THE JOHN-NIRENBERG INEQUALITY FOR ORLICZ-LORENTZ SPACES IN A PROBABILISTIC SETTING

LIBO LI AND ZHIWEI HAO

Abstract

The John-Nirenberg inequality is widely studied in the field of mathematical analysis and probability theory. In this paper we study a new type of the John-Nirenberg inequality for Orlicz-Lorentz spaces in a probabilistic setting. To be precise, let $0<q \leq \infty$ and Φ be an N-function with some proper restrictions. We prove that if the stochastic basis $\left\{\mathcal{F}_{n}\right\}_{n \geq 0}$ is regular, then $B M O_{\Phi, q}=B M O$, with equivalent (quasi)-norms. The result is new, which improves previous work on martingale Hardy theory.

1. Introduction

One of the most important properties of $B M O$ spaces (spaces of functions satisfying a bounded mean oscillation) is the so-called John-Nirenberg inequality, which was originally proved by John and Nirenberg in [14]. It was later extended to the probabilistic context by Garsia and Herz in [3, 8, In this paper, we deal with the John-Nirenberg inequality for the new type of $B M O$ spaces in probability theory.

Before describing our main results, we recall the classical John-Nirenberg inequality in probability theory. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $\left\{\mathcal{F}_{n}\right\}_{n \geq 0}$ be a non-decreasing sequence of sub- σ-algebras of \mathcal{F} such that $\mathcal{F}=\sigma\left(\bigcup_{n \geq 0} \mathcal{F}_{n}\right)$. The expectation operator and the conditional expectation operator with respect to \mathcal{F}_{n} are denoted by \mathbb{E} and \mathbb{E}_{n}, respectively. A sequence of $f=\left(f_{n}\right)_{n \geq 0}$ of random variables is said to be a martingale if f_{n} is \mathcal{F}_{n}-measurable, $\mathbb{E}\left(\left|f_{n}\right|\right)<\infty$ and $\mathbb{E}_{n}\left(f_{n+1}\right)=f_{n}$ for each $n \geq 0$. The spaces $B M O_{p}, 1 \leq p<\infty$, are defined as

$$
B M O_{p}=\left\{f \in L_{p}:\|f\|_{B M O_{p}}=\sup _{n \geq 0}\left\|\mathbb{E}_{n}\left(\left|f-f_{n}\right|^{p}\right)\right\|_{L_{\infty}}^{1 / p}<\infty\right\}
$$

[^0]where the $f_{n}=\mathbb{E}_{n}(f)$. Let \mathcal{T} be the set of all stopping times with respect to $\left\{\mathcal{F}_{n}\right\}_{n \geq 0}$. It is easy to check that (see [8, 19, 25])
$$
\|f\|_{B M O_{p}}=\sup _{\tau \in \mathcal{T}} \frac{\left\|\left(f-f^{\tau}\right) \chi_{\{\tau<\infty\}}\right\|_{L_{p}}}{\mathbb{P}(\tau<\infty)^{1 / p}}
$$

Note that $B M O_{2}=B M O$. Based mainly on duality $\left(\left(H_{1}\right)^{*}=B M O\right)$, the JohnNirenberg inequality plays an important role in classical analysis and martingale theory.

The well-known John-Nirenberg inequality (one of the most important theorems in martingale theory, see [8, 25]) says that if the stochastic basis $\left\{\mathcal{F}_{n}\right\}_{n \geq 0}$ is regular, then $B M O_{p}=B M O$ with respect to these norms. That is,

$$
\begin{equation*}
\|f\|_{B M O} \lesssim\|f\|_{B M O_{p}} \lesssim\|f\|_{B M O}, \quad 1 \leq p<\infty \tag{1.1}
\end{equation*}
$$

Here, the stochastic basis $\left\{\mathcal{F}_{n}\right\}_{n \geq 0}$ is said to be regular if there exists $\mathcal{R}>1$ such that

$$
f_{n} \leq \mathcal{R} f_{n-1} \quad \forall n \geq 1
$$

holds for all non-negative martingales $f=\left(f_{n}\right)_{n \geq 0}$ adapted to $\left\{\mathcal{F}_{n}\right\}_{n \geq 0}$. The reader is referred to [19, 22, 25] for more information about martingale theory and regularity. Now the probabilistic version of the John-Nirenberg inequality has been extended to various known function spaces, such as the rearrangement invariant Banach function space [2, 26], the Lebesgue space with variable exponents [13], the non-commutative Lebesgue space [10, 15], the Lorentz space [9, 12, 17], and the Iwaniec-Sbordone space [5]. It is worth noting that these spaces are Banach function spaces.

In this paper, we will continue to answer whether the John-Nirenberg inequality is true for the non-Banach function spaces. Our purpose is to establish the John-Nirenberg inequality in the probabilistic version of Orlicz-Lorentz spaces $L_{\Phi, q}$ (where $0<q \leq \infty$ and Φ is an N-function), introduced in [6] (see section 2). Our main result, stated informally, reads as follows.

Theorem 1.1. Let $0<q \leq \infty$ and Φ be an N-function with some proper restrictions. If the stochastic basis $\left\{\mathcal{F}_{n}\right\}_{n \geq 0}$ is regular, then

$$
B M O_{\Phi, q}=B M O .
$$

For the precise statement see Theorem 3.2 in section 3, where we also define the class $B M O_{\Phi, q}$. In order to prove theorem above, we need to discover more properties of the Orlicz-Lorentz spaces associated with $0<q \leq \infty$ and N-function Φ. Such properties (see section 2) improve the properties of classical Lebesgue and Lorentz spaces.

Throughout this paper, we denote by C an absolute positive constant that is independent of the main parameters involved but whose value may differ from line to line. The notation $f \lesssim g$ stands for the inequality $f \leq C g$. If we write $f \approx g$, we mean $f \lesssim g \lesssim f$.

2. Preliminaries

In this section, we give some preliminaries necessary for the whole paper.
2.1. N-functions. Let us first recall the definition of N-function. An N-function is a continuous and convex function $\Phi:[0, \infty) \longrightarrow \mathbb{R}$ such that $\Phi(s)>0, s>0$, $\Phi(s) / s \longrightarrow 0$ as $s \longrightarrow 0$, and $\Phi(s) / s \longrightarrow \infty$ as $s \longrightarrow \infty$. It is well known that an N-function Φ has the representation

$$
\Phi(s)=\int_{0}^{s} \phi(t) d t
$$

where $\phi:[0, \infty) \longrightarrow \mathbb{R}$ is continuous from the right, non-decreasing such that $\phi(s)>0, s>0, \phi(0)=0$ and $\phi(s) \longrightarrow \infty$ for $s \longrightarrow \infty$.

