SUMMING THE LARGEST PRIME FACTOR OVER INTEGER SEQUENCES

JEAN-MARIE DE KONINCK AND RAFAEL JAKIMCZUK

Abstract

Given an integer $n \geq 2$, let $P(n)$ stand for its largest prime factor. We examine the behaviour of $\sum_{\substack{n \leq x \\ n \in A}} P(n)$ in the case of two sets A, namely the

 set of r-free numbers and the set of h-full numbers.
1. Introduction

Given an integer $n \geq 2$, let $P(n)$ stand for its largest prime factor, with $P(1)=1$. Even though this function is very chaotic because $P(n)$ oscillates between small and large values as n varies, its average value over large intervals is more smooth and can be estimated.

The first significant estimate regarding the sum $\sum_{n \leq x} P(n)$ is due to Alladi and Erdős [1] as they proved that

$$
\sum_{n \leq x} P(n)=\frac{\pi^{2}}{12} \frac{x^{2}}{\log x}+O\left(\frac{x^{2}}{\log ^{2} x}\right)
$$

This result was later improved by De Koninck and Ivić [2] when they showed that, given any positive integer k, there exist computable constants c_{2}, \ldots, c_{k} such that

$$
\sum_{n \leq x} P(n)=\frac{\pi^{2}}{12} \frac{x^{2}}{\log x}+c_{2} \frac{x^{2}}{\log ^{2} x}+\cdots+c_{k} \frac{x^{2}}{\log ^{k} x}+O\left(\frac{x^{2}}{\log ^{k+1} x}\right)
$$

A natural question to ask is how the above formula changes if instead of summing $P(n)$ over all natural numbers $n \leq x$, we restrict these numbers n to a particular subset A of \mathbb{N}. For this purpose, we will consider here two large families of integers, namely the set of r-free numbers and the set of h-full numbers.

Given an integer $n \geq 2$, write its prime factorisation as $n=q_{1}^{\alpha_{1}} q_{2}^{\alpha_{2}} \cdots q_{s}^{\alpha_{s}}$, where $q_{1}<q_{2}<\cdots<q_{s}$ are primes and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s} \in \mathbb{N}$. Given fixed integers $r \geq 2$ and $h \geq 2$, we say that n is a r-free number if $\max \left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}\right) \leq r-1$, whereas

[^0]we say that n is a h-full number if $\min \left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}\right) \geq h$. We will denote by \mathbb{F}_{r} the set of r-free numbers; amongst these sets, the set \mathbb{F}_{2} of square-free numbers and the set \mathbb{F}_{3} of cube-free numbers are often mentioned in the literature. On the other hand, we will denote by \mathbb{P}_{h} the set of h-full numbers. Particular cases are the set \mathbb{P}_{2}, known as the set of powerful numbers or square-full numbers, and the set \mathbb{P}_{3}, the set of cube-full numbers.

In what follows we will make frequent use of the Riemann zeta function $\zeta(s)$ defined by

$$
\zeta(s):=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\prod_{p}\left(1-\frac{1}{p^{s}}\right)^{-1} \quad(s>1)
$$

Let $\mu_{r}(n)$ be the characteristic function of the r-free numbers, that is,

$$
\mu_{r}(n)= \begin{cases}1 & \text { if } n \text { is } r \text {-free } \\ 0 & \text { otherwise }\end{cases}
$$

implying in particular that its generating function is, for $s>1$,

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{\mu_{r}(n)}{n^{s}} & =\prod_{p}\left(1+\frac{1}{p^{s}}+\cdots+\frac{1}{p^{(r-1) s}}\right) \\
& =\frac{\prod_{p}\left(1-\frac{1}{p^{r s}}\right)}{\prod_{p}\left(1-\frac{1}{p^{s}}\right)}=\frac{\zeta(s)}{\zeta(r s)}
\end{aligned}
$$

