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THE MINIMAL NUMBER OF HOMOGENEOUS GEODESICS
DEPENDING ON THE SIGNATURE OF THE KILLING FORM

ZDENĚK DUŠEK

Abstract. The existence of at least two homogeneous geodesics in any ho-
mogeneous Finsler manifold was proved in a previous paper by the author.
The examples of solvable Lie groups with invariant Finsler metric which ad-
mit just two homogeneous geodesics were presented in another paper. In the
present work, it is shown that a homogeneous Finsler manifold with indefi-
nite Killing form admits at least four homogeneous geodesics. Examples of
invariant Randers metrics on Lie groups with definite Killing form admitting
just two homogeneous geodesics and examples with indefinite Killing form
admitting just four homogeneous geodesics are presented.

1. Introduction

The existence of at least one homogeneous geodesics in an arbitrary homoge-
neous Riemannian manifold was proved by O. Kowalski and J. Szenthe in [10], by an
algebraic construction in the Lie algebra. In the papers [9] and [11], it was proved
that this result is optimal, namely, examples of homogeneous Riemannian metrics
on solvable Lie groups were constructed which admit just one homogeneous geodesic
through any point. A generalization of this existence result to pseudo-Riemannian
geometry was proved by the author in [3], in the more general framework of affine
geometry, using a purely affine approach and differential topology.

Generalizations of the above existence result to Finsler geometry were proved
in the series of papers [15] by Z. Yan and S. Deng for Randers metrics (by the
algebraic construction), [4] by the author for odd-dimensional Finsler metrics, [5]
by the author for Berwald or reversible Finsler metrics (in both cases using the
affine approach), [16] by Z. Yan and L. Huang in general (using again the original
idea by Kowalski and Szenthe and a purely Finslerian construction). However, due
to the nonreversibility of general Finsler metrics, it was conjectured by the author
that the result and its proofs in the nonreversible situation are not optimal, namely
that an arbitrary homogeneous Finsler manifold admits at least two homogeneous
geodesics through an arbitrary point.
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In comparison with Riemannian geometry, the situation is rather delicate. In
the context of Finsler geometry, the trajectory of the unique homogeneous geodesic
in a Riemannian manifold should be regarded as two geodesics, with initial vectors
X and −X, and only reparametrizations in the same direction may be identified
as a trajectory of a geodesic. For a general homogeneous Finsler manifold, the
initial vectors of the two homogeneous geodesics may be non-opposite. In [7],
examples of invariant Randers metrics which admit just two homogeneous geodesics
are constructed. The initial vectors of these geodesics are X + Y and −X + Y ,
for certain vectors X,Y ∈ TpM . For the construction, Randers metrics which
are modifications of Riemannian metrics of examples from [9] and [11] are used.
These examples are the solvable Lie groups, and hence their Killing form vanishes
identically. It was also demonstrated with an example that general Randers metrics
whose underlying Riemannian metric admits just two homogeneous geodesics (with
initial vectors X and −X) may admit more than two homogeneous geodesics.

The proof of the existence of at least two homogeneous geodesics in Finsler
geometry was given in [6] by the geometrical interpretation of the algebraic condi-
tion from the original proof by Kowalski and Szenthe and used later by Yan and
Huang. The proof in [6] contained a small inaccuracy, namely, it was implicitly
assumed that the Killing form of the isometry group is negative semidefinite. If
the restriction of the Killing form to m (in the reductive decomposition g = m+ h)
is indefinite, the proof works as well. Moreover, there are at least two further so-
lutions in this situation. In the present paper, in Section 4, we give a full proof of
the existence of four homogeneous geodesics for an arbitrary homogeneous Finsler
manifold such that the restriction of the Killing form to m is indefinite. Before this,
in Section 3, we illustrate the crucial geometrical idea with the examples of Ran-
ders metrics on Lie groups in dimension 3 and with definite Killing form admitting
just two homogeneous geodesics and Randers metrics with indefinite Killing form
admitting just four homogeneous geodesics.