Associated to ϕ we have the function $\psi:[0, \infty) \longrightarrow \mathbb{R}$ defined by

$$
\psi(t)=\sup \{s: \phi(s) \leq t\}
$$

which has the same aforementioned properties of ϕ. We will call ψ the generalized inverse of ϕ. The N-function Ψ defined by

$$
\Psi(t)=\int_{0}^{t} \psi(s) d s
$$

is called the complementary N-function of Φ.
We have the following relationship between an N-function and its complementary function.

Proposition 2.1 (See [23]). If Φ is an N-function and Ψ is the complementary of Φ, then

$$
t<\Phi^{-1}(t) \Psi^{-1}(t) \leq 2 t \quad \forall t>0
$$

where Φ^{-1} and Ψ^{-1} denote the inverse function of Φ and Ψ, respectively.
2.2. Orlicz spaces. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a complete probability space and f be an \mathcal{F}-measurable function defined on Ω. The distribution function of f is the function $\lambda_{s}(f)$ given by

$$
\lambda_{s}(f)=\mathbb{P}(\{\omega \in \Omega:|f(\omega)|>s\}), \quad s \geq 0
$$

Denote by f^{*} the decreasing rearrangement of f, defined by

$$
f^{*}(t)=\inf \left\{s \geq 0: \lambda_{s}(f) \leq t\right\}, \quad t \geq 0
$$

with the convention that $\inf \emptyset=\infty$.
Definition 2.2. Let Φ be an increasing function. The Orlicz space $L_{\Phi}:=$ $L_{\Phi}(\Omega, \mathcal{F}, \mathbb{P})$ is the set of all \mathcal{F}-measurable functions f satisfying $\mathbb{E}(\Phi(c|f|))<\infty$ for some $c>0$ and

$$
\|f\|_{L_{\Phi}}=\inf \{c>0: \mathbb{E}(\Phi(|f| / c)) \leq 1\}
$$

where \mathbb{E} denotes the expectation with respect to \mathbb{P}.

If $\Phi(t)=t^{p}(1<p<\infty)$, then L_{Φ} is the usual Lebesgue space L_{p}. In this case we denote $\|\cdot\|_{L_{p}}$ by $\|\cdot\|_{L_{\Phi}}$. For the N-function Φ, the functional $\|\cdot\|_{L_{\Phi}}$ is a norm and thereby $\left(L_{\Phi},\|\cdot\|_{L_{\Phi}}\right)$ is a Banach space. By a simple calculation, one can check that for any $A \in \mathcal{F}, \mathbb{P}(A)>0$,

$$
\left\|\chi_{A}\right\|_{L_{\Phi}}=\frac{1}{\Phi^{-1}\left(\frac{1}{\mathbb{P}(A)}\right)} .
$$

Recall the Hölder inequality on Orlicz spaces, which is analogous to the case of classical Lebesgue spaces:

Proposition 2.3 (See [23]). Let Φ be an N-function and Ψ be the complementary function of Φ. There exists an absolute constant $C \geq 1$ depending only on Φ and Ψ such that if $f \in L_{\Phi}$ and $g \in L_{\Psi}$, we have

$$
\mathbb{E}(f g) \leq C\|f\|_{L_{\Phi}}\|g\|_{L_{\Psi}} .
$$

Hardy, Littlewood and Pólya extended the above result to the more general case as follows.

Proposition 2.4 (See [7]). Let $\Phi_{i}:[0, \infty) \longrightarrow \mathbb{R}, i=1,2,3$, be N-functions such that

$$
\Phi_{3}^{-1}(t)=\Phi_{1}^{-1}(t) \Phi_{2}^{-1}(t) \quad \forall t \geq 0
$$

There exists an absolute constant $C \geq 1$ depending only on Φ_{1} and Φ_{2} such that if $f \in L_{\Phi_{1}}$ and $g \in L_{\Phi_{2}}$, we have

$$
\|f g\|_{L_{\Phi_{3}}} \leq C\|f\|_{L_{\Phi_{1}}}\|g\|_{L_{\Phi_{2}}} .
$$

The lower and upper Simonenko indices of N-function Φ are respectively defined as

$$
p_{\Phi}=\inf _{t>0} \frac{t \Phi^{\prime}(t)}{\Phi(t)} \quad \text { and } \quad q_{\Phi}=\sup _{t>0} \frac{t \Phi^{\prime}(t)}{\Phi(t)}
$$

Clearly, $1 \leq p_{\Phi} \leq q_{\Phi} \leq \infty$. Simonenko introduced these indices in [24]. Moreover, Mao and Ren [23] prove that, if Φ is an N-function with $1<p_{\Phi} \leq q_{\Phi}<\infty$ and Ψ is the complementary of Φ, then the lower and upper Simonenko indices of Ψ satisfy $1<p_{\Psi} \leq q_{\Psi}<\infty$.

Proposition 2.5. Let Φ be an N-function with $q_{\Phi}<\infty$. Then $\frac{\Phi(t)}{t^{p_{\Phi}}}$ is increasing on $(0, \infty)$ and $\frac{\Phi(t)}{t^{q \Phi}}$ is decreasing on $(0, \infty)$.