Let $\chi_{h}(n)$ be the characteristic function of the h-full numbers, that is,

$$
\chi_{h}(n)= \begin{cases}1 & \text { if } n \text { is } h \text {-full } \\ 0 & \text { otherwise }\end{cases}
$$

implying in particular that its generating function is, for $s>1$,

$$
\begin{align*}
\sum_{n=1}^{\infty} \frac{\chi_{h}(n)}{n^{s}} & =\prod_{p}\left(1+\frac{1}{p^{h s}}+\frac{1}{p^{(h+1) s}}+\cdots\right) \\
& =\zeta(h s) \prod_{p}\left(1-\frac{1}{p^{h s}}\right) \prod_{p}\left(1+\frac{1}{p^{h s}}+\frac{1}{p^{(h+1) s}}+\cdots\right) \tag{1.1}\\
& =\zeta(h s) \prod_{p}\left(1+\frac{1}{p^{(h+1) s}}+\frac{1}{p^{(h+2) s}}+\cdots+\frac{1}{p^{(2 h-1) s}}\right)
\end{align*}
$$

Finally, let us mention that estimates for the counting functions $\mathbb{F}_{r}(x):=\#\{n \leq$ $\left.x: n \in \mathbb{F}_{r}\right\}$ and $\mathbb{P}_{h}(x):=\#\left\{n \leq x: n \in \mathbb{P}_{h}\right\}$ of these two families of numbers are well-known. These are, for fixed integers $r \geq 2$ and $h \geq 2$,

$$
\begin{align*}
& \mathbb{F}_{r}(x)=\frac{1}{\zeta(r)} x+O\left(x^{1 / r}\right) \tag{1.2}\\
& \mathbb{P}_{r}(x)=\gamma_{h} x^{1 / h}+O\left(x^{1 /(h+1)}\right) \tag{1.3}
\end{align*}
$$

for some positive constant γ_{h}. For a proof of 1.2 in the simplest case, that is for $r=2$, see Theorem 8.25 in the book of Niven, Zuckerman and Montgomery [4; for a proof of the general case, that is for any $r \geq 2$, see the survey paper of Pappalardi [5]. For a proof of (1.3), see the paper of Ivíc and Shiu [3], where in fact a much more accurate formula is proved.

2. Main results

For our first set A, we choose the set of r-free numbers \mathbb{F}_{r}. In this case we can prove the following.
Theorem 2.1. Let $r \geq 2$ be a fixed integer. Then, given any positive integer k, there exist computable constants $d_{1}, d_{2}, \ldots, d_{k}$ such that

$$
\sum_{\substack{n \leq x \\ n \in \mathbb{P}_{r}}} P(n)=\sum_{n \leq x} \mu_{r}(n) P(n)=d_{1} \frac{x^{2}}{\log x}+d_{2} \frac{x^{2}}{\log ^{2} x}+\cdots+d_{k} \frac{x^{2}}{\log ^{k} x}+O\left(\frac{x^{2}}{\log ^{k+1} x}\right)
$$

where in particular, in light of (1.2],

$$
d_{1}=d_{1}^{(r)}=\frac{1}{2} \sum_{n=1}^{\infty} \frac{\mu_{r}(n)}{n^{2}}=\frac{\zeta(2)}{2 \zeta(2 r)}
$$

Remark 2.2. In the case $r=2$, that is, the case of square-free numbers, we have

$$
d_{1}^{(2)}=\frac{\zeta(2)}{2 \zeta(4)}=\frac{15}{2 \pi^{2}}=0.759909 \ldots
$$

In the case $r=3$, that is, the case of cube-free numbers, we have

$$
d_{1}^{(3)}=\frac{\zeta(2)}{2 \zeta(6)}=\frac{315}{4 \pi^{4}}=0.808446 \ldots
$$

When choosing $A=\mathbb{P}_{h}$, we can prove the following general result.
Theorem 2.3. Let $h \geq 2$ be a fixed integer. Then, given any positive integer k, there exist computable constants $e_{1}, e_{2}, \ldots, e_{k}$ such that

$$
\sum_{\substack{n \leq x \\ n \in \mathbb{P}_{h}}} P(n)=e_{1} \frac{x^{2 / h}}{\log x}+e_{2} \frac{x^{2 / h}}{\log ^{2} x}+\cdots+e_{k} \frac{x^{2 / h}}{\log ^{k} x}+O\left(\frac{x^{2 / h}}{\log ^{k+1} x}\right)
$$

where

$$
e_{1}=\frac{h}{2} \sum_{n \in \mathbb{P}_{h}} \frac{1}{n^{2 / h}}=\frac{h}{2} \prod_{p}\left(1+\frac{1}{\left(p^{h}\right)^{2 / h}}+\frac{1}{\left(p^{h+1}\right)^{2 / h}}+\cdots\right)
$$