2. Preliminaries

Let (M,F ) be a Finsler manifold. If there is a connected Lie group G which
acts transitively on M as a group of isometries, then M is called a homogeneous
manifold. An homogeneous manifold M can be naturally identified with the ho-
mogeneous space G/H, where H is the isotropy group of the origin p ∈ M . A
homogeneous Finsler space (G/H,F ) is always a reductive homogeneous space: We
denote by g and h the Lie algebras of G and H, respectively, and consider the
adjoint representation Ad: H × g → g of H on g. There exists a reductive de-
composition of the form g = m + h, where m ⊂ g is a vector subspace such that
Ad(H)(m) ⊂ m. For a fixed reductive decomposition g = m + h, there is the nat-
ural identification of m ⊂ g = TeG with the tangent space TpM via the projection
π : G → G/H = M . Using this natural identification, from the Minkowski norm
and its fundamental tensor on TpM , we obtain the Ad(H)-invariant Minkowski
norm and the Ad(H)-invariant fundamental tensor on m, and we denote these
again by F and g.
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Special Minkowski norms (on a vector space V) are the Randers norms. They
are determined by a symmetric positive definite bilinear form α and a vector V
such that α(V, V ) < 1. Equivalently, one can use the α-equivalent 1-form β which
is related with V by the formula β(U) = α(V,U) for all U ∈ V. The Randers
norm F is then defined by the formula

F (U) =
√
α(U,U) + β(U) ∀U ∈ V. (2.1)

If a Finsler metric F on M restricted to any tangent space TpM is a Randers norm,
it is called a Randers metric. Obviously, a Randers metric F is determined by a
Riemannian metric α and a smooth 1-form β. A homogeneous Randers metric F
is determined by a Randers norm on m, in other words by a symmetric positive
definite 2-form and a 1-form on m, and these forms are denoted again by α and β.
We remark that, in the literature, the letter α is sometimes used for the norm
induced by the 2-form α, and then formula (2.1) above is without the square root.
We choose the notation above because, for β = 0, F is the Riemannian norm,
and components gij of the fundamental tensor are just the components of the
Riemannian metric α.

We further recall that the slit tangent bundle TM0 is defined as TM0 = TM\{0}.
Using the restriction of the natural projection π : TM → M to TM0, we naturally
construct the pullback vector bundle π∗TM over TM0. The Chern connection is
the unique linear connection on the vector bundle π∗TM which is torsion free and
almost g-compatible; for details, see for example the monograph [1] by D. Bao,
S.-S. Chern and Z. Shen, or [2] by S. Deng. Using the Chern connection, the
derivative along a curve γ(t) can be defined. A regular smooth curve γ with tangent
vector field T is a geodesic if DT

(
T

F (T )
)

= 0. In particular, a geodesic of constant
speed satisfies DTT = 0. A geodesic γ(s) through the point p is homogeneous if it
is an orbit of a one-parameter group of isometries. More explicitly, if there exists
a nonzero vector X ∈ g such that γ(t) = exp(tX)(p) for all t ∈ R. The vector
X is called a geodesic vector. Geodesic vectors are characterized by the following
geodesic lemma.

Lemma 2.1 ([12]). Let (G/H,F ) be a homogeneous Finsler space with a reductive
decomposition g = m + h. A nonzero vector Y ∈ g is a geodesic vector if and only
if

gYm
(Ym, [Y, U ]m) = 0 ∀U ∈ m,

where the subscript m indicates the projection of a vector from g to m.

We shall use this lemma for Randers metrics F =
√
α + β and in the situa-

tion with trivial algebra h. In this special situation, the above statement has the
following form.

