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ASYMPTOTIC MEAN VALUE FORMULAS FOR PARABOLIC
NONLINEAR EQUATIONS

PABLO BLANC, FERNANDO CHARRO, JUAN J. MANFREDI, AND JULIO D. ROSSI

Abstract. In this paper we characterize viscosity solutions to nonlinear para-
bolic equations (including parabolic Monge–Ampère equations) by asymptotic
mean value formulas. Our asymptotic mean value formulas can be interpreted
from a probabilistic point of view in terms of dynamic programming principles
for certain two-player, zero-sum games.

1. Introduction

1.1. Asymptotic mean value formulas for elliptic equations. It is a well-
known classical fact that a function u is harmonic (u is a solution to ∆u =
trace(D2u) = 0) in a domain Ω ⊂ Rn if and only if u satisfies the mean value
property

u(x) = −
∫

Bε(x)
u(y) dy (1.1)

for each x ∈ Ω and all 0 < ε < dist(x, ∂Ω). In fact, a weaker statement, an
asymptotic version of the mean value property, suffices to characterize harmonic
functions. A continuous function u is harmonic in Ω if and only if

u(x) = −
∫

Bε(x)
u(y) dy + o(ε2) as ε → 0; (1.2)

see [7, 23, 33]. Moreover, the mean value property can be used to characterize sub-
and superharmonic functions replacing the equality by the appropriate inequality
in (1.1) and (1.2). A discrete version of the asymptotic mean value property also
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holds: A continuous function u is harmonic if and only if

u(x) = 1
n

n∑
j=1

{
1
2u(x + εej) + 1

2u(x − εej)
}

+ o(ε2) as ε → 0,

where {e1, . . . , en} is the canonical basis of Rn. There are many other mean value
formulas for linear elliptic operators other than the Laplacian (see [27]) and for
degenerate elliptic equations (see [8]).

In recent years asymptotic mean value formulas were found for nonlinear oper-
ators such as the normalized (also called homogeneous) p-Laplacian,

∆N
p u = |∇u|2−p div

(
|∇u|p−2∇u

)
= ∆u + (p − 2) ∆N

∞u,

for 1 < p < ∞. These mean value formulas come from the connection between
probability (via the dynamic programming principle for tug-of-war games) and the
normalized infinity Laplacian; see [24, 25, 31]. A nonlinear mean value property
for p-harmonic functions first appeared in [28] motivated by the random tug-of-
war games with noise in [32]. It was proved in [28] that p-harmonic functions are
characterized by the fact that they satisfy the following asymptotic mean value
formula:

u(x) =
(

p − 2
p + n

)max
Bε(x)

u + min
Bε(x)

u

2

+
(

2 + n

p + n

)
−
∫

Bε(x)
u(y) dy+o(ε2) as ε → 0,

(1.3)
in the viscosity sense. The asymptotic mean value formula (1.3) holds in the
viscosity sense if whenever a smooth test function with non-vanishing gradient
touches u from above (respectively below) at a point x, the mean value formula
(1.3) is satisfied with ≤ (respectively ≥) for the test function at x. This is weaker
than requiring the asymptotic formula to hold in the classical sense, yet enough to
characterize p-harmonic functions. For mean value properties for the p-Laplacian in
the Heisenberg group see [16], and for the standard variational p-Laplacian see [14].
See also [2] and the recently published book [5] for historical references and more
general equations.

It is worth noting that the expression(
p − 2
p + n

)max
Bε(x)

u + min
Bε(x)

u

2

+
(

2 + n

p + n

)
−
∫

Bε(x)
u(y) dy

in the asymptotic mean value property (1.3) has a game-theoretic interpretation
for which it is essential that the coefficients are positive and add up to 1, so that
they play the role of conditional probabilities.

For asymptotic mean value properties for the elliptic Monge–Ampère equation
det D2u = f in Ω (1.4)

we refer to our recent paper [4]. For the equation to fit into the framework of the
theory of fully nonlinear elliptic equations, one must look for convex solutions u to
ensure that det(D2u) is indeed a monotone function of D2u. Thus, one requires the
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right-hand side f(x) to be nonnegative; see [9, 10]. Moreover, the Monge–Ampère
equation can be expressed as an infimum of a family of linear operators as follows:(

det D2u(x)
)1/n = 1

n
inf

det A=1
trace(AtD2u(x)A).

