichols
algebra B(Vi,j,k,ι) for (i, j, k, ι) ∈ Λ5 is generated by v1, v2, subject to the
relations

v2
1 = 0, v1v2 + (−1)kξ5jv2v1 = 0, vN

2 = 0, N = ord((−1)k+ι−1ξ−j) ∈ {3, 6}.

Rev. Un. Mat. Argentina, Vol. 65, No. 2 (2023)



ON HOPF ALGEBRAS OVER BASIC HOPF ALGEBRAS OF DIMENSION 24 485

(3) Let Λ6 = {(i, j, k, ι) ∈ Λ − Λ4 | 3(k + ι) + 3(k + j)(ι − 1) + (i − 1)j ≡ 3
mod 6}. The Nichols algebra B(Vi,j,k,ι) for (i, j, k, ι) ∈ Λ6 is generated by
v1, v2, subject to the relations
v1v2 + (−1)ιv2v1 = 0, v2

2 + (1 − ξ2)−1ξ2+4i(−1)ιv2
1 = 0, vN

1 = 0,

where N = ord((−1)ι+1+kξj) ∈ {3, 6}.

Proof. Assume that (i, j, k, ι) ∈ Λ4. The braiding of Vi,j,k,ι = {v1, v2} is given by

c

([
v1
v2

]
⊗

[
v1 v2

])
=

[
−v1 ⊗ v1 (−1)ι−1v2 ⊗ v1 − 2v1 ⊗ v2

(−1)ιv1 ⊗ v2 −v2 ⊗ v2

]
.

Then a direct computation shows that v2
1 , v

2
2 , v1v2 + (−1)ιv2v1 ∈ P(T (Vi,j,k,ι)).

Indeed, we have
∆(v2

i ) = v2
i ⊗ 1 + vi ⊗ vi + c(vi ⊗ vi) + 1 ⊗ v2

i = v2
i ⊗ 1 + 1 ⊗ v2

i ; i ∈ I1,2,

∆(v1v2 + (−1)ιv2v1) = (v1v2 + (−1)ιv2v1) ⊗ 1 + 1 ⊗ (v1v2 + (−1)ιv2v1).
Therefore, the quotient B of T (Vi,j,k,ι) by the relations (4.7) projects onto B(Vi,j,k,ι).
From (4.6), it is easy to show that I = k{vi

1v
j
2, i, j ∈ I0,1} is a left ideal and linearly

generates B.
We claim that dim B(Vi,j,k,ι) ≥ 4 = |I|. Indeed, the diagram is −1◦

x

−1 −1◦
v1

.

It is of Cartan type A2. By [9, 10], dim B(X ⊕ Xi,j,k,ι) = 8. The claim follows
since dim B(Vi,j,k,ι) = 1

2 dim B(X ⊕Xi,j,k,ι). Consequently, B ∼= B(Vi,j,k,ι).
The proof follows for (i, j, k, ι) ∈ Λ5 or Λ6 the same lines as for (i, j, k, ι) ∈ Λ4.

In these cases, the generalized Dynkin diagram of X ⊕Xi,j,k,ι is given by

−1◦
x

(−1)k+ι−1ξ−j −1◦
v1

or −1◦
x

(−1)ι+1+kξ−j (−1)ι+1+kξj

◦
v1

.

They are of standard A2 type. □

Theorem 4.7. Let V be a simple object in K24,1
K24,1

YD such that dim B(V ) < ∞.
Then V is isomorphic either to kχi,j,k

for (i, j, k) ∈ Λ0 or to Vi,j,k,ι for (i, j, k, ι) ∈
∪6

i=1Λi.

Proof. By Theorem 3.8, V is isomorphic to kχi,j,k
for (i, j, k) ∈ I0,1 × I0,1 × I0,5

or Vi,j,k,ι for (i, j, k, ι) ∈ Λ. If dimV = 1, by Proposition 4.1, V ∼= kχi,j,k
for