Lemma 2.2 ([8]). Let F =
√
α+ β be a homogeneous Randers metric on G, let g

be the Lie algebra of G and let V ∈ m be the vector α-equivalent with β. The vector
X ∈ g is geodesic if and only if

α
(
X +

√
α(X,X) · V, [X,U ]

)
= 0 ∀U ∈ m. (2.2)
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In the proof of the existence of a homogeneous geodesic (see [10], [16] or [6]),
the geometrical interpretation of the crucial idea is the following. With respect
to the Killing form K, the bracket [Y,U ]m is always orthogonal to Ym. We shall
denote the restriction ofK from g to m again byK, and we shall consider orthogonal
complements in the vector space m. If we find a vector Y ∈ g such thatK(Ym, Ym) ̸=
0, and the orthogonal spaces to Ym with respect to gYm

and with respect to K are
equal, then the bracket [Y,U ]m will be also orthogonal to Ym with respect to gYm

,
so we reach the equality

gYm
(Ym, [Y,U ]m) = K(Ym, [Y, U ]m) = 0 ∀U ∈ m, (2.3)

and, according to the geodesic lemma, Y will be a geodesic vector. We denote by
IF the unit indicatrix in m given by the condition F (X) = 1, and we denote by
SK the unit (pseudo-)sphere in m given by the condition K(X,X) = ±1. We shall
use the geometrical property that the orthogonal space to a vector X ∈ IF with
respect to the scalar product gX is the tangent space to the indicatrix IF at X. In
the same way, the orthogonal space to a vector X ∈ SK with respect to K is the
tangent space to the (pseudo-)sphere SK at X. For each vector X ∈ m such that
K(X,X) ̸= 0, we put XF = X/F (X) ∈ IF and XK = X/|K(X,X)| ∈ SK . We
are looking for vectors X ∈ m such that the tangent space to IF at XF and the
tangent space to SK at XK are equal. If we interpret these tangent spaces (vector
subspaces of m) as affine subspaces of m and put them into their origin points (XF ,
or XK , respectively), these spaces will be parallel. Such vectors X ∈ m will satisfy
condition (2.3) above.

We shall illustrate the situation with examples of Lie groups with invariant
Randers metrics and whose rad(K) is trivial. In the first example, G = SO(3), the
Killing form is definite and G admits just two homogeneous geodesics, in generic
situation. In the second example, G = SL(2), the Killing form is indefinite and
G admits just four homogeneous geodesics, in generic situation. Further, we shall
generalize the procedure of finding at least two homogeneous geodesics in any
homogeneous Finsler manifold described in [6]. We show that any homogeneous
Finsler manifold such that the restriction of the Killing form of the isometry group
G from g to m is indefinite admits at least four homogeneous geodesics.

3. Examples

3.1. Example 1, g1 ≃ so(3). Consider the Lie algebra g1 = span{Ei}3
i=1 gener-

ated by the Lie brackets

[E1, E2] = aE3, [E1, E3] = −bE2, [E2, E3] = cE1.

In the matrix form, for the special choice a = b = c = 1, we can identify the
generators Ei with the matrices

E1 =

 0 1 0
−1 0 0
0 0 0

 , E2 =

 0 0 0
0 0 1
0 −1 0

 , E3 =

 0 0 1
0 0 0

−1 0 0

 .
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It is easy to check that g1 ≃ so(3) for a, b, c > 0. By direct calculations, we also
easily check that the Killing form with respect to the basis B = {E1, E2, E3} is

K = −2ab x2
1 − 2ac x2

2 − 2bc x2
3. (3.1)

We now put X = x1E1 + x2E2 + x3E3 and write down the Lie brackets
[X,E1] = −ax2E3 + bx3E2,

[X,E2] = ax1E3 − cx3E1,

[X,E3] = −bx1E2 + cx2E1.

From Lemma 2.2 and equation (2.2) with α given by the identity matrix with
respect to the basis B above and with V = v1E1 + v2E2 + v3E3, we obtain the
system of equations

bx3

(
x2 +

√
α(X,X)v2

)
− ax2

(
x3 +

√
α(X,X)v3

)
= 0,

−cx3

(
x1 +

√
α(X,X)v1

)
+ ax1

(
x3 +

√
α(X,X)v3

)
= 0,

cx2

(
x1 +

√
α(X,X)v1

)
− bx1

(
x2 +

√
α(X,X)v2

)
= 0,

which simplifies into the form

(b− a)x2x3 + (bx3v2 − ax2v3)
√
α(X,X) = 0,

(a− c)x1x3 + (ax1v3 − cx3v1)
√
α(X,X) = 0,

(c− b)x1x2 + (cx2v1 − bx1v2)
√
α(X,X) = 0.