Let ϕ(ε) be a positive function such that

lim
ε→0

ϕ(ε) = ∞ and lim
ε→0

ε ϕ(ε) = 0.

Then, a convex function u ∈ C(Ω) is a viscosity solution of the Monge–Ampère
equation (1.4) if and only if for every x ∈ Ω we have

u(x) = inf
det A=1
A≤ϕ(ε)I

{
−
∫

Bε(0)
u(x + Ay) dy

}
− n

2(n + 2) (f(x))1/n ε2 + o(ε2) (1.5)

as ε → 0, in the viscosity sense; see [4]. We remark that classical C2 solutions to
the Monge–Ampère equation satisfy (1.5) in the standard pointwise sense.

1.2. Asymptotic mean value formulas for parabolic equations. In the linear
case, u is a solution to the heat equation

∂u

∂t
(x, t) = ∆u(x, t)

if and only if u satisfies the mean value formula

u(x, t) =
∫

E(x,t;r)
u(y, s) |x − y|2

(t − s)2 dyds,

where the integral is taken over the heat ball

E(x, t; r) =
{

(y, s) ∈ Rn+1 : s ≤ t, (4π(t − s))1/2e
(x−y)2
4n(t−s) ≤ r

}
.

Concerning mean value formulas for the heat equation we refer also to [40] and [1].
For a version with variable coefficients see [15], and for a proof of the rigidity of
the formula see [22, 34].

It turns out that there is a simpler asymptotic mean value formula where we
only need to integrate over the parabolic cylinder Bε(x) × (t − ε2

n+2 , t) and there
is no need for a kernel; i.e., u is a solution to the heat equation if and only if u
satisfies

u(x, t) =
∫ t

t− ε2
n+2

∫
Bε(x)

u(y, s) dy ds + o(ε2) as ε → 0.

Equivalently, the asymptotic mean value formula

u(x, t) =
∫ t

t−ε2

∫
Bε(x)

u(y, s) dy ds + o(ε2) as ε → 0,

holds in the viscosity sense if and only if u is a solution to

(n + 2) ut(x, t) = ∆u(x, t).
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For the normalized parabolic p-Laplacian it is convenient to write the equation
in the form

(n + p) ut(x, t) = |∇u|2−p∆pu(x, t). (1.6)
This equation has been studied in [29], where a game approximation (that leads
to an asymptotic mean value formula) was analyzed. Namely, a function u solves
(1.6) if and only if the following expansion holds in the viscosity sense:

u(x, t) = 1
2

(
p − 2
p + n

)
−
∫ t

t−ε2

(
max

y∈Bε(x)
u(y, s) + min

y∈Bε(x)
u(y, s)

)
ds

+
(

2 + n

p + n

)
−
∫ t

t−ε2
−
∫

Bε(x)
u(y, s) dy ds + o(ε2) as ε → 0.

2. Main results

Our main goal is to obtain mean value formulas for parabolic versions of the
Monge–Ampère equation and other nonlinear parabolic equations.

2.1. Parabolic Monge–Ampère. First we show that an asymptotic, nonlinear
mean value formula holds for two different parabolic versions of the Monge–Ampère
equation. The first one reads as follows:

∂u

∂t
(x, t) = (det (D2u(x, t)))1/n + f(x, t), (2.1)

and has been studied in [11, 13, 17, 21] in relation to geometric evolution problems.
Our first result describes an asymptotic mean value formula for this equation.

Theorem 2.1. Let ϕ(ε) be a positive function such that
lim
ε→0

ϕ(ε) = ∞ and lim
ε→0

ε ϕ(ε) = 0.