Remark 2.4. In the particular case of square-full numbers, we have, in light of (1.1) with $h=2$ and $s=1$,

$$
e_{1}=\sum_{n \in \mathbb{P}_{2}} \frac{1}{n}=\prod_{p}\left(1+\frac{1}{p^{2}}+\frac{1}{p^{3}}+\cdots\right)=\frac{\zeta(2) \zeta(3)}{\zeta(6)}=1.9436 \ldots
$$

In the case of cube-full numbers, we find

$$
e_{1}=\frac{3}{2} \sum_{n \in \mathbb{P}_{3}} \frac{1}{n^{2 / 3}}=\frac{3}{2} \prod_{p}\left(1+\frac{1}{p^{2}}+\frac{1}{p^{8 / 3}}+\frac{1}{p^{10 / 3}}+\cdots\right)=3.44967 \ldots
$$

3. Preliminary results

Let $\pi(x)$ stand for the number of primes not exceeding x. Using the prime number theorem in the form

$$
\pi(x)=\frac{x}{\log x}+\frac{1!x}{\log ^{2} x}+\frac{2!x}{\log ^{3} x}+\cdots+\frac{(k-1)!x}{\log ^{k} x}+O\left(\frac{x}{\log ^{k+1} x}\right)
$$

one can easily prove the following.
Lemma 3.1. Given any positive integer k, there exist $k-1$ computable constants a_{2}, \ldots, a_{k} such that

$$
\sum_{p \leq X} p=\frac{1}{2} \frac{X^{2}}{\log X}+a_{2} \frac{X^{2}}{\log ^{2} X}+\cdots+a_{k} \frac{X^{2}}{\log ^{k} X}+O\left(\frac{X^{2}}{\log ^{k+1} X}\right)
$$

We also have the following.
Lemma 3.2. Given fixed positive integers s and k, there exist computable constants $c_{0, s}, c_{1, s}, \ldots, c_{k, s}$ such that

$$
\begin{equation*}
\sum_{n \leq \exp \{\sqrt{\log x}\}} \frac{1}{n^{2} \log ^{s}(x / n)}=\frac{c_{0, s}}{\log ^{s} x}+\frac{c_{1, s}}{\log ^{s+1} x}+\cdots+\frac{c_{k, s}}{\log ^{s+k} x}+O\left(\frac{1}{\log ^{s+k+1} x}\right) . \tag{3.1}
\end{equation*}
$$

On the other hand, given a fixed integer $r \geq 2$, as well as fixed integers $s, k \in \mathbb{N}$, there exist computable constants $d_{0, s}, d_{1, s}, \ldots, d_{k, s}$ such that

$$
\begin{equation*}
\sum_{n \leq \sqrt{x}} \frac{\mu_{r}(n)}{n^{2} \log ^{s}(x / n)}=\frac{d_{0, s}}{\log ^{s} x}+\frac{d_{1, s}}{\log ^{s+1} x}+\cdots+\frac{d_{k, s}}{\log ^{s+k} x}+O\left(\frac{1}{\log ^{s+k+1} x}\right) \tag{3.2}
\end{equation*}
$$

Proof. We only provide the proof of (3.2) since the proof of 3.1 is similar. Since we assumed that $n \leq \sqrt{x}$, we have that $\frac{\log n}{\log x} \leq \frac{1}{2}$. Therefore, for a fixed integer $k \geq 1$ and all $y \leq \frac{1}{2}$, we may use the expansion

$$
\frac{1}{1-y}=1+y+y^{2}+\cdots+y^{k}+O\left(y^{k+1}\right)
$$

to write that, in the case $s=1$,

$$
\begin{aligned}
\frac{\mu_{r}(n)}{n^{2} \log (x / n)}= & \frac{\mu_{r}(n)}{n^{2} \log x\left(1-\frac{\log n}{\log x}\right)} \\
= & \frac{\mu_{r}(n)}{n^{2} \log x}\left(1+\frac{\log n}{\log x}+\cdots+\frac{\log ^{k-1} n}{\log ^{k-1} x}+O\left(\frac{\log ^{k} n}{\log ^{k} x}\right)\right) \\
= & \frac{\mu_{r}(n)}{n^{2}} \frac{1}{\log x}+\frac{\mu_{r}(n) \log n}{n^{2}} \frac{1}{\log ^{2} x} \\
& \quad+\cdots+\frac{\mu_{r}(n) \log ^{k-1} n}{n^{2}} \frac{1}{\log ^{k} x}+O\left(\frac{1}{\log ^{k+1} x}\right) .
\end{aligned}
$$

Observing that, for each integer $j \geq 1$, the corresponding series $\sum_{n=1}^{\infty} \frac{\mu_{r}(n) \log ^{j} n}{n^{2}}$ converges, estimate (3.2) in the case $s=1$ easily follows. The case of an arbitrary $s \in \mathbb{N}$ can be handled similarly.