(3.2)

Let us first investigate the situation with Riemannian metrics determined by
the orthonormal basis B, which means vi = 0. The system of equations simplifies
further into the form

(b− a)x2x3 = 0,
(a− c)x1x3 = 0,
(c− b)x1x2 = 0.

(3.3)

For a = b = c, any vector X = (x1, x2, x3) is obviously a solution of this system.
From the geometrical point of view, we observe that the unit indicatrix IF given
by the (Riemannian) Finsler function F =

√
x2

1 + x2
2 is just the coordinate sphere

with radius 1. The hypersurface SK is a coordinate sphere with radius
√

2
2a . Hence,

obviously, for each 0 ̸= X ∈ m, the tangent plane to IF at XF and the tangent
plane to SK at XK are parallel.

For different values of the parameters a, b, c, the unit indicatrix IF is still the
coordinate unit sphere (green in Figure 1), but the hypersurface SK is the coordi-
nate ellipsoid (blue in the figure). Each nonzero vector X ∈ m determines vectors
XF ∈ IF and XK ∈ SK . The vectors X for which the tangent space to the indica-
trix IF at XF is parallel with the tangent space to the hypersurface SK at XK are
the positive multiples of the coordinate vectors (red in the figure). If two of the
parameters a, b, c are equal, then also the positive multiples of all the vectors in the
corresponding coordinate plane have this property. We illustrate the situation with
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Figure 1.

the figure in the coordinate plane x3 = 0 with a = b = 1
2 , c = 3. For the Finsler

function F =
√
x2

1 + x2
2, the indicatrix IF is just the coordinate unit sphere, the

Killing form is

K = −1
2 x

2
1 − 3x2

2,

and the hypersurface SK is the blue ellipse in the figure. The nontrivial solutions
of the system (3.3), with the restriction x3 = 0, are just the positive multiples of
vectors X1 = (1, 0), X2 = (−1, 0), X3 = (0, 1), X4 = (0,−1).

Let us now turn to general Randers metrics. For simplicity, let us consider
V = v1E1, hence v2 = v3 = 0. The system of equations (3.2) simplifies into the
form

(b− a)x2x3 = 0,(
(a− c)x1 − cv1

√
α(X,X)

)
x3 = 0,(

(c− b)x1 + cv1
√
α(X,X)

)
x2 = 0.

If a ̸= b, the solutions are:
(1) x2 = x3 = 0;
(2) x2 = 0, x3 ̸= 0 and possible solutions of the equation

(a− c)x1 = cv1
√
α(X,X); (3.4)

(3) x3 = 0, x2 ̸= 0 and possible solutions of the equation

(b− c)x1 = cv1
√
α(X,X). (3.5)

Let us illustrate the situation for the following particular values of the parameters:
v1 = 1

2 , a = c = 1, b = 2. Equation (3.4) has no solutions. We look for solutions of
equation (3.5) such that α(X,X) = 1 and we obtain

x1 = cv1

b− c
= 1

2 , x2 = ±
√

3
2 .
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Altogether, we have four solutions, up to positive scalar multiples. With respect
to the basis B, they are

X1 = (1, 0, 0),
X2 = (−1, 0, 0),

X3 =
(

1
2 ,

√
3

2 , 0
)
,

X4 =
(

1
2 ,−

√
3

2 , 0
)
.

Again, we illustrate these solutions in the plane x3 = 0 (see Figure 2). The Finsler
function (with the restriction x3 = 0) is

F =
√
x2

1 + x2
2 + 1

2x1,

and the hypersurface IF is given by the equation F (X) = 1. The Killing form is
given by the formula (3.1). For our values of parameters and in the plane x3 = 0,
the hypersurface SK is given by the equation

2x2
1 + x2

2 = 1.
In this figure, the directions given by the positive multiples of solutions Xi above
are in red. We can see geometrically that the tangent space to IF at XF

i and the
tangent space to SK at XK

i are parallel for each i = 1, . . . , 4.

