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SUMMING THE LARGEST PRIME FACTOR
OVER INTEGER SEQUENCES

JEAN-MARIE DE KONINCK AND RAFAEL JAKIMCZUK

Abstract. Given an integer n ≥ 2, let P (n) stand for its largest prime factor.
We examine the behaviour of

∑
n≤x
n∈A

P (n) in the case of two sets A, namely the

set of r-free numbers and the set of h-full numbers.

1. Introduction

Given an integer n ≥ 2, let P (n) stand for its largest prime factor, with P (1) = 1.
Even though this function is very chaotic because P (n) oscillates between small
and large values as n varies, its average value over large intervals is more smooth
and can be estimated.

The first significant estimate regarding the sum
∑

n≤x P (n) is due to Alladi and
Erdős [1] as they proved that∑

n≤x

P (n) = π2

12
x2

log x
+ O

(
x2

log2 x

)
.

This result was later improved by De Koninck and Ivić [2] when they showed that,
given any positive integer k, there exist computable constants c2, . . . , ck such that∑

n≤x

P (n) = π2

12
x2

log x
+ c2

x2

log2 x
+ · · · + ck

x2

logk x
+ O

(
x2

logk+1 x

)
.

A natural question to ask is how the above formula changes if instead of summing
P (n) over all natural numbers n ≤ x, we restrict these numbers n to a particular
subset A of N. For this purpose, we will consider here two large families of integers,
namely the set of r-free numbers and the set of h-full numbers.

Given an integer n ≥ 2, write its prime factorisation as n = qα1
1 qα2

2 · · · qαs
s , where

q1 < q2 < · · · < qs are primes and α1, α2, . . . , αs ∈ N. Given fixed integers r ≥ 2
and h ≥ 2, we say that n is a r-free number if max(α1, α2, . . . , αs) ≤ r −1, whereas
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28 JEAN-MARIE DE KONINCK AND RAFAEL JAKIMCZUK

we say that n is a h-full number if min(α1, α2, . . . , αs) ≥ h. We will denote by Fr

the set of r-free numbers; amongst these sets, the set F2 of square-free numbers
and the set F3 of cube-free numbers are often mentioned in the literature. On the
other hand, we will denote by Ph the set of h-full numbers. Particular cases are
the set P2, known as the set of powerful numbers or square-full numbers, and the
set P3, the set of cube-full numbers.

In what follows we will make frequent use of the Riemann zeta function ζ(s)
defined by

ζ(s) :=
∞∑

n=1

1
ns

=
∏

p

(
1 − 1

ps

)−1
(s > 1).

Let µr(n) be the characteristic function of the r-free numbers, that is,

µr(n) =
{

1 if n is r-free,

0 otherwise,

implying in particular that its generating function is, for s > 1,
∞∑

n=1

µr(n)
ns

=
∏

p

(
1 + 1

ps
+ · · · + 1

p(r−1)s

)

=

∏
p

(
1 − 1

prs

)
∏

p

(
1 − 1

ps

) = ζ(s)
ζ(rs) .

Let χh(n) be the characteristic function of the h-full numbers, that is,

χh(n) =
{

1 if n is h-full,
0 otherwise,

implying in particular that its generating function is, for s > 1,
∞∑

n=1

χh(n)
ns

=
∏

p

(
1 + 1

phs
+ 1

p(h+1)s
+ · · ·

)
= ζ(hs)

∏
p

(
1 − 1

phs

)∏
p

(
1 + 1

phs
+ 1

p(h+1)s
+ · · ·

)
= ζ(hs)

∏
p

(
1 + 1

p(h+1)s
+ 1

p(h+2)s
+ · · · + 1

p(2h−1)s

)
.

(1.1)

Finally, let us mention that estimates for the counting functions Fr(x) := #{n ≤
x : n ∈ Fr} and Ph(x) := #{n ≤ x : n ∈ Ph} of these two families of numbers are
well-known. These are, for fixed integers r ≥ 2 and h ≥ 2,

Fr(x) = 1
ζ(r)x + O

(
x1/r

)
, (1.2)

Pr(x) = γhx1/h + O
(

x1/(h+1)
)

(1.3)
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for some positive constant γh. For a proof of (1.2) in the simplest case, that is for
r = 2, see Theorem 8.25 in the book of Niven, Zuckerman and Montgomery [4];
for a proof of the general case, that is for any r ≥ 2, see the survey paper of
Pappalardi [5]. For a proof of (1.3), see the paper of Iv́ıc and Shiu [3], where in
fact a much more accurate formula is proved.