Lemma 3.3. For each integer $h \geq 2$,

$$
\begin{equation*}
\sum_{\substack{m \leq x \\ m \in \mathbb{P}_{h}}} \frac{1}{m^{2 / h}}=\sum_{m \in \mathbb{P}_{h}} \frac{1}{m^{2 / h}}+O\left(\frac{1}{x^{1 / h}}\right) \tag{3.3}
\end{equation*}
$$

and, for each fixed $j \in \mathbb{N}$,

$$
\begin{equation*}
\sum_{\substack{m \leq x \\ m \in \mathbb{P}_{h}}} \frac{\log ^{j} m}{m^{2 / h}}=O(1) \tag{3.4}
\end{equation*}
$$

Proof. First observe that, replacing the sum $\sum_{\substack{m>x \\ m \in \mathbb{P}_{h}}} \frac{1}{m^{2 / h}}$ by a Stieltjes integral, using integration by parts and thereafter using the bound $\mathbb{P}_{h}(t)=O\left(t^{1 / h}\right)$ guaranteed by (1.3), we obtain

$$
\begin{align*}
\sum_{\substack{m>x \\
m \in \mathbb{P}_{h}}} \frac{1}{m^{2 / h}} & =\int_{x}^{\infty} \frac{1}{t^{2 / h}} d \mathbb{P}_{h}(t)=\left.\frac{\mathbb{P}_{h}(t)}{t^{2 / h}}\right|_{x} ^{\infty}+\frac{2}{h} \int_{x}^{\infty} t^{-\frac{2}{h}-1} \mathbb{P}_{h}(t) d t \tag{3.5}\\
& \ll \frac{1}{x^{2 / h-1 / h}}+\frac{2}{h} \int_{x}^{\infty} t^{1 / h-1} d t \ll \frac{1}{x^{1 / h}}
\end{align*}
$$

Using (3.5), it follows that

$$
\sum_{\substack{m \leq x \\ m \in \mathbb{P}_{h}}} \frac{1}{m^{2 / h}}=\sum_{m \in \mathbb{P}_{h}} \frac{1}{m^{2 / h}}-\sum_{\substack{m>x \\ m \in \mathbb{P}_{h}}} \frac{1}{m^{2 / h}}=\sum_{m \in \mathbb{P}_{h}} \frac{1}{m^{2 / h}}+O\left(\frac{1}{x^{1 / h}}\right)
$$

thus completing the proof of (3.3).
The proof of (3.4) can easily be established using the same technique.

4. Proof of Theorem 2.1

First observe that

$$
\begin{align*}
M(x) & :=\sum_{n \leq x} \mu_{r}(n) P(n)=\sum_{p \leq x} p \sum_{\substack{m p \leq x \\
P(m)<p}} \mu_{r}(m) \\
& =\sum_{p \leq \sqrt{x}} p \sum_{\substack{m \leq x / p \\
P(m)<p}} \mu_{r}(m)+\sum_{\sqrt{x}<p \leq x} p \sum_{\substack{m \leq x / p \\
P(m)<p}} \mu_{r}(m) \tag{4.1}\\
& =M_{1}(x)+M_{2}(x) .
\end{align*}
$$

It is trivial that

$$
\begin{equation*}
M_{1}(x) \leq \sum_{p \leq \sqrt{x}} p \cdot \frac{x}{p}=x \pi(\sqrt{x}) \ll \frac{x^{3 / 2}}{\log x} \tag{4.2}
\end{equation*}
$$