Figure 2.

An important observation is that the situation may be different for other values
of the parameters. For example, let us choose v1 = 1

2 , a = b = 2, c = 3. Because
|x1| < α(X,X) and cv1 > 1, neither equation (3.4) nor (3.5) has a nonzero solution,
and we are left with solutions X1 = (1, 0, 0) and X2 = (−1, 0, 0). Again, we
illustrate the situation in the plane x3 = 0 (see Figure 3). The hypersurface IF is
the same as before, and the hypersurface SK is given by the equation

4x2
1 + 6x2

2 = 1.
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We see also geometrically from the figure that there are no nontrivial solutions X
(other than those in the direction of the x1-axis) in this plane such that the tangent
space to IF at XF and the tangent space to SK at XK are parallel.

Figure 3.

3.2. Example 2, g2 ≃ sl(2). Consider the Lie algebra g2 generated by the Lie
brackets

[E1, E2] = aE3, [E1, E3] = bE2, [E2, E3] = cE1.

In the matrix form, for the special choice a = b = c = 1, we can identify the
generators Ei with the matrices

E1 =
(

0 1
−1 0

)
, E2 =

(
0 1
1 0

)
, E3 =

(
1 0
0 −1

)
.

It is easy to check that g2 ≃ sl(2) for a, b, c > 0. By direct calculations we obtain
that the Killing form with respect to the basis B = {E1, E2, E3} is

K = 2ab x2
1 − 2ac x2

2 + 2bc x2
3.

We put again X = x1E1 + x2E2 + x3E3, and write down the Lie brackets
[X,E1] = −ax2E3 − bx3E2,

[X,E2] = ax1E3 − cx3E1,

[X,E3] = bx1E2 + cx2E1.

From Lemma 2.2 and equation (2.2) with α given by the identity matrix with
respect to the basis B above and with V = v1E1 + v2E2 + v3E3, we obtain the
system of equations

bx3

(
x2 +

√
α(X,X)v2

)
+ ax2

(
x3 +

√
α(X,X)v3

)
= 0,

cx3

(
x1 +

√
α(X,X)v1

)
− ax1

(
x3 +

√
α(X,X)v3

)
= 0,

cx2

(
x1 +

√
α(X,X)v1

)
+ bx1

(
x2 +

√
α(X,X)v2

)
= 0,
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which simplifies into the form

(a+ b)x2x3 + (bx3v2 + ax2v3)
√
α(X,X) = 0,

(a− c)x1x3 + (ax1v3 − cx3v1)
√
α(X,X) = 0,

(b+ c)x1x2 + (cx2v1 + bx1v2)
√
α(X,X) = 0.

For simplicity, let us consider again just the case V = v1E1, hence v2 = v3 = 0.
This system of equations simplifies further into the form

(a+ b)x2x3 = 0,(
(a− c)x1 − cv1

√
α(X,X)

)
x3 = 0,(

(b+ c)x1 + cv1
√
α(X,X)

)
x2 = 0.

The solutions are:
(1) x2 = x3 = 0;
(2) x2 = 0, x3 ̸= 0 and solutions of the equation

(a− c)x1 = cv1
√
α(X,X); (3.6)

(3) x3 = 0, x2 ̸= 0 and

x1 = −cv1

b+ c

√
α(X,X). (3.7)

Let us notice that |v1| < 1,
∣∣ c

b+c

∣∣ < 1, and hence, with the assumption α(X,X) = 1,
there is always a solution of equation (3.7) with |x1| < 1 and x2 determined from
the assumption α(X,X) = 1. On the other hand, equation (3.6) may have no
nontrivial solutions. Let us set particular values of the parameters, for example,
v1 = 1

2 , a = b = c = 1. Equation (3.6) has no nontrivial solution, and the solution
of equation (3.7) is (up to a positive multiple)

x1 = −cv1

b+ c
= −1

4 , x2 = ±
√

15
4 .