The above property of the indices of N-function Φ will be used in what follows. It is classical and can be found in [5, 11].
2.3. Orlicz-Lorentz spaces. Let $0<q \leq \infty$ and $\Phi:[0, \infty) \longrightarrow[0, \infty)$ be an increasing function such that $\Phi(0)=0$ and $\lim _{r \rightarrow \infty} \Phi(r)=\infty$. The Orlicz-Lorentz space $L_{\Phi, q}(\Omega, \mathcal{F}, \mathbb{P})$ consists of the \mathcal{F}-measurable functions f with finite (quasi)norm $\|f\|_{L_{\Phi}, q}$ given by

$$
\|f\|_{L_{\Phi, q}}= \begin{cases}\left(q \int_{0}^{\infty}\left(t\left\|\chi_{\{|f|>t\}}\right\|_{L_{\Phi}}\right)^{q} \frac{d t}{t}\right)^{1 / q} & \text { if } 0<q<\infty \\ \sup _{t>0} t\left\|\chi_{\{|f|>t\}}\right\|_{L_{\Phi}} & \text { if } q=\infty\end{cases}
$$

These spaces are the generalizations of classical Lorentz spaces $L_{p, q}$ and they coincide with $L_{p, q}$ when $\Phi(t)=t^{p}$ for $0<p<\infty$. Moreover, if $\Phi(t)=t^{q}$ for $0<q<\infty$, then $L_{\Phi, q}$ is the usual Lebesgue space L_{q}. The following fundamental properties of the functional $\|\cdot\|_{L_{\Phi, q}}$ were proved in [6]:
(1) $\|f\|_{L_{\Phi, q}} \geq 0$, and $\|f\|_{L_{\Phi, q}}=0$ if and only if $f=0$;
(2) $\|\lambda \cdot f\|_{L_{\Phi, q}}=|\lambda| \cdot\|f\|_{L_{\Phi}, q}$ for any $\lambda \in \mathbb{C}$;
(3) $\|f+g\|_{L_{\Phi}, q} \leq C\left(\|f\|_{L_{\Phi}, q}+\|g\|_{L_{\Phi}, q}\right)$;
(4) $\left\|\chi_{A}\right\|_{L_{\Phi, q}}=\left\|\chi_{A}\right\|_{L_{\Phi}}=\frac{1}{\Phi^{-1}\left(\frac{1}{\mathrm{P}(A)}\right)}$ for any $A \in \mathcal{F}$ and $\mathbb{P}(A)>0$.

Studies on the theory of Orlicz-Lorentz spaces can be found in [16, 21, 20, 18]. Next we shall present more properties of Orlicz-Lorentz spaces with N-function, which are new and useful for the main results in the paper.

Proposition 2.6. Let $0<q \leq \infty$ and Φ be an N-function with $q_{\Phi}<\infty$. Then $\|f\|_{L_{\Phi, q}}$ and

$$
\left\|\|f\|_{L_{\Phi, q}}= \begin{cases}\left(q \int_{0}^{1}\left(\frac{1}{\Phi^{-1}(1 / t)} f^{*}(t)\right)^{q} \frac{d t}{t}\right)^{1 / q} & \text { if } 0<q<\infty \\ \sup _{t>0} \frac{1}{\Phi^{-1}(1 / t)} f^{*}(t) & \text { if } q=\infty\end{cases}\right.
$$

are equivalent (quasi)-norms.
Proof. For any measurable function f, there exists a sequence of non-negative simple functions $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ such that $f_{n} \uparrow|f|$ a.e. Moreover, $d_{f_{n}} \uparrow d_{f}$ and $f_{n}^{*} \uparrow$ f^{*}. Therefore, by using Lebesgue's monotone convergence theorem, it suffices to establish that the quasi-norm defined as $\left\|\|f\|_{\Phi, q}\right.$ is equivalent to $\| f \|_{\Phi, q}$ for nonnegative simple functions.

Now let

$$
f(\omega)=\sum_{i=1}^{N} \alpha_{i} \chi_{A_{i}}(\omega)
$$

where $\left\{A_{i}\right\}_{i=1}^{N}$ is a family of disjoint measurable sets and $\left\{\alpha_{j}\right\}_{j=1}^{N} \subseteq \mathbb{R}$ satisfy $0 \leq \alpha_{j} \leq \alpha_{i}$ for $1 \leq i \leq j \leq N$. For any $t \geq 0$, we have

$$
\lambda_{t}(f)=\sum_{j=1}^{N} \beta_{j} \chi_{\left[\alpha_{j+1}, \alpha_{j}\right)}(t)
$$

where $\alpha_{N+1}=0$ and $\beta_{j}=\sum_{i=1}^{j} \mathbb{P}\left(A_{i}\right)$ for $1 \leq j \leq N$. Also, one can see that

$$
f^{*}(t)=\sum_{j=1}^{N} a_{j} \chi_{\left[\beta_{j-1}, \beta_{j}\right)}(t)
$$

where $\beta_{0}=0$.
We first consider the case of $q=\infty$. Since $\Phi^{-1}(t)$ is increasing on $(0, \infty)$, we get

$$
\begin{aligned}
\|f\|_{L_{\Phi, \infty}} & =\sup _{t>0} t\left\|\chi_{\{|f|>t\}}\right\|_{L_{\Phi}}=\sup _{t>0} \frac{t}{\Phi^{-1}\left(1 / \lambda_{t}(f)\right)} \\
& =\sup _{t>0} \sum_{j=1}^{N} \frac{t}{\Phi^{-1}\left(1 / \beta_{j}\right)} \chi_{\left[\alpha_{j+1}, \alpha_{j}\right)}(t)=\max _{1 \leq j \leq N} \frac{\alpha_{j}}{\Phi^{-1}\left(1 / \beta_{j}\right)}
\end{aligned}
$$

and

$$
\begin{aligned}
\|f\| \|_{L_{\Phi, \infty}} & =\sup _{t>0} \frac{1}{\Phi^{-1}(1 / t)} f^{*}(t)=\sup _{t>0} \sum_{j=1}^{N} \frac{\alpha_{j}}{\Phi^{-1}(1 / t)} \chi_{\left[\beta_{j-1}, \beta_{j}\right)}(t) \\
& =\max _{1 \leq j \leq N} \frac{\alpha_{j}}{\Phi^{-1}\left(1 / \beta_{j}\right)}
\end{aligned}
$$

which implies

$$
\|f\|_{L_{\Phi, \infty}}=\|f\|_{L_{\Phi, \infty}}
$$

Now we consider the case of $0<q<\infty$. It follows from the Abel transformation that

$$
\begin{aligned}
\|f\|_{L_{\Phi, q}}^{q} & =q \sum_{i=1}^{N} \alpha_{i}^{q} \int_{\beta_{i-1}}^{\beta_{i}}\left(\frac{1}{\Phi^{-1}(1 / t)}\right)^{q} \frac{d t}{t}=\sum_{i=1}^{N} \alpha_{i}^{q}\left(K\left(\beta_{i}\right)-K\left(\beta_{i-1}\right)\right) \\
& =\sum_{i=1}^{N}\left(\alpha_{i}^{q}-\alpha_{i+1}^{q}\right) K\left(\beta_{i}\right)
\end{aligned}
$$

where

$$
K(t)=q \int_{0}^{t}\left(\frac{1}{\Phi^{-1}(1 / s)}\right)^{q} \frac{d s}{s} .
$$