2. Main results

For our first set A, we choose the set of r-free numbers Fr. In this case we can
prove the following.
Theorem 2.1. Let r ≥ 2 be a fixed integer. Then, given any positive integer k,
there exist computable constants d1, d2, . . . , dk such that∑

n≤x
n∈Fr

P (n) =
∑
n≤x

µr(n)P (n) = d1
x2

log x
+d2

x2

log2 x
+· · ·+dk

x2

logk x
+O

(
x2

logk+1 x

)
,

where in particular, in light of (1.2),

d1 = d
(r)
1 = 1

2

∞∑
n=1

µr(n)
n2 = ζ(2)

2ζ(2r) .

Remark 2.2. In the case r = 2, that is, the case of square-free numbers, we have

d
(2)
1 = ζ(2)

2ζ(4) = 15
2π2 = 0.759909 . . . .

In the case r = 3, that is, the case of cube-free numbers, we have

d
(3)
1 = ζ(2)

2ζ(6) = 315
4π4 = 0.808446 . . . .

When choosing A = Ph, we can prove the following general result.
Theorem 2.3. Let h ≥ 2 be a fixed integer. Then, given any positive integer k,
there exist computable constants e1, e2, . . . , ek such that∑

n≤x
n∈Ph

P (n) = e1
x2/h

log x
+ e2

x2/h

log2 x
+ · · · + ek

x2/h

logk x
+ O

(
x2/h

logk+1 x

)
,

where
e1 = h

2
∑

n∈Ph

1
n2/h

= h

2
∏

p

(
1 + 1

(ph)2/h
+ 1

(ph+1)2/h
+ · · ·

)
.

Remark 2.4. In the particular case of square-full numbers, we have, in light of
(1.1) with h = 2 and s = 1,

e1 =
∑

n∈P2

1
n

=
∏

p

(
1 + 1

p2 + 1
p3 + · · ·

)
= ζ(2)ζ(3)

ζ(6) = 1.9436 . . . .

In the case of cube-full numbers, we find

e1 = 3
2
∑

n∈P3

1
n2/3 = 3

2
∏

p

(
1 + 1

p2 + 1
p8/3 + 1

p10/3 + · · ·
)

= 3.44967 . . . .
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30 JEAN-MARIE DE KONINCK AND RAFAEL JAKIMCZUK

3. Preliminary results

Let π(x) stand for the number of primes not exceeding x. Using the prime
number theorem in the form

π(x) = x

log x
+ 1!x

log2 x
+ 2!x

log3 x
+ · · · + (k − 1)!x

logk x
+ O

(
x

logk+1 x

)
,

one can easily prove the following.

Lemma 3.1. Given any positive integer k, there exist k − 1 computable constants
a2, . . . , ak such that∑

p≤X

p = 1
2

X2

log X
+ a2

X2

log2 X
+ · · · + ak

X2

logk X
+ O

(
X2

logk+1 X

)
.

We also have the following.

Lemma 3.2. Given fixed positive integers s and k, there exist computable constants
c0,s, c1,s, . . . , ck,s such that∑
n≤exp{

√
log x}

1
n2 logs(x/n) = c0,s

logs x
+ c1,s

logs+1 x
+ · · ·+ ck,s

logs+k x
+O

(
1

logs+k+1 x

)
.

(3.1)
On the other hand, given a fixed integer r ≥ 2, as well as fixed integers s, k ∈ N,
there exist computable constants d0,s, d1,s, . . . , dk,s such that∑

n≤
√

x

µr(n)
n2 logs(x/n) = d0,s

logs x
+ d1,s

logs+1 x
+ · · · + dk,s

logs+k x
+ O

(
1

logs+k+1 x

)
. (3.2)

Proof. We only provide the proof of (3.2) since the proof of (3.1) is similar. Since
we assumed that n ≤

√
x, we have that log n

log x
≤ 1

2 . Therefore, for a fixed integer

k ≥ 1 and all y ≤ 1
2 , we may use the expansion

1
1 − y

= 1 + y + y2 + · · · + yk + O(yk+1)

to write that, in the case s = 1,
µr(n)

n2 log(x/n) = µr(n)
n2 log x

(
1 − log n

log x

)
= µr(n)

n2 log x

(
1 + log n

log x
+ · · · + logk−1 n

logk−1 x
+ O

(
logk n

logk x

))