Altogether, we have four solutions, up to positive scalar multiples. With respect
to the basis B, they are

X1 = (1, 0, 0),
X2 = (−1, 0, 0),

X3 =
(

−1
4 ,

√
15
4 , 0

)
,

X4 =
(

−1
4 ,−

√
15
4 , 0

)
.

We illustrate these solutions, which are all in the plane x3 = 0, in Figure 4. The
Finsler function (with the restriction x3 = 0) is still given by equation (3.1), and
the hypersurface IF is given by the equation F (X) = 1. For our values of the
parameter and in the plane x3 = 0, the hypersurface SK is given by the equation

2x2
1 − 2x2

2 = 1.
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In this figure, directions given by the positive multiples of solutions Xi above are
in red. Again, we can see that, for each i = 1, . . . , 4, the tangent space to IF at
XF

i and the tangent space to SK at XK
i are parallel.

Figure 4.

4. The existence

We state the main theorem about the existence of homogeneous geodesics, de-
pending on the signature of the Killing form. We recall that the first part of the
theorem was stated in [6]. However, the proof was given with the assumption that
the Killing form is semidefinite. We present here the complete proof which shows
that the same idea for finding two geodesic vectors works on each component K = 1
and K = −1 of the unit (pseudo-)sphere of the Killing form. Let us remark that
the present result is optimal. The examples given above illustrate that this result
cannot be improved in general. The examples of solvable Lie groups with invariant
Finsler metrics which admit just two homogeneous geodesics were given in [7].

As we will not express vectors in components now, it is more convenient to
change the notation and use lowercase letters for vectors.

Theorem 4.1. Let (M,F ) be a homogeneous Finsler manifold. There exist at
least two homogeneous geodesics through an arbitrary point p ∈ M . Let K be the
Killing form of a transitive isometry group G of M and let g = h+m be a reductive
decomposition. If the restriction of K to m is indefinite, then there exist at least
four homogeneous geodesics through an arbitrary point p ∈ M .

Proof. Let G be a transitive isometry group of M and let H be the isotropy group
of a fixed point p ∈ M . We express M as the homogeneous space M = G/H. Let
K be the Killing form of G and let rad(K) be the null space of K. We choose
m = h⊥ with respect to K. The decomposition is Ad(H)-invariant and the Finsler
metric induces the invariant Minkowski norm and its fundamental tensor on m. We
shall denote these again by F and g. The Killing form K is negative definite on h,
because H is compact. Hence, rad(K) ⊆ m. We shall distinguish two cases.
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Case 1: rad(K) = m. We choose a hyperplane W ⊂ m such that [m,m] ⊂ W .
There exist two vectors n1, n2 ∈ m which are normal to W , which means

gni(ni, w) = 0 ∀w ∈ W.

Vectors n1, n2 are on different sides of the hyperplane W and they are in general
not opposite to each other, unless F is reversible. See [14] or [6] for details of
the construction. We shall now write n for any of the two vectors n1, n2. For an
arbitrary fixed vector w ∈ W , the function F 2(n + tw) attains its minimum at
t = 0, and hence, using the standard formula, we obtain

0 = 1
2
d

dt
F 2(n+ tw)

∣∣
t=0 = gn(n,w) ∀w ∈ W,

which is the desired property. In particular, it is satisfied for any w ∈ [m,m] ⊂ W .
We obtain immediately, using Lemma 2.1, that n1 and n2 are geodesic vectors.

Case 2: rad(K) ⊊ m. We start with the construction and notation as in [16].
We shall investigate the function

f(z) = K(z, z)
F 2(z) .

This function is positively homogeneous, and it is reasonable to restrict the defini-
tion domain to the indicatrix

IF = {z ∈ m : F (z) = 1}.