To estimate $M_{2}(x)$, first observe that if $p>\sqrt{x}$, we have that $x / p<p$, in which case the condition $P(m)<p$ appearing in the definition of $M_{2}(x)$ can be dropped. Hence, inverting the sum over p with the sum over m, and then using Lemma 3.1 with $X=\sqrt{x}$, we obtain

$$
\begin{align*}
M_{2}(x) & =\sum_{\sqrt{x}<p \leq x} p \sum_{m \leq x / p} \mu_{r}(m)=\sum_{m \leq \sqrt{x}} \mu_{r}(m) \sum_{\sqrt{x}<p \leq x / m} p \\
& =\sum_{m \leq \sqrt{x}} \mu_{r}(m) \sum_{p \leq x / m} p-\sum_{m \leq \sqrt{x}} \mu_{r}(m) \sum_{p \leq \sqrt{x}} p \\
& =\sum_{m \leq \sqrt{x}} \mu_{r}(m) \sum_{p \leq x / m} p+O\left(\frac{x^{3 / 2}}{\log x}\right) \tag{4.3}\\
& =M_{3}(x)+O\left(\frac{x^{3 / 2}}{\log x}\right) .
\end{align*}
$$

Again using Lemma 3.1 but this time with $X=x / m$, and thereafter using formula 3.2 of Lemma 3.2 we obtain

$$
\begin{align*}
& M_{3}(x)=\sum_{m \leq \sqrt{x}} \mu_{r}(m)\{ \frac{1}{2} \frac{(x / m)^{2}}{\log (x / m)}+a_{2} \frac{(x / m)^{2}}{\log ^{2}(x / m)} \\
&\left.+\cdots+a_{k} \frac{(x / m)^{2}}{\log ^{k}(x / m)}+O\left(\frac{(x / m)^{2}}{\log ^{k+1}(x / m)}\right)\right\} \tag{4.4}\\
&=\frac{1}{2} \sum_{m=1}^{\infty} \frac{\mu_{r}(m)}{m^{2}} \frac{x^{2}}{\log x}+d_{2} \frac{x^{2}}{\log ^{2} x} \\
& \quad+\cdots+d_{k} \frac{x^{2}}{\log ^{k} x}+O\left(\frac{x^{2}}{\log ^{k+1} x}\right)
\end{align*}
$$

where we took the liberty to replace $\sum_{m \leq \sqrt{x}} \frac{\mu_{r}(m)}{m^{2}}$ by $\sum_{m=1}^{\infty} \frac{\mu_{r}(m)}{m^{2}}$, a justified move since

$$
\begin{aligned}
\sum_{m \leq \sqrt{x}} \frac{\mu_{r}(m)}{m^{2}} & =\sum_{m=1}^{\infty} \frac{\mu_{r}(m)}{m^{2}}-\sum_{m>\sqrt{x}} \frac{\mu_{r}(m)}{m^{2}} \\
& =\sum_{m=1}^{\infty} \frac{\mu_{r}(m)}{m^{2}}+O\left(\int_{\sqrt{x}}^{\infty} \frac{d t}{t^{2}}\right) \\
& =\sum_{m=1}^{\infty} \frac{\mu_{r}(m)}{m^{2}}+O\left(\frac{1}{\sqrt{x}}\right) .
\end{aligned}
$$

Finally, gathering (4.2), 4.3) and (4.4) in 4.1) completes the proof of Theorem 2.1

5. Proof of Theorem 2.3

First, we write

$$
\begin{align*}
U(x):=\sum_{\substack{n \leq x \\
n \in \mathbb{P}_{h}}} P(n) & =\sum_{\substack{p \leq x^{1 / h}}} p \sum_{\substack{m p^{h} \leq x \\
m \in \mathbb{P}_{h} \\
P(m) \leq p}} 1=\sum_{\substack{p \leq x^{1 / h}}} p \sum_{\substack{m \leq x / p^{h} \\
m \in \mathbb{P}_{h} \\
P(m) \leq p}} 1 \\
& =\sum_{p \leq x^{1 /(h+1)}} p \sum_{\substack{m \leq x / p^{h} \\
m \in \mathbb{P}^{h} \\
P(m) \leq p}} 1+\sum_{x^{1 /(h+1)<p \leq x^{1 / h}}} p \sum_{\substack{m \leq x / p^{n} \\
m \in \mathbb{P}^{n} \\
P(m) \leq p}} 1 \tag{5.1}\\
& =U_{1}(x)+U_{2}(x) .
\end{align*}
$$