A function u ∈ C(Ω × (t1, t2)) that is convex in the spatial variables is a viscosity
solution of the Monge–Ampère equation (2.1) if and only if

u(x, t) = inf
det(A)=1
A≤ϕ(ε)I

{
−
∫ t

t− n
n+2 ε2

−
∫

Bε(0)
u(x + Ay, s) dy ds

}

+ n

2(n + 2) f(x, t) ε2 + o(ε2)

(2.2)

as ε → 0 for x ∈ Ω, t ∈ (t1, t2), in the viscosity sense.

For the precise definition of a viscosity solution and the statement of a mean
value formula in the viscosity sense we refer to Section 3 (see also [12] and [28]).
Informally, an equation or a mean value property holds in the viscosity sense when
it holds with the appropriate inequality instead of an equality for smooth functions
that touch u from above or from below at (x, t).

The mean value property (2.2) involves an average of u both in space and in
time. Notice the parabolic character of the time average in formula (2.2), where
we are integrating over a time interval of length comparable to ε2.
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Remark 2.2. We assume without loss of generality that the matrices A that
appear throughout this paper are symmetric and positive definite. This assumption
is not restrictive since we can use the (unique) left polar decomposition of A, namely
A = SQ (where Q is orthogonal and S is a positive definite symmetric matrix) and
consider S instead of a general matrix A in our formulas.

Remark 2.3. The concept of a mean value formula in the viscosity sense is weaker
than a mean value formula that holds in a pointwise sense. In fact, there are
examples of asymptotic mean value formulas that hold in the viscosity sense but
do not hold pointwise, like the ones that hold for the infinity Laplacian (see [28]) and
for the elliptic Monge–Ampère equation (see [4]). When a solution to the involved
equation is smooth, u(x, t) ∈ C2,1, the mean value property holds pointwise. This
is a consequence of the fact that for C2,1 functions we have formula (2.2) in the
classical pointwise sense.

Remark 2.4. We can also obtain a mean value property evaluating at t− n
2(n+2) ε2

instead of averaging in time; that is, it holds that u is a viscosity solution of the
parabolic Monge–Ampère equation (2.1) if and only if

u(x, t) = inf
det(A)=1
A≤ϕ(ε)I

{
−
∫

Bε(0)
u
(

x + Ay, t − n

2(n + 2)ε2
)

dy

}

+ n

2(n + 2) f(x, t) ε2 + o(ε2),

in the viscosity sense.

A different version of the parabolic Monge–Ampère equation reads

−∂u

∂t
(x, t) · det

(
D2u(x, t)

)
= f(x, t) (2.3)

and appears in connection with the movement of a hypersurface by Gauss–Kronecker
curvature; see [36]. For the study of this equation we refer to [20, 41, 42] and con-
cerning regularity of the solutions to [19, 35, 38, 39]. The asymptotic behavior at
infinity of global solutions has been studied in [37].

In order for the general viscosity theory to work in this case, one has to restrict
to solutions that are parabolically convex. A function u : Ω×(t1, t2) → R is parabol-
ically convex if it is continuous, convex in x, and non-increasing in t. Therefore,
we assume that the right-hand side f is nonnegative.

Our next result shows that there is also a mean value formula in this case.

Theorem 2.5. Let ϕ(ε) be a positive function such that

lim
ε→0

ϕ(ε) = ∞ and lim
ε→0

ε ϕ(ε) = 0.

Rev. Un. Mat. Argentina, Vol. 64, No. 1 (2022)



142 P. BLANC, F. CHARRO, J. J. MANFREDI, AND J. D. ROSSI

A parabolically convex function u ∈ C(Ω × (t1, t2)) is a viscosity solution of the
Monge–Ampère equation (2.3) if and only if

u(x, t) = inf
det(A)×b=1

A≤ϕ(ε)I, b≤ϕ(ε)

{
−
∫ t

t− b2
n+2 ε2

−
∫

Bε(0)
u(x + Ay, s) dy ds

}

− n + 1
2(n + 2) (f(x, t))

1
n+1 ε2 + o(ε2)

(2.4)

as ε → 0 for x ∈ Ω, t ∈ (t1, t2), in the viscosity sense.

Notice that formula (2.4) is similar to (2.2), except for the extra parameter b
that appears in the infimum, which is related to the time interval average.