Since the group H is compact and rad(K) is an Ad(H)-invariant subspace, there
exists an Ad(H)-invariant K-orthogonal complement W of rad(K) in m. Each
vector z ∈ m can be uniquely decomposed as z = z1 + z2, where z1 ∈ rad(K) and
z2 ∈ W . Set k = dim(rad(K)) and let

Dk = {z1 ∈ rad(K) : F (z1) < 1}

be the open unit disc in rad(K). For each fixed z1 ∈ Dk, consider the submanifold

Sz1 = {z2 ∈ W : F (z1 + z2) = 1} ⊂ W,

which has the topology of the sphere Sm−1, where m = dim(W ) = dim(M) − k.
From now on, z1 + z2 means z1 ∈ Dk, z2 ∈ Sz1 , and z1 + z2 ∈ IF . Each sphere
Sz1 ⊂ W is split by the nullcone of K|W into open submanifolds S+

z1
= {z2 ∈ Sz1 :

K(z2, z2) > 0} and S−
z1

= {z2 ∈ Sz1 : K(z2, z2) < 0}. Both boundaries ∂S̄+
z1

and
∂S̄−

z1
of closures S̄+

z1
and S̄−

z1
are the intersection of Sz1 with the nullcone of K|W .

It is easily seen that the function f(z) defined above is positive on S+
z1

and negative
on S−

z1
. Limits of f(z1 + z2) for z2 ∈ S+

z1
, z2 → ∂S̄+

z1
and for z2 ∈ S−

z1
, z2 → ∂S̄−

z1
and are all zero. We define for later use the distinguished open submanifolds of IF :

S+ = {z1 + z2 ∈ IF : K(z2, z2) > 0} =
⋃

z1∈Dk

(z1 + S+
z1

),

S− = {z1 + z2 ∈ IF : K(z2, z2) < 0} =
⋃

z1∈Dk

(z1 + S−
z1

).
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We further denote by K1 and K−1 the standard (pseudo-)spheres with respect
to the Killing form K|W , namely K1 = {w ∈ W : K(w,w) = 1} and K−1 =
{w ∈ W : K(w,w) = −1}. It is easy to observe that, for fixed z1, for each
vector z2 ∈ S+

z1
, there is a positive real number p such that pz2 ∈ K1. In the

same way, for each vector z2 ∈ S−
z1

there is a positive real number p such that
pz2 ∈ K−1. This correspondence gives homeomorphisms ψ+

z1
of each S+

z1
with K1

and homeomorphisms ψ−
z1

of each S−
z1

with K−1.
Let the signature of K be (p, q, k), where p is the number of positive signs in the

diagonal form of K, q is the number of negative signs, and p + q = m. It is well
known (see for example [13]) that the topology of K1 (resp., of K−1), and hence
also the topology of each S+

z1
(resp., of each S−

z1
), is the topology of Sp−1 × Rq

(resp., of Rp × Sq−1). In the special case q = 0 (resp., p = 0), it reduces to the
topology of the sphere Sm−1. In the special case p = 1 (resp., q = 1), it reduces to
the topology of the two copies of Rq (resp., of the two copies of Rp). We continue
with the general case p > 1, q > 1. We investigate the manifold S+, which is
homeomorphic to Dk × Sp−1 × Rq, and the function f(z) defined above is positive
on it. We have observed that, on each S+

z1
, limz2→∂S̄+

z1
f(z1 + z2) = 0. It is also

easy to see that, for z1 ∈ Dk, we have limz1→∂D̄k
f(z1 + z2) = 0. Obviously, the

function f(z) reaches its maximum on S+ for some vector y1 ∈ S+. Now we are
going to show that there exists a vector y2 ∈ S+ where the function f(z) on S+

reaches the saddle point.
We identify W with Rp × Rq, and we fix the homeomorphism ϕ : Sp−1 × Rq →

K1 ⊂ Rp × Rq by the formula (s, x) 7→ (
√

1 + |x|2 · s, x). We define, for fixed z1 ∈
rad(K) and fixed x ∈ Rq, the submanifolds Cz1,x of S+

z1
as ((ψ+

z1
)−1 ◦ϕ)(Sp−1 ×x).