(i, j, k) ∈ Λ0. Observe that Λ = Λ0∗ ∪ Λ0∗∗ ∪ ∪6
i=1Λi. If dimV = 2, then by

Propositions 4.3–4.6, V ∼= Vi,j,k,ι for (i, j, k, ι) ∈ ∪6
i=1Λi. □

Remark 4.8.
(1) |Λ1| = 12, |Λ2| = 8 = |Λ3|, |Λ4| = 6, |Λ5| = 12 = |Λ6|.
(2) The Nichols algebras B(Vi,j,k,ι) with (i, j, k, ι) ∈ Λ4 ∪ Λ5 ∪ Λ6 have already

appeared in [5]. They are isomorphic to quantum planes as algebras. They
can be recovered, up to isomorphism, by using the techniques in [2]. Indeed,
from the proofs of Proposition 4.6, they are arising from Nichols algebras
of Cartan type A2 or standard type A2.
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(3) The Nichols algebra B(Vi,j,k,ι) for (i, j, k, ι) ∈ ∪3
i=1Λi is an algebra of di-

mension 18 or 36 with no quadratic relations. They appeared in [23] (see
also [24, 20]) with different parameters. Indeed, from the proofs of Propo-
sitions 4.3–4.6, [23, Remark 4.21] and [20, Proposition 5.9], up to isomor-
phism, they are arising from Nichols algebras of standard type B2 whose
Dynkin diagram is −1◦

q−2 q
◦ (q ∈ k× − {1,−1} and q4 ̸= 1), with

different matrices of the braiding.

5. Hopf algebras over K24,1

We determine all finite-dimensional Hopf algebras over K24,1, whose infinitesimal
braidings are simple objects in K24,1

K24,1
YD. We first define four families of Hopf

algebras Ci,j,k,ι(µ) for (i, j, k, ι) ∈ Λ1∗ and show that they are indeed the liftings of
B(Vi,j,k,ι)♯K24,1. Here Λ1∗ = {(2, j1, 0, 0), (2, j2, 1, 0), j1 = 2, 4, j2 = 1, 5} ⊂ Λ1.

Definition 5.1. For j ∈ {2, 4} and µ ∈ k, let C2,j,0,0(µ) be the algebra generated
by a, b, c, d, v1, v2, subject to the relations (3.1) and the following ones:

av1 = ξ5v1a, av2 = ξ4v2a+ v1c, bv1 = ξ5v1b, bv2 = ξ4v2b+ v1d, (5.1)
cv1 = ξ2v1c, cv2 = ξ4v2c+ v1a, dv1 = ξ2v1d, dv2 = ξ4v2d+ v1b, (5.2)

v3
1 = 0, ξ2jv2

1v2 + ξ−2jv1v2v1 + v2v
2
1 = 0, (5.3)

(1 − ξ2j)ξ4

1 + ξ5 v2
1v2 + (1 − ξ4j)ξ4

1 + ξ5 v1v2v1 + v3
2 = µ(1 − da−1), (5.4)

v1v
2
2 + v2v1v2 + v2

2v1 = −2µξ4ba−1. (5.5)

C2,j,0,0(µ) admits a Hopf algebra structure, where the comultiplication is given
by (3.2) and

∆(v1) = v1 ⊗ 1 + aj ⊗ v1 − ξ(1 + ξj)baj−1 ⊗ v2,

∆(v2) = v2 ⊗ 1 + daj−1 ⊗ v2 − (1 − ξ2)−1ξ−1(1 − ξj)caj−1 ⊗ v1.
(5.6)

Remark 5.2. It is clear that C2,j,0,0(0) ∼= B(V2,j,0,0)♯K24,1 and C2,j,0,0(µ) with
µ ̸= 0 is not isomorphic to C2,j,0,0(0) for j ∈ {2, 4}.

Definition 5.3. For j ∈ {1, 5} and µ ∈ k, let C2,j,1,0(µ) be the algebra generated
by a, d, c, d, v1, v2, subject to the relations (3.1), (5.1)–(5.3) and the following ones:

(1 − ξ2j)ξ4

1 + ξ5 v2
1v2 + (1 − ξ4j)ξ4

1 + ξ5 v1v2v1 + v3
2 = µ(1 − a3), (5.7)

v1v
2
2 + v2v1v2 + v2

2v1 = −2µξ4ca2. (5.8)

C2,j,1,0(µ) admits a Hopf algebra structure, where the comultiplication is given
by (3.2) and

∆(v1) = v1 ⊗ 1 + daj−1 ⊗ v1 − ξ(1 − ξj)caj−1 ⊗ v2,

∆(v2) = v2 ⊗ 1 + aj ⊗ v2 − (1 − ξ2)−1ξ−1(1 + ξj)baj−1 ⊗ v1.
(5.9)
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Remark 5.4. It is clear that C2,j,1,0(0) ∼= B(V2,j,1,0)♯K24,1 and C2,j,1,0(µ) with
µ ̸= 0 is not isomorphic to C2,j,1,0(0) for j ∈ {1, 5}.