It follows from Proposition 2.5 that $\frac{t^{1 / q_{\Phi}}}{\Phi^{-1}(t)}$ is decreasing on $(0, \infty)$. This implies that

$$
\begin{aligned}
K\left(\beta_{i}\right) & =q \int_{0}^{\beta_{i}}\left(\frac{1}{\Phi^{-1}(1 / t)}\right)^{q} \frac{d t}{t}=q \int_{1 / \beta_{i}}^{\infty}\left(\frac{1}{\Phi^{-1}(t)}\right)^{q} \frac{d t}{t} \\
& =q \int_{1 / \beta_{i}}^{\infty}\left(\frac{t^{1 / q_{\Phi}}}{\Phi^{-1}(t)}\right)^{q} t^{-\left(1+q / q_{\Phi}\right)} d t \\
& \leq q\left(\frac{\beta_{i}^{-1 / q_{\Phi}}}{\Phi^{-1}\left(1 / \beta_{i}\right)}\right)^{q} \int_{1 / \beta_{i}}^{\infty} t^{-\left(1+q / q_{\Phi}\right)} d t \\
& =q_{\Phi}\left(\frac{1}{\Phi^{-1}\left(1 / \beta_{i}\right)}\right)^{q} .
\end{aligned}
$$

The convexity of Φ and $\Phi(0)=0$ imply that $\frac{t}{\Phi^{-1}(t)}$ is increasing on $(0, \infty)$. This means that

$$
\begin{aligned}
K\left(\beta_{i}\right) & =q \int_{1 / \beta_{i}}^{\infty}\left(\frac{t}{\Phi^{-1}(t)}\right)^{q} t^{-(1+q)} d t \\
& \geq q\left(\frac{1 / \beta_{i}}{\Phi^{-1}\left(1 / \beta_{i}\right)}\right)^{q} \int_{1 / \beta_{i}}^{\infty} t^{-(1+q)} d t \\
& =\left(\frac{1}{\Phi^{-1}\left(1 / \beta_{i}\right)}\right)^{q} .
\end{aligned}
$$

Hence we get

$$
\begin{align*}
\sum_{i=1}^{N}\left(\alpha_{i}^{q}-\alpha_{i+1}^{q}\right)\left(\frac{1}{\Phi^{-1}\left(1 / \beta_{i}\right)}\right)^{q} & \leq\| \| f \|_{L_{\Phi, q}}^{q} \\
& \leq q_{\Phi} \sum_{i=1}^{N}\left(\alpha_{i}^{q}-\alpha_{i+1}^{q}\right)\left(\frac{1}{\Phi^{-1}\left(1 / \beta_{i}\right)}\right)^{q} \tag{2.1}
\end{align*}
$$

Moreover, we have

$$
\begin{align*}
\|f\|_{L_{\Phi, q}}^{q} & =q \int_{0}^{\infty}\left(t\left\|\chi_{\{|f|>t\}}\right\|_{L_{\Phi}}\right)^{q} \frac{d t}{t}=q \int_{0}^{\infty}\left(\frac{t}{\Phi^{-1}\left(1 / \lambda_{t}(f)\right)}\right)^{q} \frac{d t}{t} \\
& =q \sum_{i=1}^{N} \int_{\alpha_{i+1}}^{\alpha_{i}}\left(\frac{t}{\Phi^{-1}\left(1 / \beta_{i}\right)}\right)^{q} \frac{d t}{t} \tag{2.2}\\
& =\sum_{i=1}^{N}\left(\alpha_{i}^{q}-\alpha_{i+1}^{q}\right)\left(\frac{1}{\Phi^{-1}\left(1 / \beta_{i}\right)}\right)^{q}
\end{align*}
$$

Combining 2.1 and 2.2, one can see that

$$
\|f\|_{L_{\Phi}, q} \leq\|f\|_{L_{\Phi, q}} \leq q_{\Phi}^{1 / q}\|f\|_{L_{\Phi, q}}
$$

This completes the proof.

Note that if we consider the special N-function $\Phi(t)=t^{p}(t \in[0, \infty), 1<p<$ ∞), then $p_{\Phi}=q_{\Phi}=p<\infty$ (see [1]). From Proposition 2.6. we obtain the following fact:
Corollary 2.7. Let $1<p<\infty$ and $0<q \leq \infty$. The Lorentz spaces $\left(L_{p, q},\|\cdot\|_{L_{p, q}}\right)$ are equivalent to $\left(L_{p, q},\| \| \cdot \|_{L_{p, q}}\right)$. That is,

$$
\|\cdot\|_{L_{p, q}} \approx\|\cdot\| \|_{L_{p, q}} .
$$

Using Proposition 2.6, we have the following embedding relationships among these Orlicz-Lorentz spaces:

Proposition 2.8. Let $0<q<p \leq \infty$ and Φ be an N-function with $q_{\Phi}<\infty$. Then $L_{\Phi, q}$ is a subspace of $L_{\Phi, p}$, i.e.,

$$
\|f\|_{L_{\Phi, p}} \lesssim\|f\|_{L_{\Phi, q}} \quad \forall f \in L_{\Phi, q}
$$

Proof. Let $f \in L_{\Phi, q}$. For $p=\infty$, it follows from $\frac{t}{\Phi^{-1}(t)}$ being increasing on $(0, \infty)$ and Proposition 2.6 that

$$
\begin{aligned}
\frac{1}{\Phi^{-1}(1 / t)} f^{*}(t) & \leq\left(q \int_{0}^{t}\left(\frac{1}{\Phi^{-1}(1 / s)} f^{*}(t)\right)^{q} \frac{d s}{s}\right)^{1 / q} \\
& \leq\left(q \int_{0}^{t}\left(\frac{1}{\Phi^{-1}(1 / s)} f^{*}(s)\right)^{q} \frac{d s}{s}\right)^{1 / q} \\
& \leq\|f\|_{L_{\Phi, q}} \leq q_{\Phi}^{1 / q}\|f\|_{L_{\Phi, q}}
\end{aligned}
$$