= µr(n)
n2

1
log x

+ µr(n) log n

n2
1

log2 x

+ · · · + µr(n) logk−1 n

n2
1

logk x
+ O

(
1

logk+1 x

)
.
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Observing that, for each integer j ≥ 1, the corresponding series
∞∑

n=1

µr(n) logj n

n2

converges, estimate (3.2) in the case s = 1 easily follows. The case of an arbitrary
s ∈ N can be handled similarly. □

Lemma 3.3. For each integer h ≥ 2,∑
m≤x

m∈Ph

1
m2/h

=
∑

m∈Ph

1
m2/h

+ O

(
1

x1/h

)
(3.3)

and, for each fixed j ∈ N, ∑
m≤x

m∈Ph

logj m

m2/h
= O(1). (3.4)

Proof. First observe that, replacing the sum
∑
m>x

m∈Ph

1
m2/h

by a Stieltjes integral, using

integration by parts and thereafter using the bound Ph(t) = O(t1/h) guaranteed
by (1.3), we obtain∑

m>x
m∈Ph

1
m2/h

=
∫ ∞

x

1
t2/h

dPh(t) = Ph(t)
t2/h

∣∣∣∣∞
x

+ 2
h

∫ ∞

x

t− 2
h −1Ph(t) dt

≪ 1
x2/h−1/h

+ 2
h

∫ ∞

x

t1/h−1 dt ≪ 1
x1/h

.

(3.5)

Using (3.5), it follows that∑
m≤x

m∈Ph

1
m2/h

=
∑

m∈Ph

1
m2/h

−
∑
m>x

m∈Ph

1
m2/h

=
∑

m∈Ph

1
m2/h

+ O

(
1

x1/h

)
,

thus completing the proof of (3.3).
The proof of (3.4) can easily be established using the same technique. □

4. Proof of Theorem 2.1

First observe that
M(x) :=

∑
n≤x

µr(n)P (n) =
∑
p≤x

p
∑

mp≤x
P (m)<p

µr(m)

=
∑

p≤
√

x

p
∑

m≤x/p
P (m)<p

µr(m) +
∑

√
x<p≤x

p
∑

m≤x/p
P (m)<p

µr(m)

= M1(x) + M2(x).

(4.1)

It is trivial that
M1(x) ≤

∑
p≤

√
x

p · x

p
= x π(

√
x) ≪ x3/2

log x
. (4.2)
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32 JEAN-MARIE DE KONINCK AND RAFAEL JAKIMCZUK

To estimate M2(x), first observe that if p >
√

x, we have that x/p < p, in which
case the condition P (m) < p appearing in the definition of M2(x) can be dropped.
Hence, inverting the sum over p with the sum over m, and then using Lemma 3.1
with X =

√
x, we obtain

M2(x) =
∑

√
x<p≤x

p
∑

m≤x/p

µr(m) =
∑

m≤
√

x

µr(m)
∑

√
x<p≤x/m

p

=
∑

m≤
√

x

µr(m)
∑

p≤x/m

p −
∑

m≤
√

x

µr(m)
∑

p≤
√

x

p

=
∑

m≤
√

x

µr(m)
∑

p≤x/m

p + O

(
x3/2

log x

)

= M3(x) + O

(
x3/2

log x

)
.

(4.3)

Again using Lemma 3.1, but this time with X = x/m, and thereafter using
formula (3.2) of Lemma 3.2, we obtain

M3(x) =
∑

m≤
√

x

µr(m)
{

1
2

(x/m)2

log(x/m) + a2
(x/m)2

log2(x/m)

+ · · · + ak
(x/m)2

logk(x/m)
+ O

(
(x/m)2

logk+1(x/m)

)}
= 1

2

∞∑
m=1

µr(m)
m2

x2

log x
+ d2

x2

log2 x

+ · · · + dk
x2

logk x
+ O

(
x2

logk+1 x

)
,

(4.4)

where we took the liberty to replace
∑

m≤
√

x

µr(m)
m2 by

∞∑
m=1

µr(m)
m2 , a justified move

since

∑
m≤

√
x

µr(m)
m2 =

∞∑
m=1

µr(m)
m2 −

∑
m>

√
x

µr(m)
m2

=
∞∑

m=1

µr(m)
m2 + O

(∫ ∞

√
x

dt

t2

)

=
∞∑

m=1

µr(m)
m2 + O

(
1√
x

)
.