Lemma 5.5. A linear basis of Ci,j,k,ι(µ) for (i, j, k, ι) ∈ Λ1∗ is given by

{vi
2(v1v2)jvk

1d
µcνblam, i, k ∈ I0,2, j, µ, ν, l, µ+ ν + l ∈ I0,1, m ∈ I0,5}.

Proof. We prove the assertion for C2,j,1,0(µ), the proof for C2,j,0,0(µ) being com-
pletely analogous. We write v12 := v1v2 for short. By the diamond lemma, it
suffices to show that all overlap ambiguities are resolvable, that is, the ambiguities
can be reduced to the same expression by different substitution rules with the or-
der v2 < v1v2 < v1 < d < c < b < a. Here we verify that the overlapping pair
(fv2)v2

2 = f(v3
2) for f ∈ {a, b, c, d} is resolvable:

(av2)v2
2 = (ξ4v2a+ v1c)v2

2 = ξ2v2
2av2 + ξ4(v1v2 + v2v1)cv2 + v2

1av2

= ξ2v2
2(ξ4v2a+ v1c) + ξ4(v1v2 + v2v1)(ξ4v2c+ v1a) + v2

1(ξ4v2a+ v1c)
= v3

2a+ ξ2v2
2v1c+ ξ2v1v

2
2c+ ξ4v1v2v1a+ ξ2v2v1v2c+ ξ4v2v

2
1a

+ ξ4v2
1v2a+ v3

1c

= v3
2a+ ξ4v1v2v1a+ ξ4v2v

2
1a+ ξ4v2

1v2a+ ξ2(v2
2v1 + v1v

2
2 + v2v1v2)c

= v3
2a+ ξ4v1v2v1a+ ξ4v2v

2
1a+ ξ4v2

1v2a

= (1 − ξ2j)ξ
1 + ξ5 av2

1v2 + (1 − ξ4j)ξ
1 + ξ5 av1v2v1 + µa(1 − a3) = a(v3

2).

(bv2)v2
2 = (ξ4v2b+ v1d)v2

2 = ξ2v2
2bv2 + ξ4v2v1dv2 + ξ4v1v2dv2 + v2

1bv2

= v3
2b+ ξ2v2

2v1d+ ξ2v2v1v2d+ ξ4v2v
2
1b+ ξ2v1v

2
2d+ ξ4v1v2v1b

+ ξ4v2
1v2b+ v3

1d

= v3
2b+ ξ4v1v2v1b+ ξ4v2v

2
1b+ ξ4v2

1v2b+ ξ2(v2
2v1 + v1v

2
2 + v2v1v2)d

= v3
2b+ ξ4v1v2v1b+ ξ4v2v

2
1b+ ξ4v2

1v2b− 2µcda2

= (1 − ξ2j)ξ
1 + ξ5 bv2

1v2 + (1 − ξ4j)ξ
1 + ξ5 bv1v2v1 + µb(1 − a3) = b(v3

2).

(dv2)v2
2 = (ξ4v2d+ v1b)v2

2 = ξ2v2
2dv2 + ξ4(v1v2 + v2v1)bv2 + v2

1dv2

= v3
2d+ ξ2v2

2v1b+ ξ2v1v
2
2b+ ξ4v1v2v1d+ ξ2v2v1v2b+ ξ4v2v

2
1d

+ ξ4v2
1v2d+ v3

1b

= v3
2d+ ξ4v1v2v1d+ ξ4v2v

2
1d+ ξ4v2

1v2d+ ξ2(v2
2v1 + v1v

2
2 + v2v1v2)b+ v3

1b

= (1 − ξ2j)ξ
1 + ξ5 dv2

1v2 + (1 − ξ4j)ξ
1 + ξ5 dv1v2v1 + µd(1 − a3) = d(v3

2).