Taking the supremum over all $t>0$ for these inequalities, we hence obtain

$$
\|f\|_{L_{\Phi, \infty}} \leq q_{\Phi}^{1 / q}\|f\|_{L_{\Phi, q}} .
$$

Finally, when $p<\infty$, it follows from Proposition 2.6 that

$$
\begin{aligned}
\|f\|_{L_{\Phi, p}} & \approx\left(p \int_{0}^{\infty}\left(\frac{1}{\Phi^{-1}(1 / s)} f^{*}(s)\right)^{p-q+q} \frac{d s}{s}\right)^{1 / p} \lesssim\| \| f\left\|_{L_{\Phi, q}}^{q / p}\right\| f \|_{L_{\Phi, \infty}}^{(p-q) / p} \\
& \lesssim\|f\|_{L_{\Phi, q}} .
\end{aligned}
$$

This completes the proof.
We present the following Hölder-type inequality for Orlicz-Lorentz spaces.
Proposition 2.9. Let Φ be an N-function with $1<p_{\Phi} \leq q_{\Phi}<\infty$ and Ψ be the complementary of Φ.
(i) If $1<q \leq \infty, f \in L_{\Phi, q}$ and $g \in L_{\Psi, q^{\prime}}$, then we have

$$
\mathbb{E}(f g) \leq C\|f\|_{L_{\Phi}, q}\|g\|_{L_{\Psi, q^{\prime}}}
$$

where q^{\prime} satisfies $1 / q+1 / q^{\prime}=1$.
(ii) If $0<q \leq 1$, $f \in L_{\Phi, q}$ and $g \in L_{\Psi, \infty}$, then we have

$$
\mathbb{E}(f g) \leq C\|f\|_{L_{\Phi, q}}\|g\|_{L_{\Psi, \infty}} .
$$

In order to prove the Hölder-type inequality for Orlicz-Lorentz spaces, we need the famous Hardy inequality as follows:
Lemma 2.10 (See [1]). For f and g measurable on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, we have

$$
\mathbb{E}(f g)=\int_{\Omega} f g d \mathbb{P} \leq \int_{0}^{\infty} f^{*}(t) g^{*}(t) d t
$$

Now we prove Proposition 2.9.
Proof. Since the N-function Φ satisfies the condition $1<p_{\Phi} \leq q_{\Phi}<\infty$, we have $1<p_{\Psi} \leq q_{\Psi}<\infty$ for N-function Ψ. Therefore $\|\cdot\|_{\Phi, q}$ and $\|\cdot\|_{\Psi, q}$ are equivalent to $\|\|\cdot\|\|_{\Phi, q}$ and $\left\|\|\cdot\|_{\Psi, q}\right.$, respectively. According to Proposition 2.1. we have

$$
\begin{equation*}
\frac{t}{2} \leq \frac{1}{\Phi^{-1}(1 / t)} \frac{1}{\Psi^{-1}(1 / t)}<t \tag{2.3}
\end{equation*}
$$

Applying Lemma 2.10 and (2.3), we have

$$
\begin{equation*}
\mathbb{E}(f g) \leq \int_{0}^{\infty} f^{*}(t) g^{*}(t) d t \leq 2 \int_{0}^{\infty} \frac{1}{\Phi^{-1}(1 / t)} f^{*}(t) \frac{1}{\Psi^{-1}(1 / t)} g^{*}(t) \frac{d t}{t} \tag{2.4}
\end{equation*}
$$

(i) Combining the Hölder inequality and inequality (2.4), we obtain, for $1<q<$ ∞,

$$
\begin{aligned}
\mathbb{E}(f g) & \leq 2\left(\int_{0}^{\infty}\left[\frac{1}{\Phi^{-1}(1 / t)} f^{*}(t)\right]^{q} \frac{d t}{t}\right)^{1 / q}\left(\int_{0}^{\infty}\left[\frac{1}{\Psi^{-1}(1 / t)} g^{*}(t)\right]^{q^{\prime}} \frac{d t}{t}\right)^{1 / q^{\prime}} \\
& =2\|f\|_{L_{\Phi, q}}\|g\|_{L_{\Psi, q^{\prime}}} \approx\|f\|_{L_{\Phi, q}}\|g\|_{L_{\Psi, q^{\prime}}}
\end{aligned}
$$

Moreover, for $q=\infty$,

$$
\begin{aligned}
\mathbb{E}(f g) & \leq 2 \int_{0}^{\infty} \sup _{t>0}\left(\frac{1}{\Phi^{-1}(1 / t)} f^{*}(t)\right) \frac{1}{\Psi^{-1}(1 / t)} g^{*}(t) \frac{d t}{t} \\
& =2\|f\|_{L_{\Phi, \infty}}\|g\|_{L_{\Psi, 1}} \approx\|f\|_{L_{\Phi, \infty}}\|g\|_{L_{\Psi, 1}}
\end{aligned}
$$

(ii) Combining Proposition 2.8 and (2.4), we have

$$
\begin{aligned}
\mathbb{E}(f g) & \leq 2 \int_{0}^{\infty} \frac{1}{\Phi^{-1}(1 / t)} f^{*}(t) \sup _{t>0}\left(\frac{1}{\Psi^{-1}(1 / t)} g^{*}(t)\right) \frac{d t}{t} \\
& =2\| \| f\left\|_{L_{\Phi}, 1}\right\| g \|_{L_{\Psi, \infty}} \\
& \approx\|f\|_{L_{\Phi, 1}}\|g\|_{L_{\Psi, \infty}} \\
& \lesssim\|f\|_{L_{\Phi}, q}\|g\|_{L_{\Psi, \infty}}
\end{aligned}
$$