Remark 2.6. We can again obtain a mean value property evaluating at t− b2

2(n+2) ε2

instead of averaging in time; that is, the parabolically convex function u ∈ C(Ω ×
(t1, t2)) is a viscosity solution of the Monge–Ampère equation (2.3) if and only if

u(x, t) = inf
det(A)×b=1

A≤ϕ(ε)I, b≤ϕ(ε)

{
−
∫

Bε(0)
u

(
x + Ay, t − b2

2(n + 2)ε2
)

dy ds

}

− n + 1
2(n + 2) (f(x, t))

1
n+1 ε2 + o(ε2)

as ε → 0 in the viscosity sense.

2.2. Bounded operators.

2.2.1. Infimum operators. Let us start with the differential operator F : Ω × R ×
R × Sn(R) → R given by

F
(

x, t,
∂u

∂t
, D2u

)
= inf

(A,b)∈Ax,t

{
trace(AtD2u(x, t)A) − b

∂u

∂t
(x, t)

}
. (2.5)

Here Ax,t ⊂ Sn
+(R) × R+ is a bounded subset for each point (x, t) ∈ Rn × R+ and

Sn
+(R) denotes the set of symmetric positive semi-definite matrices. Examples of

these operators include parabolic equations related to Pucci operators and evolution
problems associated with the convex envelope. See Section 5 below for details.

Our next result gives an asymptotic mean value formula that characterizes vis-
cosity solutions of the corresponding homogeneous equation.

Theorem 2.7. A function u ∈ C(Ω×(t1, t2)) is a viscosity solution of the equation

F
(

x, t,
∂u

∂t
, D2u

)
= 0

if and only if

u(x, t) = inf
(A,b)∈Ax,t

−
∫ t

t− b
n+2 ε2

−
∫

Bε(0)
u(x + Ay, s) dy ds + o(ε2)

as ε → 0 in the viscosity sense.
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Observe that an analogous statement holds for suprema, and hence we can tackle
operators of the form

F
(

x, t,
∂u

∂t
, D2u

)
= sup

(A,b)∈Ax,t

{
trace(AtD2u(x, t)A) − b

∂u

∂t
(x, t)

}
.

Remark 2.8. Since the sets Ax,t are bounded, the formula is local. In fact, for
every x ∈ Ω, t ∈ (t1, t2) there exists C = C(x, t) > 0 such that A ≤ CI and b ≤ C
for every (A, b) ∈ Ax,t and we get

dist(x + Ay, x) = |Ay| ≤ Cε → 0

and
0 ≤ t − s ≤ b

n + 2 ε2 ≤ C

n + 2 ε2 → 0

as ε → 0 for every y ∈ Bε(0) and s ∈ (t − ε2 b n
n+2 , t). In particular observe that, for

ε small enough, (x+Ay, s) ∈ Ω× (t1, t2) for every y ∈ Bε(0) and s ∈ (t−ε2 b
n+2 , t).

2.2.2. Supremum-infimum operators. Our next step is to consider a special type of
Isaacs operators where the supremum (or the infimum) is taken over a subset Ax,t

of the parts of Sn
+(R) × R+. To be more precise, let Ax,t ⊂ P(Sn

+(R) × R+) be a
subset for each x ∈ Ω, t ∈ (t1, t2) such that⋃

Ax,t =
{

(A, b) ∈ Sn
+(R) × R+ : (A, b) ∈ A for some A ∈ Ax,t

}
is bounded. We consider the differential operator F : Ω×R×R×Sn(R) → R given
by

F
(

x, t,
∂u

∂t
, D2u

)
= sup

A∈Ax,t

inf
(A,b)∈A

{
trace(AtD2u(x, t)A) − b

∂u

∂t
(x, t)

}
.

Examples of these operators include evolution problems for the eigenvalues of the
Hessian. See Section 5 below for details.

Theorem 2.9. A function u ∈ C(Ω × (t1, t2)) is a viscosity solution to

F
(

x, t,
∂u

∂t
, D2u

)
= 0

if and only if

u(x, t) = sup
A∈Ax,t

inf
(A,t)∈A

−
∫ t

t− b
n+2 ε2

−
∫

Bε(0)
u(x + Ay, s) dy ds + o(ε2) (2.6)

as ε → 0 in the viscosity sense.