(cv2)v2
2 = (ξ4v2c+ v1a)v2

2

= v3
2c+ ξ4v2v

2
1c+ ξ4v1v2v1c+ ξ4v2

1v2c+ ξ2(v2
2v1 + v2v1v2 + v1v

2
2)a+ v3

1a

= (1 − ξ2j)ξ
1 + ξ5 cv2

1v2 + (1 − ξ4j)ξ
1 + ξ5 cv1v2v1 + µc(1 − a3) = c(v3

2).
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One can also show that the remaining overlaps

{(fv1)v2
1 , f(v3

1)}, {(fv12)v12, f(v2
12)}, {(v1v12)v12, v1(v2

12)},
{(v3

1)v12, v
2
1(v1v12)}, {(v3

1)v2, v
2
1(v1v2)}, {v1(v3

2), (v1v2)v2
2},

{v12(v3
2), (v12v2)v2

2}, {(v2
12)v2, v12(v12v2)}, {v3

i v
r
i , v

r
i v

3
i }, {v2

12v
h
12, v

h
12v

2
12}

are resolvable by using the defining relations. Here we omit the details since it is
tedious but straightforward. □

Lemma 5.6. For (i, j, k, ι) ∈ Λ1∗, gr Ci,j,k,ι(µ) ∼= B(Vi,j,k,ι)♯K24,1.

Proof. Let C0 be the Hopf subalgebra of Ci,j,k,ι(µ) generated by the simple sub-
coalgebra k{a, b, c, d}. By Lemma 5.5, dimC0 = 24. It is clear that C0 ∼= K24,1.
Let Cn = Cn−1 + K24,1{yi(xy)jxk, i + 2j + k = n, i, k ∈ I0,2, j ∈ I0,1} for n ∈
I0,6. A direct computation shows that {Cn}n∈I0,6 is a coalgebra filtration of
Ci,j,k,ι(µ) and hence the coradical (Ci,j,k,ι(µ))0 ⊂ C0 ∼= K24,1, which implies that
(Ci,j,k,ι(µ))[0] ∼= K24,1 and gr Ci,j,k,ι(µ) ∼= Ri,j,k,ι♯K24,1, where Ri,j,k,ι is a con-
nected Hopf algebra in K24,1

K24,1
YD. Since Vi,j,k,ι ⊂ P(Ri,j,k,ι) by definition and

dimRi,j,k,ι = 18 = dim B(Vi,j,k,ι) by Lemma 5.5, it follows that Ri,j,k,ι
∼= B(Vi,j,k,ι)

and consequently, gr Ci,j,k,ι(µ) ∼= B(Vi,j,k,ι)♯K24,1. □

Proposition 5.7. Let A be a finite-dimensional Hopf algebra over K24,1 such that
grA ∼= B(Vi,j,k,ι)♯K24,1 for (i, j, k, ι) ∈ Λ1∗. Then A ∼= Ci,j,k,ι(µ) for some µ ∈ k.

Proof. Let X = ξ2jv2
1v2 +ξ−2jv1v2v1 +v2v

2
1 , Y = (1−ξ2j)ξ4

1+ξ5 v2
1v2 + (1−ξ4j)ξ4

1+ξ5 v1v2v1 +
v3

2 and Z = v1v
2
2 + v2v1v2 + v2

2v1 for simplicity. Assume that (i, j, k, ι) = (2, j, 0, 0)
for some j ∈ {2, 4}. Note that grA ∼= B(Vi,j,k,ι)♯K24,1. By (5.6), a direct compu-
tation shows that

∆(v3
1) = v3

1 ⊗ 1 + 1 ⊗ v3
1 + (1 − ξ2)− 1

2x2ba
−1 ⊗X,

∆(X) = X ⊗ 1 + da−1 ⊗X, ∆(Y ) = Y ⊗ 1 + da−1 ⊗ Y,

∆(Z) = Z ⊗ 1 + 1 ⊗ Z + (1 − ξ2)− 1
2x1ba

−1 ⊗X − 2ξj(1 − ξ2)− 1
2x2ba

−1 ⊗ Y.

It follows that X,Y ∈ P1,da−1(A) = P1,da−1(K24,1) = k{1 − da−1, ca−1}, that is,
X = α1(1−da−1)+α2ca

−1, Y = β1(1−da−1)+β2ca
−1 for some α1, α2, β1, β2 ∈ k.

Then

∆(v3
1 + α1(1 − ξ2)− 1

2x2ba
−1) = (v3

1 + α1(1 − ξ2)− 1
2x2ba

−1) ⊗ 1

+ 1 ⊗ (v3
1 + α1(1 − ξ2)− 1

2x2ba
−1) + (1 − ξ2)− 1

2x2ba
−1 ⊗ α2ca

−1.