This completes the proof.
In particular, if $\Phi(t)=t^{p}$ for $t \in[0, \infty)$ in Theorem 2.9. we obtain the Hölder inequality for classical Lorentz spaces.
Corollary 2.11. Let $1<p<\infty$ and $0<q \leq \infty$; then the following statements hold:
(i) If $1<q \leq \infty, f \in L_{p, q}$ and $g \in L_{p^{\prime}, q^{\prime}}$, then we have

$$
\mathbb{E}(f g) \leq C\|f\|_{L_{p, q}}\|g\|_{L_{p^{\prime}, q^{\prime}}},
$$

where $1 / p+1 / p^{\prime}=1$ and $1 / q+1 / q^{\prime}=1$.
(ii) If $0<q \leq 1, f \in L_{p, q}$ and $g \in L_{p^{\prime}, \infty}$, then we have

$$
\mathbb{E}(f g) \leq C\|f\|_{L_{p, q}}\|g\|_{L_{p^{\prime}, \infty}}
$$

Remark 2.12. According to [4], the generalized Hölder inequality for classical Lorentz spaces also holds, i.e.,

$$
\|f g\|_{L_{p, q}} \leq C\|f\|_{L_{p_{1}, q_{1}}}\|g\|_{L_{p_{2}, q_{2}}} \quad\left(f \in L_{p_{1}, q_{1}}, g \in L_{p_{2}, q_{2}}\right),
$$

where $0<p, p_{1}, p_{2}<\infty$ and $0<q, q_{1}, q_{2} \leq \infty$ such that $1 / p=1 / p_{1}+1 / p_{2}$ and $1 / q=1 / q_{1}+1 / q_{2}$.

3. The John-Nirenberg inequality

In this section, we prove the new John-Nirenberg inequality for Orlicz-Lorentz spaces with N-function in a probabilistic setting. We first introduce the generalized $B M O$ associated with Orlicz-Lorentz space $L_{\Phi, q}$.

Definition 3.1. Let Φ be an N-function and $0<q \leq \infty$. We define the $B M O$ associated with Orlicz-Lorentz space $L_{\Phi, q}$ as

$$
B M O_{\Phi, q}=\left\{f \in L_{\Phi, q}:\|f\|_{B M O_{\Phi, q}}<\infty\right\}
$$

where

$$
\|f\|_{B M O_{\Phi, q}}=\sup _{\tau \in \mathcal{T}} \frac{\left\|\left(f-f^{\tau}\right) \chi_{\{\tau<\infty\}}\right\|_{L_{\Phi, q}}}{\left\|\chi_{\{\tau<\infty\}}\right\|_{L_{\Phi, q}}}
$$

Note that if $\Phi(t)=t^{p}, 0<p<\infty$, then $B M O_{\Phi, q}$ becomes $B M O_{p, q}$ introduced in 17. Moreover, if $\Phi(t)=t^{q}, 0<q<\infty$, then $B M O_{\Phi, q}$ can be reduced to $B M O_{q}$. Now we present the main result in this paper.

Theorem 3.2. Let Φ be an N-function with $1<p_{\Phi} \leq q_{\Phi}<\infty$ and $0<q \leq \infty$. If the stochastic basis $\left\{\mathcal{F}_{n}\right\}_{n \geq 0}$ is regular, then

$$
B M O_{\Phi, q}=B M O
$$

with equivalent (quasi)-norms.
Proof. According to 1.1, it is sufficient to prove

$$
B M O_{\Phi, q}=B M O_{1}
$$

with equivalent (quasi)-norms. Let $f \in B M O_{\Phi, q}$; then $f \in L_{\Phi, q}$. If $1<q \leq \infty$, then Proposition 2.9 gives

$$
\begin{align*}
\|f\|_{B M O_{1}} & =\sup _{\nu \in \mathcal{T}} \frac{\left\|f-f^{\nu}\right\|_{L_{1}}}{\mathbb{P}(\nu<\infty)} \tag{3.1}\\
& =\sup _{\nu \in \mathcal{T}} \frac{\left\|\left(f-f^{\nu}\right) \chi_{\{\nu<\infty\}}\right\|_{L_{1}}}{\mathbb{P}(\nu<\infty)} \\
& \lesssim \sup _{\nu \in \mathcal{T}} \frac{\left\|f-f^{\nu}\right\|_{L_{\Phi, q}}\left\|\chi_{\{\nu<\infty\}}\right\|_{L_{\Psi, q^{\prime}}}}{\mathbb{P}(\nu<\infty)} \\
& =\sup _{\nu \in \mathcal{T}} \frac{\left\|f-f^{\nu}\right\|_{L_{\Phi, q}}}{\mathbb{P}(\nu<\infty) \Psi^{-1}\left(\frac{1}{\mathbb{P}(\nu<\infty)}\right)},
\end{align*}
$$

where Ψ is the complementary of Φ and q^{\prime} satisfies $1 / q^{\prime}+1 / q=1$.
Using Proposition 2.1, we have

$$
\begin{equation*}
\mathbb{P}(\nu<\infty) \Psi^{-1}\left(\frac{1}{\mathbb{P}(\nu<\infty)}\right) \geq \frac{1}{\Phi^{-1}\left(\frac{1}{\mathbb{P}(\nu<\infty)}\right)}=\left\|\chi_{\{\nu<\infty\}}\right\|_{L_{\Phi}} \tag{3.2}
\end{equation*}
$$

Combining (3.1) and (3.2), we have

$$
\begin{align*}
\|f\|_{B M O_{1}} & \lesssim \sup _{\nu \in \mathcal{T}} \frac{\left\|f-f^{\nu}\right\|_{L_{\Phi, q}}\left\|\chi_{\{\nu<\infty\}}\right\|_{L_{\Psi, q}}}{\mathbb{P}(\nu<\infty)} \tag{3.3}\\
& \approx \sup _{\nu \in \mathcal{T}} \frac{\left\|f-f^{\nu}\right\|_{L_{\Phi}, q}}{\left\|\chi_{\{\nu<\infty\}}\right\|_{L_{\Phi}}} \\
& =\sup _{\nu \in \mathcal{T}} \frac{\left\|f-f^{\nu}\right\|_{L_{\Phi, q}}}{\left\|\chi_{\{\nu<\infty\}}\right\|_{L_{\Phi, q}}} \\
& =\|f\|_{B M O_{\Phi, q}}
\end{align*}
$$

When $0<q \leq 1$, Proposition 2.8 and (3.3) give

$$
\begin{align*}
\|f\|_{B M O_{1}} & \lesssim \sup _{\nu \in \mathcal{T}} \frac{\left\|f-f^{\nu}\right\|_{L_{\Phi, 2}}}{\left\|\chi_{\{\nu<\infty\}}\right\|_{L_{\Phi}}} \tag{3.4}\\
& \lesssim \sup _{\nu \in \mathcal{T}} \frac{\left\|f-f^{\nu}\right\|_{L_{\Phi}, q}}{\left\|\chi_{\{\nu<\infty\}}\right\|_{L_{\Phi}}} \\
& =\sup _{\nu \in \mathcal{T}} \frac{\left\|f-f^{\nu}\right\|_{L_{\Phi, q}}}{\left\|\chi_{\{\nu<\infty\}}\right\|_{L_{\Phi, q}}} \\
& =\|f\|_{B M O_{\Phi, q}} .
\end{align*}
$$