It follows from estimate (1.3) that

$$
\begin{align*}
U_{1}(x) & \leq \sum_{p \leq x^{1 /(h+1)}} p \sum_{\substack{m \leq x / p^{p} \\
m \in P_{h}}} 1=\sum_{p \leq x^{1 /(h+1)}} p \mathbb{P}_{h}\left(\frac{x}{p^{h}}\right) \\
& \ll \sum_{p \leq x^{1 /(h+1)}} p \frac{x^{1 / h}}{p}=x^{1 / h} \pi\left(x^{1 /(h+1)}\right) \ll \frac{x^{\frac{2 h+1}{h(h+1)}}}{\log x} . \tag{5.2}
\end{align*}
$$

To evaluate $U_{2}(x)$, first observe that, for $p>x^{1 /(h+1)}$, we have that $\frac{x}{p^{h}}<p$, implying that in this case the condition $P(m) \leq p$ appearing in the second sum defining $U_{2}(x)$ can be dropped and therefore that

$$
\begin{align*}
U_{2}(x) & =\sum_{x^{1 /(h+1)<p \leq x^{1 / h}}} p \sum_{\substack{m p^{h} \leq x \\
m \in \mathbb{P}_{h}}} 1=\sum_{p \leq x^{1 / h}} p \sum_{\substack{m p^{h} \leq x \\
m \in \mathbb{P}_{h}}} 1-\sum_{p \leq x^{1 /(h+1)}} p \sum_{\substack{m p^{h} \leq x \\
m \in \mathbb{P}_{h}}} 1 \\
& =\sum_{p \leq x^{1 / h}} p \sum_{\substack{m p^{h} \leq x \\
m \in \mathbb{P}_{h}}} 1+O\left(\frac{x^{\frac{2 h+1}{h(h+1)}}}{\log x}\right) \tag{5.3}\\
& =T(x)+O\left(\frac{x^{\frac{2 h+1}{h(h+1)}}}{\log x}\right)=T(x)+O\left(\frac{x^{2 / h}}{\log ^{k+1} x}\right),
\end{align*}
$$

where we made use of (5.2) and the fact that $\frac{2 h+1}{h(h+1)}<\frac{2}{h}$.
Inverting the two sums appearing in the definition of $T(x)$, we can rewrite $T(x)$ as follows:

$$
\begin{align*}
T(x) & =\sum_{\substack{m \leq x \\
m \in \mathbb{P}_{h}}} \sum_{\substack{h \\
p^{h} \leq x / m}} p=\sum_{\substack{m \leq x \\
m \in \mathbb{P}_{h}}} \sum_{p \leq(x / m)^{1 / h}} p \\
& =\sum_{\substack{m \leq \exp \{\sqrt{\log x}\} \\
m \in \mathbb{P}_{h}}} p+\sum_{p \leq(x / m)^{1 / h}} \sum_{\substack{\exp \{\sqrt{\log x}\}<m \leq p^{1 / h} \\
m \in \mathbb{P}_{h}}} p \tag{5.4}\\
& =T_{1}(x)+T_{2}(x) .
\end{align*}
$$

Again, using the bound $\mathbb{P}_{h}(t) \ll t^{1 / h}$ ensured by estimate 1.3), we have, arguing as we did in Lemma 3.3.

$$
\begin{align*}
T_{2}(x) & \leq \sum_{\substack{\exp \{\sqrt{\log x\}}\}<m \leq p^{1 / h} \\
m \in \mathbb{P}_{h}}}\left(\frac{x}{m}\right)^{2 / h}=x^{2 / h} \sum_{\substack{\exp \{\sqrt{\log x\}}\}<m \leq p^{1 / h} \tag{5.5}\\
m \in \mathbb{P}_{h}}} \frac{1}{m^{2 / h}} \\
& =x^{2 / h} \int_{\exp \{\sqrt{\log x}\}}^{x} t^{-2 / h} d \mathbb{P}_{h}(t) \\
& \ll x^{2 / h}\left(\left.t^{-2 / h} t^{1 / h}\right|_{\exp \{\sqrt{\log x}\}} ^{x}+\int_{\exp \{\sqrt{\log x}\}}^{x} t^{\left.-\frac{2}{h-1} t^{1 / h} d t\right)}\right. \\
& \left.\ll x^{2 / h} \cdot \frac{1}{t^{1 / h}}\right|_{\exp \{\sqrt{\log x}\}} ^{x} \ll \frac{x^{2 / h}}{\exp \left\{\frac{1}{h} \sqrt{\log x}\right\}} \ll \frac{x^{2 / h}}{\log ^{k+1} x} .
\end{align*}
$$