Finally, gathering (4.2), (4.3) and (4.4) in (4.1) completes the proof of Theorem 2.1.
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5. Proof of Theorem 2.3

First, we write

U(x) :=
∑
n≤x

n∈Ph

P (n) =
∑

p≤x1/h

p
∑

mph≤x
m∈Ph

P (m)≤p

1 =
∑

p≤x1/h

p
∑

m≤x/ph

m∈Ph
P (m)≤p

1

=
∑

p≤x1/(h+1)

p
∑

m≤x/ph

m∈Ph
P (m)≤p

1 +
∑

x1/(h+1)<p≤x1/h

p
∑

m≤x/ph

m∈Ph
P (m)≤p

1

= U1(x) + U2(x).

(5.1)

It follows from estimate (1.3) that

U1(x) ≤
∑

p≤x1/(h+1)

p
∑

m≤x/ph

m∈Ph

1 =
∑

p≤x1/(h+1)

p Ph

(
x

ph

)

≪
∑

p≤x1/(h+1)

p
x1/h

p
= x1/h π(x1/(h+1)) ≪ x

2h+1
h(h+1)

log x
.

(5.2)

To evaluate U2(x), first observe that, for p > x1/(h+1), we have that x

ph
< p,

implying that in this case the condition P (m) ≤ p appearing in the second sum
defining U2(x) can be dropped and therefore that

U2(x) =
∑

x1/(h+1)<p≤x1/h

p
∑

mph≤x
m∈Ph

1 =
∑

p≤x1/h

p
∑

mph≤x
m∈Ph

1 −
∑

p≤x1/(h+1)

p
∑

mph≤x
m∈Ph

1

=
∑

p≤x1/h

p
∑

mph≤x
m∈Ph

1 + O

(
x

2h+1
h(h+1)

log x

)

= T (x) + O

(
x

2h+1
h(h+1)

log x

)
= T (x) + O

(
x2/h

logk+1 x

)
,

(5.3)

where we made use of (5.2) and the fact that 2h + 1
h(h + 1) <

2
h

.

Inverting the two sums appearing in the definition of T (x), we can rewrite T (x)
as follows:

T (x) =
∑
m≤x

m∈Ph

∑
ph≤x/m

p =
∑
m≤x

m∈Ph

∑
p≤(x/m)1/h

p

=
∑

m≤exp{
√

log x}
m∈Ph

∑
p≤(x/m)1/h

p +
∑

exp{
√

log x}<m≤p1/h

m∈Ph

∑
p≤(x/m)1/h

p

= T1(x) + T2(x).

(5.4)
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Again, using the bound Ph(t) ≪ t1/h ensured by estimate (1.3), we have, arguing
as we did in Lemma 3.3,

T2(x) ≤
∑

exp{
√

log x}<m≤p1/h

m∈Ph

( x

m

)2/h

= x2/h
∑

exp{
√

log x}<m≤p1/h

m∈Ph

1
m2/h

= x2/h

∫ x

exp{
√

log x}
t−2/hdPh(t)

≪ x2/h

(
t−2/ht1/h

∣∣∣x
exp{

√
log x}

+
∫ x

exp{
√

log x}
t− 2

h −1t1/h dt

)

≪ x2/h · 1
t1/h

∣∣∣∣x
exp{

√
log x}

≪ x2/h

exp{ 1
h

√
log x}

≪ x2/h

logk+1 x
.

(5.5)

Making use of Lemma 3.1 with X = (x/m)1/h and thereafter of formula (3.1)
of Lemma 3.2, we obtain

T1(x) =
∑

m≤exp{
√

log x}
m∈Ph

{
1
2

(x/m)2/h

1
h log(x/m)

+ a2
(x/m)2/h

1
h2 log2(x/m)

+ · · · + ak
(x/m)2/h

1
hk logk(x/m)

+ O

(
(x/m)2/h

logk+1(x/m)

)}
= e1

x2/h

log x
+ e2

x2/h

log2 x
+ · · · + ek

x2/h

logk x
+ O

(
x2/h

logk+1 x

)
,

(5.6)

where we used the fact that, in light of estimate (3.3) of Lemma 3.3,

h

2
x2/h

log x

∑
m≤exp{

√
log x}

m∈Ph

1
m2/h

= h

2
x2/h

log x

 ∞∑
m=1

m∈Ph

1
m2/h

−
∑

m>exp{
√

log x}
m∈Ph

1
m2/h


= x2/h

log x

h

2

∞∑
m=1

m∈Ph

1
m2/h

(
1 + O

(
1

x1/h

))

and where we used estimate (3.4) of Lemma 3.3 to manage the other coefficients
ei appearing in (5.6).

Finally, gathering estimates (5.2), (5.3), (5.4), (5.5) and (5.6) in (5.1) completes
the proof of Theorem 2.3.
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