On the other hand, let $f \in B M O_{1}$. It is easy to see that

$$
B M O_{1}=B M O \subseteq L_{q_{\Phi}, q}
$$

i.e., $f \in L_{q_{\Phi}, q}$. Indeed, $B M O \subseteq L_{q_{\Phi}+1} \subseteq L_{q_{\Phi}, q}$. We first consider the case of $0<q<\infty$. It follows from Proposition 2.4 that for any stopping time $\tau \in \mathcal{T}$,

$$
\begin{aligned}
\left\|f-f^{\tau}\right\|_{L_{\Phi, q}} & =\left\|\left(f-f^{\tau}\right) \chi_{\{\tau<\infty\}}\right\|_{L_{\Phi}, q} \\
& =\left(\int_{0}^{\infty} \lambda^{q}\left\|\chi_{\left\{\left|\left(f-f^{\nu}\right) \chi_{\{\nu<\infty\}}\right|>\lambda\right\}}\right\|_{L_{\Phi}}^{q} \frac{d \lambda}{\lambda}\right)^{1 / q} \\
& =\left(\int_{0}^{\infty} \lambda^{q}\left(\left\|\chi_{\left\{\left|\left(f-f^{\nu}\right) \chi_{\{\nu<\infty\}}\right|>\lambda\right\}} \chi_{\{\nu<\infty\}}\right\|_{L_{\Phi}}\right)^{q} \frac{d \lambda}{\lambda}\right)^{1 / q} \\
& \lesssim\left(\int_{0}^{\infty} \lambda^{q}\left(\left\|\chi_{\left\{\left|\left(f-f^{\nu}\right) \chi_{\{\nu<\infty\}}\right|>\lambda\right\}}\right\|_{L_{q_{\Phi}}}\left\|\chi_{\{\nu<\infty\}}\right\|_{L_{\Phi_{1}}}\right)^{q} \frac{d \lambda}{\lambda}\right)^{1 / q} \\
& =\left\|\left(f-f^{\tau}\right) \chi_{\{\tau<\infty\}}\right\|_{L_{q_{\Phi}, q}}\left\|\chi_{\{\nu<\infty\}}\right\|_{L_{\Phi_{1}}},
\end{aligned}
$$

where

$$
\Phi_{1}^{-1}(t)=\Phi^{-1}(t) \cdot t^{-1 / q_{\Phi}} .
$$

Hence, combining this with Hölder's inequality for classical Lorentz spaces (see Remark 2.12, we obtain

$$
\begin{aligned}
\|f\|_{B M O_{\Phi, q}} & =\sup _{\tau \in \mathcal{T}} \frac{\left\|f-f^{\tau}\right\|_{L_{\Phi}, q}}{\left\|\chi_{\{\tau<\infty\}}\right\|_{L_{\Phi}, q}} \\
& \lesssim \sup _{\tau \in \mathcal{T}} \frac{\left\|\left(f-f^{\tau}\right) \chi_{\{\tau<\infty\}}\right\|_{L_{q_{\Phi}, q}, q}\left\|\chi_{\{\nu<\infty\}}\right\|_{L_{\Phi_{1}}}}{\left\|\chi_{\{\tau<\infty\}}\right\|_{L_{\Phi}}} \\
& =\sup _{\tau \in \mathcal{T}} \frac{\left\|\left(f-f^{\tau}\right) \chi_{\{\tau<\infty\}}\right\|_{L_{q_{\Phi}, q}}}{\left\|\chi_{\{\tau<\infty\}}\right\|_{L_{q_{\Phi}}}} \\
& \leq \sup _{\tau \in \mathcal{T}} \frac{\left\|\left(f-f^{\tau}\right) \chi_{\{\tau<\infty\}}\right\|_{L_{r, r}}\left\|\chi_{\{\tau<\infty\}}\right\|_{L_{s, u}}}{\left\|\chi_{\{\tau<\infty\}}\right\|_{L_{q_{\Phi}}}} \\
& =\sup _{\tau \in \mathcal{T}} \frac{\left\|\left(f-f^{\tau}\right) \chi_{\{\tau<\infty\}}\right\|_{L_{r}}}{\left\|\chi_{\{\tau<\infty\}}\right\|_{L_{r}}} \\
& =\|f\|_{B M O_{r}},
\end{aligned}
$$

where the real constant $r>\max \left\{q, q_{\Phi}\right\}, 0<s<\infty, 0<u<\infty$ and

$$
\left\{\begin{aligned}
\frac{1}{q_{\Phi}} & =\frac{1}{r}+\frac{1}{s} \\
\frac{1}{q} & =\frac{1}{r}+\frac{1}{u}
\end{aligned}\right.
$$

According to the John-Nirenberg inequality for $B M O$ (see (1.1), one can get

$$
\begin{equation*}
\|f\|_{B M O_{\Phi, q}} \lesssim\|f\|_{B M O_{r}} \lesssim\|f\|_{B M O_{1}}, \quad 0<q<\infty \tag{3.5}
\end{equation*}
$$

If $q=\infty$, it follows from Proposition 2.8 and (3.5) that

$$
\begin{align*}
\|f\|_{B M O_{\Phi, \infty}} & =\sup _{\tau \in \mathcal{T}} \frac{\left\|f-f^{\tau}\right\|_{L_{\Phi, \infty}}}{\left\|\chi_{\{\tau<\infty\}}\right\|_{L_{\Phi}, \infty}} \leq \sup _{\tau \in \mathcal{T}} \frac{\left\|f-f^{\tau}\right\|_{L_{\Phi, q_{\Phi}}}}{\left\|\chi_{\{\tau<\infty\}}\right\|_{L_{\Phi, \infty}}} \tag{3.6}\\
& =\|f\|_{B M O_{\Phi, q_{\Phi}}} \lesssim\|f\|_{B M O_{1}} .
\end{align*}
$$

Thus, combining (3.3), (3.4), (3.5) with (3.6), we have

$$
B M O_{\Phi, q}=B M O_{1}, \quad 0<q \leq \infty .
$$

Hence the result is proved. This completes the proof of the theorem.
Theorem 3.2 improves the results from [17. That is, if we consider the case $\Phi(t)=t^{p}$ for $t \in[0, \infty)$ in Theorem 3.2, we get the following result:
Corollary 3.3. Let $1<p<\infty, 0<q \leq \infty$. If the stochastic basis $\left\{\mathcal{F}_{n}\right\}_{n \geq 0}$ is regular, then

$$
B M O_{p, q}=B M O
$$

with equivalent (quasi)-norms.