If the relation v3
1 = 0 admits a non-trivial deformation, then v3

1 ∈ A[2]. Since
av3

1 = −v3
1a, bv3

1 = −v3
1b, cv3

1 = v3
1c and dv3

1 = v3
1c, a tedious computation on

A[2] shows that v3
1 = 0 must hold in A. Therefore, the last equation holds only

if α1 = 0 = α2, which implies that X = 0 in A. Similarly, we have that Y =
β1(1 − da−1) and Z = 2β1ξ

j(1 − ξ2)− 1
2x2ba

−1 = −2β1ξ
4ba−1. Therefore, the

defining relations of C2,j,0,0(β1) hold in A and hence there is a surjective Hopf

Rev. Un. Mat. Argentina, Vol. 65, No. 2 (2023)



ON HOPF ALGEBRAS OVER BASIC HOPF ALGEBRAS OF DIMENSION 24 489

algebra morphism from C2,j,0,0(β1) to A. By Lemma 5.5, dimA = dim C2,j,0,0(β1)
and hence A ∼= C2,j,0,0(β1).

Assume that (i, j, k, ι) = (2, j, 1, 0) for some j ∈ {1, 5}. By (5.9), a direct
computation shows that

∆(v3
1) = v3

1 ⊗ 1 + da2 ⊗ v3
1 + (1 − ξ2)− 1

2x2ca
2 ⊗X,

∆(X) = X ⊗ 1 + a3 ⊗X, ∆(Y ) = Y ⊗ 1 + a3 ⊗ Y,

∆(Z) = Z ⊗ 1 + da2 ⊗ Z + (1 − ξ2)− 1
2x1ca

2 ⊗X + 2ξj(1 − ξ2)− 1
2x2ca

2 ⊗ Y.

It follows that X = α1(1 − a3), Y = α2(1 − a3) for some α1, α2 ∈ k. Then v3
1 +

α1(1 − ξ2)− 1
2x2ca

2 ∈ P1,da2(A) = P1,da2(K24,1), that is, v3
1 + α1(1 − ξ2)− 1

2x2ca
2 =

α3(1 − da2) for some α3 ∈ k. Since av3
1 = −v3

1a, bv3
1 = −v3

1b, cv3
1 = v3

1c and dv3
1 =

v3
1c, it follows that α1 = 0 = α3 and hence v3

1 = 0 = X in A. Then Z + 2α2ξ
j(1 −

ξ2)− 1
2x2ca

2 ∈ P1,da2(A) = P1,da2(K24,1), that is, Z + 2α2ξ
j(1 − ξ2)− 1

2x2ca
2 =

α4(1 − da2) for some α4 ∈ k. Since aZ = ξZa, it follows that α4 = 0 and
hence Z = −2α2ξ

j(1 − ξ2)− 1
2x2ca

2 = −2α2ξ
4ca2. Therefore, there is a surjective

Hopf algebra morphism from C2,j,1,0(α2) to A. Since dimA = dim C2,j,1,0(α2) by
Lemma 5.5, A ∼= C2,j,1,0(α2). □

Proposition 5.8. Let A be a finite-dimensional Hopf algebra over K24,1 such that
grA ∼= B(V )♯K24,1, where V is isomorphic either to kχi,j,k

for (i, j, k) ∈ Λ0 or to
Vi,j,k,ι for (i, j, k, ι) ∈ Λ4. Then A ∼= grA.

Proof. Assume that V ∼= kχi,j,k
for (i, j, k) ∈ Λ0. Since ∆(v) = v⊗ 1 +dja3i−j ⊗ v,

we have ∆(v2) = v2 ⊗ 1 + 1 ⊗ v2 and hence v2 = 0 in A. Consequently, A ∼= grA.
Assume that V ∼= Vi,j,k,ι for (i, j, k, ι) ∈ Λ4. A direct computation shows that

∆(v2
1) = v2

1 ⊗ 1 + 1 ⊗ v2
1 + (−1)ι(1 − ξ2)− 1

2x2ba
−1 ⊗ (v1v2 + (−1)ιv1v2), (5.10)

∆(v2
2) = v2

2 ⊗ 1 + 1 ⊗ v2
2 , (5.11)