Each Cz1,x is homeomorphic to the sphere Sp−1. For fixed z1 and x, and with
compact definition domain Cz1,x, the function f(z1 +z2) restricted to Cz1,x attains
its minimum ε(z1, x) > 0 at some z1 + z̄2(z1, x) ∈ Cz1,x. For each z1 ∈ Dk and
x ∈ Rq, we choose one such z̄2 and consider the mapping φ : Dk × Rq → IF ,
(z1, x) 7→ z1 + z̄2(z1, x). The function f(φ(z1, x)) = ε(z1, x) is smooth on Dk × Rq

and it attains its maximum λ2 at (z̄1, x̄). Here (z̄1, x̄) can be chosen, and the map φ
can be defined in a way that there is a neighbourhood U ⊂ Dk ×Rq of (z̄1, x̄) such
that the mapping φ

∣∣
U

is smooth. We put y2 = φ(z̄1, x̄) ∈ S+. The definition of y2
does not depend on the identification of W with Rp × Rq. From the construction,
there follows the existence of a basis B = {u1, . . . , up−1, v1, . . . , vk, w1, . . . , wq} of
Ty2S

+ with the following property: vectors ui form a basis of the tangent space of
Cz̄1,x̄ at y2 = φ(z̄1, x̄); vectors vi are images in the tangent mapping to φ of tangent
vectors to Dk at (z1, x), and vectors wi are images in the tangent mapping to φ
of tangent vectors to Rq at (z1, x). The function f(z) attains its local minimum
along any curve γ(t) in S+ with γ(0) = y2 and whose tangent vector at t = 0 is
any of the vectors ui. And the function f(z) attains its local maximum along any
curve γ(t) in S+ with γ(0) = y2 and whose tangent vector at t = 0 is any of the
vectors vi or wi.

It remains to show that y1 and y2 are geodesic vectors. As to y1, the function

f̃(z) = K(z, z) − λ1F
2(z)
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attains its minimum 0 at y1. For any fixed w ∈ m, the function f̂(t) = f̃(y1 + tw)
attains its minimum 0 at t = 0, and hence f̂ ′(0) = 0. It follows that

K(y1, w) = λ1 · gy1(y1, w) ∀w ∈ m. (4.1)

As to y2, the function
f̃(z) = K(z, z) − λ2F

2(z)
attains value 0 at y2. For any vector ui defined above, the function f̂(t) = f̃(y2+tui)
attains its maximum 0 at t = 0, and hence f̂ ′(0) = 0. For any of the vectors vi or
wi defined above, the function f̂(t) = f̃(y2 + tui) attains its minimum 0 at t = 0,
and hence also f̂ ′(0) = 0. It follows that

K(y2, w) = λ2 · gy2(y2, w) (4.2)

holds for any vector w from the above basis B of Ty2S
+. It is obvious that this

equality holds also for w = y2, and consequently formula (4.2) holds for any w ∈ m.
Formulas (4.1) and (4.2) lead to formula

gyi
(yi, [yi, z]m) = 1

λi
K(yi, [yi, z]m) = 1

λi
K([yi, yi], z) = 0 ∀ z ∈ m, i = 1, 2,

which shows that y1 and y2 are geodesic vectors.
Finally, a similar construction with S− and with the function −f(z) leads to

geodesic vectors y3, y4 ∈ S−. If p = 1, the manifold S+ has two connected com-
ponents, and vectors y1, y2 are chosen as vectors where the function f(z) reaches
its maximum on each of these components. The saddle point may not exist in this
situation, as the examples above illustrate. If q = 1, the manifold S− has two
connected components and vectors y3, y4 are chosen in a similar way. If p = 0 or
q = 0, then either S+ or S− is trivial and the procedure leads only to two geodesic
vectors. □
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[9] O. Kowalski, S. Nikčević, and Z. Vlášek, Homogeneous geodesics in homogeneous
Riemannian manifolds—examples, in Geometry and Topology of Submanifolds, X (Bei-
jing/Berlin, 1999), World Scientific, River Edge, NJ, 2000, pp. 104–112. DOI MR Zbl

[10] O. Kowalski and J. Szenthe, On the existence of homogeneous geodesics in homogeneous
Riemannian manifolds, Geom. Dedicata 81 no. 1-3 (2000), 209–214, Erratum: Geom. Dedi-
cata 84 no. 1-3 (2001), 331–332. DOI MR Zbl
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