Acknowledgments

The authors are very grateful to the editorial team and the reviewers for their suggestions to improve the presentation.

References

[1] C. Bennett and R. Sharpley, Interpolation of Operators, Pure and Applied Mathematics 129, Academic Press, Boston, MA, 1988. MR Zbl
[2] W. Chen, K.-P. Ho, Y. Jiao, and D. Zhou, Weighted mixed-norm inequality on Doob's maximal operator and John-Nirenberg inequalities in Banach function spaces, Acta Math. Hungar. 157 no. 2 (2019), 408-433. DOI MR Zbl
[3] A. M. Garsia, Martingale Inequalities: Seminar Notes on Recent Progress, Mathematics Lecture Note Series, W. A. Benjamin, Reading, Mass., 1973. MR Zbl
[4] L. Grafakos, Classical Fourier Analysis, second ed., Graduate Texts in Mathematics 249, Springer, New York, 2008. DOI MR Zbl
[5] Z. Hao and L. Li, Grand martingale Hardy spaces, Acta Math. Hungar. 153 no. 2 (2017), 417-429. DOI MR Zbl
[6] Z. Hao and L. Li, Orlicz-Lorentz Hardy martingale spaces, J. Math. Anal. Appl. 482 no. 1 (2020), 123520, $27 \mathrm{pp} . \mathrm{DOI} \mathrm{MR} \mathrm{Zbl}$
[7] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, second ed., Cambridge, at the University Press, 1952. MR Zbl
[8] C. Herz, Bounded mean oscillation and regulated martingales, Trans. Amer. Math. Soc. 193 (1974), 199-215. DOI MR Zbl
[9] K.-P. Ho, Atomic decompositions, dual spaces and interpolations of martingale Hardy-Lorentz-Karamata spaces, Q. J. Math. 65 no. 3 (2014), 985-1009. DOI MR Zbl
[10] G. Hong and T. Mei, John-Nirenberg inequality and atomic decomposition for noncommutative martingales, J. Funct. Anal. 263 no. 4 (2012), 1064-1097. DOI MR Zbl
[11] Y. Jiao, L. Wu, and L. Peng, Weak Orlicz-Hardy martingale spaces, Internat. J. Math. 26 no. 8 (2015), 1550062, 26 pp . DOI MR Zbl
[12] Y. Jiao, L. Wu, A. Yang, and R. Yi, The predual and John-Nirenberg inequalities on generalized BMO martingale spaces, Trans. Amer. Math. Soc. 369 no. 1 (2017), 537-553. DOI MR Zbl
[13] Y. Jiao, D. Zhou, Z. Hao, and W. Chen, Martingale Hardy spaces with variable exponents, Banach J. Math. Anal. 10 no. 4 (2016), 750-770. DOI MR Zbl
[14] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415-426. DOI MR Zbl
[15] M. Junge and M. Musat, A noncommutative version of the John-Nirenberg theorem, Trans. Amer. Math. Soc. 359 no. 1 (2007), 115-142. DOI MR Zbl
[16] A. Kamińska, Some remarks on Orlicz-Lorentz spaces, Math. Nachr. 147 (1990), 29-38. DOI MR Zbl
[17] L. Li, A remark on John-Nirenberg theorem for martingales, Ukrainian Math. J. 70 no. 11 (2019), 1812-1820. DOI MR Zbl
[18] L. Long, H. Tian, and D. Zhou, Interpolation of martingale Orlicz-Hardy spaces, Acta Math. Hungar. 163 no. 1 (2021), 276-294. DOI MR Zbl
[19] R. L. Long, Martingale Spaces and Inequalities, Peking University Press, Beijing; Friedr. Vieweg \& Sohn, Braunschweig, 1993. DOI MR Zbl
[20] S. J. Montgomery-Smith, Orlicz-Lorentz spaces, in Proceedings of the Orlicz Memorial Conference, Oxford, Mississippi, 1991.
[21] S. J. Montgomery-Smith, Comparison of Orlicz-Lorentz spaces, Studia Math. 103 no. 2 (1992), 161-189. DOI MR Zbl
[22] J. Neveu, Discrete-Parameter Martingales, revised ed., North-Holland Mathematical Library 10, North-Holland, Amsterdam-Oxford; American Elsevier, New York, 1975. MR Zbl
[23] M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics 146, Marcel Dekker, New York, 1991. MR Zbl
[24] I. B. Simonenko, Interpolation and extrapolation of linear operators in Orlicz spaces, Mat. Sb. (N.S.) 63(105) (1964), 536-553. MR Zbl Available at https://eudml.org/doc/69615
[25] F. Weisz, Martingale Hardy Spaces and Their Applications in Fourier Analysis, Lecture Notes in Mathematics 1568, Springer-Verlag, Berlin, 1994. DOI MR Zbl
[26] R. Yi, L. Wu, and Y. Jiao, New John-Nirenberg inequalities for martingales, Statist. Probab. Lett. 86 (2014), 68-73. DOI MR Zbl

Libo Li

School of Mathematics and Computing Science, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
lilibo@hnust.edu.cn

Zhiwei $H a{ }^{\boxtimes}{ }^{\boxtimes}$

School of Mathematics and Computing Science, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
haozhiwei@hnust.edu.cn

Received: December 30, 2021
Accepted: April 12, 2022

[^0]: 2020 Mathematics Subject Classification. 60G42, 60G46, 46E30, 42B20.
 Key words and phrases. BMO, Orlicz-Lorentz space, John-Nirenberg inequality.
 This work was partially supported by the National Natural Science Foundation of China (11801001, 12101223) and the Scientific Research Fund of Hunan Provincial Education Department (20C0780).