∆(v1v2 + (−1)ιv1v2) = (v1v2 + (−1)ιv1v2) + da−1 ⊗ (v1v2 + (−1)ιv1v2). (5.12)

It follows by (5.11) that v2
2 = 0 in A and by (5.12) that v1v2 + (−1)ιv2v1 ∈

P1,da−1(A) = P1,da−1(K24,1), that is, v1v2 +(−1)ιv2v1 = α1(1−da−1)+α2ca
−1 for

some α1, α2 ∈ k. Let X := v2
1 + (−1)ια1(1 − ξ2)− 1

2x2ba
−1 for short. Then (5.10)

can be rewritten as

∆(X) = X ⊗ 1 + 1 ⊗X + (−1)ι(1 − ξ2)− 1
2x2ba

−1 ⊗ α2ca
−1. (5.13)

If the relation v2
1 = 0 admits non-trivial deformations, then v2

1 ∈ A[1]. Since
av2

1 = ξ2iv2
1a, bv2

1 = ξ2iv2
1b, dv2

1 = ξ2iv2
1d and cv2

1 = ξ2iv2
1c, a direct computation

on A[1] shows that v2
1 = 0 in A and hence (5.13) holds only if α1 = 0 = α2, which

implies that v1v2 + (−1)ιv2v1 = 0 in A. □

Proposition 5.9. Let A be a finite-dimensional Hopf algebra over K24,1 such that
grA ∼= B(Vi,j,k,ι)♯K24,1 for (i, j, k, ι) ∈ Λ1 ∪ Λ2 ∪ Λ3 − Λ1∗. Then A ∼= grA.
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Proof. Assume that (i, j, k, ι) ∈ Λ1 − Λ1∗. Let X = ξ2jv2
1v2 + (−1)ιξ−2jv1v2v1 +

v2v
2
1 , Y = (−1)ι(1−ξ2j)ξ4

1+ξ5 v2
1v2 + (1−ξ4j)ξ4

1+ξ5 v1v2v1 + v3
2 and Z = v1v

2
2 + (−1)ιv2v1v2 +

v2
2v1 for simplicity. If k = 0, then we have

∆(v3
1) = v3

1 ⊗ 1 + a3j ⊗ v3
1 + (1 − ξ2)− 1

2x2ba
3j−1 ⊗X, (5.14)

∆(X) = X ⊗ 1 + da3j−1 ⊗X, ∆(Y ) = Y ⊗ 1 + da3j−1 ⊗ Y, (5.15)

∆(Z) = Z ⊗ 1 + a3j ⊗ Z − (ξ−j + ξj)(1 − ξ2)− 1
2x1ba

3j−1 ⊗X

+ 2(−1)j+1ξj(1 − ξ2)− 1
2x2ba

3j−1 ⊗ Y.
(5.16)

If j ∈ {2, 4}, then i − 5 = k = ι = 0 and by (5.15), X,Y ∈ P1,da−1(A) =
P1,da−1(K24,1) = k{1 − da−1, ca−1}, that is, X = α1(1 − da−1) + α2ca

−1, Y =
β1(1−da−1)+β2ca

−1 for some α1, α2, β1, β2 ∈ k. Set r := v3
1 +α1(1−ξ2)− 1

2x2ba
−1.

Then
∆(r) = r ⊗ 1 + 1 ⊗ r + (1 − ξ2)− 1

2x2ba
−1 ⊗ α2ca

−1. (5.17)
If the relation v3

1 = 0 admits non-trivial deformations, then v3
1 ∈ A[2]. Since av3

1 =
v3

1a, bv3
1 = v3

1b, cv3
1 = −v3

1c and dv3
1 = −v3

1d, a tedious computation on A[2] shows
that v3

1 = 0 must hold in A, which implies that (5.17) holds only if α1 = 0 = α2 and
hence X = 0 in A. Similarly, Y = β1(1 − da−1) and Z = −2β1ξ

j(1 − ξ2)− 1
2x2ba

−1.
Since aY = −Y a and ab = ξba, it follows that β1 = 0. Consequently, A ∼= grA.