Remark 2.10. In the previous two cases we can evaluate at t − b
2(n+2) ε2 instead

of taking averages in time and get a mean value formula of the form

u(x, t) = sup
A∈Ax,t

inf
(A,t)∈A

−
∫

Bε(0)
u
(

x + Ay, t − b

2(n + 2)ε2
)

dy ds + o(ε2) (2.7)

as ε → 0.
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The paper is organized as follows: In Section 3 we gather some definitions and
preliminary results; in Section 4 we prove the mean value formulas for the two
versions of the parabolic Monge–Ampère equation; in Section 5 we deal with in-
fimum and sup-inf operators; finally, Section 6 contains a brief discussion of the
relation between these mean value formulas and dynamic programming principles
from game theory.

3. Preliminaries

In this section we set the notation, recall basic results on the Monge–Ampère
equation, and state some definitions. We begin by stating the definition of a vis-
cosity solution to a fully nonlinear second order parabolic PDE. We refer to [12]
for general results on viscosity solutions.

Given a continuous function
F : Ω × R × R × Sn(R) → R,

where Sn(R) denotes the set of symmetric n × n matrices, we consider the PDE

F

(
x, t,

∂u

∂t
(x, t), D2u(x, t)

)
= 0, x ∈ Ω, t ∈ (t1, t2). (3.1)

Viscosity solutions use the monotonicity of F in D2u (ellipticity) and in ∂u
∂t in order

to evaluate the equation for smooth test functions and obtain sub- and supersolu-
tion inequalities.

Definition 3.1. A lower semi-continuous function u is a viscosity supersolution of
(3.1) if for every ϕ ∈ C2,1 such that ϕ touches u at (x, t) ∈ Ω × (t1, t2) strictly from
below (that is, u − ϕ has a strict minimum at (x, t) with u(x, t) = ϕ(x, t)), we have

F
(

x, t,
∂ϕ

∂t
(x, t), D2ϕ(x, t)

)
≥ 0.

An upper semi-continuous function u is a subsolution of (3.1) if for every ϕ ∈ C2,1

such that ϕ touches u at (x, t) ∈ Ω × (t1, t2) strictly from above (that is, u − ϕ has
a strict maximum at (x, t) with u(x, t) = ϕ(x, t)), we have

F
(

x, t,
∂ϕ

∂t
(x, t), D2ϕ(x, t)

)
≤ 0.

Finally, u is a viscosity solution of (3.1) if it is both a super- and a subsolution.

To apply this definition to the parabolic Monge–Ampère equation (2.1) we have
to consider the operator

F
(

x, t,
∂u

∂t
(x, t), D2u(x, t)

)
=


∂u

∂t
(x, t) − (det (D2u(x, t)))1/n − f(x, t) if D2u(x, t) ≥ 0,

−∞ otherwise.
This is equivalent to requiring the function to be convex in the space variable and
restricting the test functions to paraboloids convex in space. Similarly, for solutions
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to equation (2.3) we require the function to be parabolically convex (convex in x
and non-increasing in t) and restrict the test functions to parabolically convex
paraboloids, defined next.

Definition 3.2. A C2,1 function P (x, t) is a parabolic paraboloid if and only if it
coincides with its second order Taylor expansion in x and first order in t, i.e., we
have

P (x, t) = P (x0, t0) + ∂P

∂t
(x0, t0)(t − t0)

+ ⟨∇P (x0, t0), (x − x0)⟩ + 1
2 ⟨D2P (x0, t0)(x − x0), (x − x0)⟩

for any given (x0, t0). Furthermore, P (x, t) is a parabolically convex paraboloid if
and only if ∂P

∂t ≥ 0 and D2P ≥ 0.

We will also need the definition of an asymptotic mean value formula in the
viscosity sense. First, recall that given a constant c and a real function g we write

c ≤ g(ε) + o(ε2) as ε → 0

whenever we have

lim
ε→0

[c − g(ε)]+

ε2 = 0,

and
c ≥ g(ε) + o(ε2) as ε → 0

whenever we have

lim
ε→0

[c − g(ε)]−

ε2 = 0.