Making use of Lemma 3.1 with $X=(x / m)^{1 / h}$ and thereafter of formula 3.1) of Lemma 3.2, we obtain

$$
\begin{align*}
& T_{1}(x)= \sum_{\substack{m \leq \exp \left\{\sqrt{\log x\}} \\
m \in \mathbb{P}_{h} h\right.}}\left\{\frac{1}{2} \frac{(x / m)^{2 / h}}{\frac{1}{h} \log (x / m)}+a_{2} \frac{(x / m)^{2 / h}}{\frac{1}{h^{2}} \log ^{2}(x / m)}\right. \\
&\left.+\cdots+a_{k} \frac{(x / m)^{2 / h}}{\frac{1}{h^{k}} \log ^{k}(x / m)}+O\left(\frac{(x / m)^{2 / h}}{\log ^{k+1}(x / m)}\right)\right\} \tag{5.6}\\
&= e_{1} \frac{x^{2 / h}}{\log x}+e_{2} \frac{x^{2 / h}}{\log ^{2} x}+\cdots+e_{k} \frac{x^{2 / h}}{\log ^{k} x}+O\left(\frac{x^{2 / h}}{\log ^{k+1} x}\right),
\end{align*}
$$

where we used the fact that, in light of estimate (3.3) of Lemma 3.3 ,

$$
\begin{aligned}
\frac{h}{2} \frac{x^{2 / h}}{\log x} \sum_{\substack{m \leq \exp \left\{\sqrt{\log x\}} \\
m \in \mathbb{P}_{h}\right.}} \frac{1}{m^{2 / h}} & =\frac{h}{2} \frac{x^{2 / h}}{\log x}\left(\sum_{\substack{m=1 \\
m \in \mathbb{P}_{h}}}^{\infty} \frac{1}{m^{2 / h}}-\sum_{\substack{m>\exp \{\sqrt{\log x}\} \\
m \in \mathbb{P}_{h}}} \frac{1}{m^{2 / h}}\right) \\
& =\frac{x^{2 / h}}{\log x} \frac{h}{2} \sum_{\substack{m=1 \\
m \in \mathbb{P}_{h}}}^{\infty} \frac{1}{m^{2 / h}}\left(1+O\left(\frac{1}{x^{1 / h}}\right)\right)
\end{aligned}
$$

and where we used estimate (3.4) of Lemma 3.3 to manage the other coefficients e_{i} appearing in 5.6.

Finally, gathering estimates (5.2, (5.3), (5.4), (5.5) and (5.6) in (5.1) completes the proof of Theorem 2.3

References

[1] K. Alladi and P. Erdős, On an additive arithmetic function, Pacific J. Math. 71 no. 2 (1977), 275-294. DOI MR Zbl
[2] J.-M. De Koninck and A. Ivić, The distribution of the average prime divisor of an integer, Arch. Math. (Basel) 43 no. 1 (1984), 37-43. DOI MR Zbl
[3] A. Ivıć and P. Shiu, The distribution of powerful integers, Illinois J. Math. 26 no. 4 (1982), 576-590. MR Zbl
[4] I. Niven, H. S. Zuckerman, and H. L. Montgomery, An introduction to the theory of numbers, fifth ed., John Wiley \& Sons, New York, 1991. MR Zbl
[5] F. Pappalardi, A survey on k-freeness, in Number theory, Ramanujan Math. Soc. Lect. Notes Ser. 1, Ramanujan Math. Soc., Mysore, 2005, pp. 71-88. MR Zbl

Jean-Marie De Koninck ${ }^{\boxtimes}$

Département de mathématiques, Université Laval, Québec, Canada
jmdk@mat.ulaval.ca
Rafael Jakimczuk
División Matemática, Universidad Nacional de Luján, Buenos Aires, Argentina jakimczu@mail.unlu.edu.ar

Received: January 31, 2022
Accepted: June 20, 2022

[^0]: 2020 Mathematics Subject Classification. 11N37, 11A05.
 Key words and phrases. Largest prime factor function, square-free numbers, square-full numbers.

 The work of the first author was supported in part by a grant from the Natural Sciences and Engineering Research Council of Canada.