If j ∈ {1, 5}, then i − 2 = k = ι − 1 = 0 and by (5.15), X,Y ∈ P1,da2(A) =
P1,da2(K24,1) = k{1 − da2}, that is, X = α1(1 − da2) and Y = α2(1 − da2) for
some α1, α2 ∈ k. Moreover, v3

1 + α1(1 − ξ2)− 1
2x2ba

2 ∈ P1,a3(A) = P1,a3(K24,1),
which implies that v3

1 + α1(1 − ξ2)− 1
2x2ba

2 = α3(1 − a3). Since dv3
1 = v3

1d and
cv3

1 = v3
1c, it follows that α1 = 0 = α3 and hence X = 0 = v3

1 in A. Then a direct
computation shows that Z+2α2ξ

j(1−ξ2)− 1
2x2ba

2 ∈ P1,a3(A) = P1,a3(K24,1), that
is, Z + 2α2ξ

j(1 − ξ2)− 1
2x2ba

2 = α4(1 − a3) for some α4 ∈ k. Since aZ = ξ4Za,
bZ = ξ4Zb, cZ = ξ4Zc and dZ = ξ4Zd, it follows that α2 = 0 = α4. Consequently,
grA ∼= A.

If k = 1, then (i, j, k, ι) ∈ {(2, j1, 1, 1), (5, j1, 1, 1) | j1 = 2, 4} and we have that

∆(v3
1) = v3

1 ⊗ 1 + da3j−1 ⊗ v3
1 + (1 − ξ2)− 1

2x2ca
3j−1 ⊗X,

∆(X) = X ⊗ 1 + a3j ⊗X,

∆(Y ) = Y ⊗ 1 + a3j ⊗ Y,

∆(Z) = Z ⊗ 1 + da3j−1 ⊗ Z + (ξ−j + ξj)(1 − ξ2)− 1
2x1ca

3j−1 ⊗X

+ 2(−1)j+1ξj(1 − ξ2)− 1
2x2ca

3j−1 ⊗ Y.

It follows that X = 0 = Y in A and v3
1 , Z ∈ P1,da−1(A) = P1,da−1(K24,1),

that is, v3
1 = α1(1 − da−1) + α2ca

−1 and Z = β1(1 − da−1) + β2ca
−1 for some

α1, α2, β1, β2 ∈ k. Since av3
1 = (−1)iv3

1a, bv3
1 = (−1)iv3

1b, cv3
1 = (−1)iv3

1c and
dv3

1 = (−1)iv3
1d, it follows that α1 = 0 = α2. Since aZ = (−1)iξ4Za, bZ =

(−1)iξ4Zb, cZ = (−1)iξ4Zc and dZ = (−1)iξ4Zd, it follows that β1 = 0 = β2.
Consequently, A ∼= grA.
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The proof for (i, j, k, ι) ∈ Λ2 ∪Λ3 follows the same lines as for (i, j, k, ι) ∈ Λ1. □

Proposition 5.10. Let A be a finite-dimensional Hopf algebra over K24,1 such
that grA ∼= B(Vi,j,k,ι)♯K24,1 for (i, j, k, ι) ∈ Λ5 ∪ Λ6. Then A ∼= grA.

Proof. Assume that (i, j, k, ι) ∈ Λ5. Observe that i ∈ {0, 3}. If the relation v2
1 = 0

admits non-trivial deformations, then v2
1 ∈ A[1]. Hence there exist some elements

αp,q,r, βp,q,r, γp,q,r, λp,q,r ∈ k with p+ q, p, q ∈ I0,1, r ∈ I0,5 such that

v2
1 =

∑
αp,q,rv

p
1v

q
2a

r + βp,q,rv
p
1v

q
2da

r + γp,q,rv
p
1v

q
2ba

r + λp,q,rv
p
1v

q
2ca

r.

Since av2
1 = v2

1a, bv
2
1 = v2

1b, cv
2
1 = v2

1c, dv
2
1 = v2

1d, it follows that αp,q,r = βp,q,r =
γp,q,r = λp,q,r = 0 with p+ q, p, q ∈ I0,1, r ∈ I0,5 and hence v2

1 = 0 in A. Similarly,
we have that v1v2 + ξ5jv2v1 = 0 since

a(v1v2 + (−1)kξ5jv2v1) = ξ−1(v1v2 + (−1)kξ5jv2v1)a,
b(v1v2 + (−1)kξ5jv2v1) = ξ−1(v1v2 + (−1)kξ5jv2v1)b,
c(v1v2 + (−1)kξ5jv2v1) = −ξ−1(v1v2 + (−1)kξ5jv2v1)c,
d(v1v2 + (−1)kξ5jv2v1) = −ξ−1(v1v2 + (−1)kξ5jv2v1)d.