In the next definition, M(u, ε)(x) stands for a mean value operator (that depends
on the parameter ε) applied to u at the point x. As an example, consider

M(u, ε)(x, t) = inf
(A,b)∈Ax,t

−
∫ t

t−b ε2
−
∫

Bε(0)
u(x + Ay, s) dy ds.

Definition 3.3. A continuous function u satisfies

u(x, t) = M(u, ε)(x, t) + o(ε2) as ε → 0,

in the viscosity sense if
(1) for every ϕ ∈ C2,1 such that u − ϕ has a strict minimum at the point

(x, t) ∈ Ω × (t1, t2) with u(x, t) = ϕ(x, t), we have

0 ≥ −ϕ(x, t) + M(ϕ, ε)(x, t) + o(ε2);

(2) for every ϕ ∈ C2,1 such that u − ϕ has a strict maximum at the point
(x, t) ∈ Ω × (t1, t2) with u(x, t) = ϕ(x, t), we have

0 ≤ −ϕ(x, t) + M(ϕ, ε)(x, t) + o(ε2).

The following elementary fact will be used several times in what follows.
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Lemma 3.4. Let M be a square matrix of dimension n. Then,

trace(M) = n

ε2 −
∫

∂Bε(0)
⟨My, y⟩ dHn−1(y), (3.2)

= n + 2
ε2 −

∫
Bε(0)

⟨My, y⟩ dy. (3.3)

For symmetric square matrices, A > 0 means positive definite and A ≥ 0 means
positive semidefinite. We will denote by λi(A) the eigenvalues of A; in particular
λmin(A) and λmax(A) are the smallest and largest eigenvalues, respectively. We
have the following linear algebra facts.

Lemma 3.5. Let M be symmetric and M ≥ 0. Then,

inf
det A=1

trace(AtMA) = n(det(M))1/n.

On the other hand, if M has negative eigenvalues, then the infimum is −∞.

For a proof of Lemma 3.5 we refer to [4].

Lemma 3.6. Let M > 0. Then, for every

θ > θ0 :=
(

(det M)1/n

λmin(M)

)1/2

,

we have
inf

det A=1
trace

(
AtMA

)
= inf

det A=1
A≤θI

trace(AtMA).

Proof. In general, the right-hand side is larger than the left-hand side since we are
taking infimum over a smaller set. The infimum is realized for

A∗ = (det M) 1
2n M−1/2.

Then the result follows since A∗ ≤ θ0I. □

Lemma 3.7. For M > 0 we have

(det(M ± ηI))1/n = (det M)1/n + O(η) as η → 0. (3.4)

For M ≥ 0 we have

(det(M + ηI))1/n = (det M)1/n + O(η) as η → 0. (3.5)

Proof. To see this, first notice that

det (M ± ηI) = det M +
n∑

k=1
(±η)kσn−k(M),

where the coefficients σn−k(M) in the expansion are given by the elementary sym-
metric polynomials on the eigenvalues of M , which are positive. Therefore,

(det M − Cη)1/n ≤ (det (M ± ηI))1/n ≤ (det M + Cη)1/n
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for some C > 0. Then, the Mean Value Theorem applied to g(t) = t1/n, with
a = det M and b = det M + Cη, gives that there exists ξ ∈ (a, b) such that

(det M + Cη)1/n = g(b) = g(a) + g′(ξ)(b − a) ≤ (det M)1/n + Cη.

Similarly, we obtain that

(det M − Cη)1/n ≥ (det M)1/n − Cη

and (3.4) follows.
It remains to prove (3.5) in the case det M = 0. In this case the upper bound

obtained is still at our disposal. Therefore we conclude the proof by observing that
(det (M + ηI))1/n ≥ 0. □

Lemma 3.8. For M > 0 we have

inf
det A=1
A≤ϕ(ε)I

trace(At(M ± ηI)A) → n (det M)1/n as ε, η → 0.