If N = 6, then the relation v6
2 = 0 must hold in A since ∆(v6

2) = v6
2 ⊗ 1 + 1 ⊗ v6

2 .
If N = 3, then the relation v3

2 = 0 must hold in A since av3
2 = (−1)i+ιv3

2a, bv
3
2 =

(−1)i+ιv3
2b, cv

3
2 = (−1)iv3

2c, dv
3
2 = (−1)iv3

2d and v3
2 ∈ P1,da3j−1(A) or P1,a3(A).

Consequently, A ∼= grA.
The proof for (i, j, k, ι) ∈ Λ6 follows the same lines as for (i, j, k, ι) ∈ Λ5. □

Finally, we give the classification of finite-dimensional Hopf algebras over K24,1

whose infinitesimal braidings are indecomposable objects in K24,1
K24,1

YD.

Theorem 5.11. Let A be a finite-dimensional Hopf algebra over K24,1 whose in-
finitesimal braiding V is indecomposable in K24,1

K24,1
YD. Then A is isomorphic to one

of the following objects:
•

∧
kχi,j,k

♯K24,1 for (i, j, k) ∈ Λ0;
• B(Vi,j,k,ι)♯K24,1 for (i, j, k, ι) ∈ ∪6

i=1Λi − Λ1∗;
• Ci,j,k,ι(µ) for µ ∈ k and (i, j, k, ι) ∈ Λ1∗.

Proof. Since A[0] ∼= K24,1, grA ∼= R♯K24,1. By [2, Theorem 1.3], V is simple and
R ∼= B(V ). Then by Theorem 4.7, V is isomorphic either to kχi,j,k

for (i, j, k) ∈ Λ0

or to Vi,j,k,ι for (i, j, k, ι) ∈ ∪6
i=1Λi. The theorem follows by Propositions 5.7–5.10.

The Hopf algebras from different families are pairwise non-isomorphic since the
diagrams are not isomorphic as Yetter–Drinfeld modules over K24,1. □

Remark 5.12.
•

∧
kχi,j,k

♯K24,1 with (i, j, k) ∈ Λ0 are basic Hopf algebras of dimension 48.
• For (i, j, k, ι) ∈ Λ4, Λ5 and Λ6, B(Vi,j,k,ι)♯K24,1 are basic Hopf algebras of

dimension 96, 144 and 288, respectively.
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• For (i, j, k, ι) ∈ Λ1 and Λ2 ∪ Λ3, B(Vi,j,k,ι)♯K24,1 are basic Hopf algebras of
dimension 432 and 864, respectively.

• Ci,j,k,ι(µ) with µ ̸= 0 are non-trivial liftings of B(Vi,j,k,ι)♯K24,1 for (i, j, k, ι) ∈
Λ1∗ ⊂ Λ1. They constitute new examples of Hopf algebras without the dual
Chevalley property.
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druskiewitsch and G. A. Garćıa for helpful comments and guiding discussions on
this topic. The author would like to thank the referee for careful reading and
helpful suggestions that largely improved the exposition.

References
[1] N. Andruskiewitsch and I. Angiono, On finite dimensional Nichols algebras of diagonal

type, Bull. Math. Sci. 7 no. 3 (2017), 353–573. DOI MR Zbl

[2] N. Andruskiewitsch and I. Angiono, On Nichols algebras over basic Hopf algebras, Math.
Z. 296 no. 3-4 (2020), 1429–1469. DOI MR Zbl

[3] N. Andruskiewitsch and M. Beattie, Irreducible representations of liftings of quantum
planes, in Lie Theory and Its Applications in Physics V, World Scientific, River Edge, NJ,
2004, pp. 414–423. DOI MR Zbl

[4] N. Andruskiewitsch and J. Cuadra, On the structure of (co-Frobenius) Hopf algebras, J.
Noncommut. Geom. 7 no. 1 (2013), 83–104. DOI MR Zbl

[5] N. Andruskiewitsch and J. M. J. Giraldi, Nichols algebras that are quantum planes,
Linear Multilinear Algebra 66 no. 5 (2018), 961–991. DOI MR Zbl

[6] N. Andruskiewitsch and M. Graña, Braided Hopf algebras over non abelian finite groups,
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