For M ≥ 0 we have

inf
det A=1
A≤ϕ(ε)I

trace(At(M + ηI)A) → n (det M)1/n as ε, η → 0.

Proof. For M > 0, we consider η < min{1, λmin(M)/2}, and we have(
(det M ± ηI)1/n

λmin(M ± ηI)

)1/2

≤
(

(det M + I)1/n

λmin(M)/2

)1/2

= θ0.

Then, for ε0 such that for every ε < ε0 we have ϕ(ε) > θ0, combining Lemma 3.6
and Lemma 3.5 we get

inf
det A=1
A≤ϕ(ε)I

trace(At(M ± ηI)A) = n (det M ± ηI)1/n
.

The result follows from equation (3.4).
It remains to prove the case det(M) = 0. Given δ > 0, by Lemma 3.5 there

exists A0 with det(A0) = 1 such that

trace(At
0MA0) < δ.

Then, for ε such that A0 ≤ ϕ(ε)I we have

inf
det A=1
A≤ϕ(ε)I

trace(At(M ± ηI)A) ≤ trace(At
0(M + ηI)A0)

and by (3.5) for η small enough we get

trace(At
0(M + ηI)A0) < δ

and the result follows. □
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4. Parabolic Monge–Ampère

4.1. First version. Let us start with the equation
∂u

∂t
(x, t) = (det (D2u(x, t)))1/n + f(x, t). (4.1)

Our goal is to show that u is a viscosity solution of the Monge–Ampère equation
(4.1) if and only if

u(x, t) = inf
det(A)=1
A≤ϕ(ε)I

{
−
∫ t

t− n
n+2 ε2

−
∫

Bε(0)
u(x + Ay, s) dy ds

}

+ n

2(n + 2) f(x, t) ε2 + o(ε2)

as ε → 0 for x ∈ Ω in the viscosity sense.
We first prove the asymptotic mean value property under the restriction that

solutions of the Monge–Ampère equation are classical (C2,1 solutions) and then
we deal with the general case (viscosity solutions). We start by proving the result
for smooth strictly convex functions (with strictly positive definite Hessian). We
proceed with the proof of Theorem 2.1.

Proof of Theorem 2.1. As we have mentioned, first we prove the result for classical
solutions. Assume that u is C2,1, convex in space and a solution to

∂u

∂t
(x, t) = (det (D2u(x, t)))1/n + f(x, t).

We use the Taylor expansion of u(y, s), given by

u(y, s) = u(x, t) + ∂u

∂t
(x, t)(s − t) + ⟨∇u(x, t), (y − x)⟩

+ 1
2 ⟨D2u(x, t)(y − x), (y − x)⟩ + o(|t − s| + |x − y|2),

to define the parabolic paraboloid

P (y, s) = u(x, t)+ ∂u

∂t
(x, t)(s−t)+⟨∇u(x, t), (y −x)⟩+ 1

2 ⟨D2u(x, t)(y −x), (y −x)⟩.

Since u ∈ C2,1, we have

u(y, s) − P (y, s) = o(|y − x|2 + |t − s|) as y → x, s → t,

which means that for every η > 0, there exists δ > 0 such that

P (y, s) − η

(
|y − x|2

2 + |t − s|
)

≤ u(y, s) ≤ P (y, s) + η

(
|y − x|2

2 + |t − s|
)

for every (y, s) ∈ Bδ(x) × (t − δ, t + δ). For convenience, we denote

P ±
η (y, s) = P (y, s) ± η

(
|y − x|2

2 + |t − s|
)

.
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Let us assume first that D2u(x, t) > 0. We have

−
∫ t

t− n
n+2 ε2

−
∫

Bε(0)
P ±

η (x + Ay, s) dy ds − u(x, t)

= −
∫ t

t− n
n+2 ε2

−
∫

Bε(0)

(
∂u

∂t
(x, t)(s − t) ± η|t − s|

)
dy ds

+ −
∫ t

t− n
n+2 ε2

−
∫

Bε(0)

(
⟨∇u(x, t), Ay⟩ + 1

2 ⟨D2u(x, t)Ay, Ay⟩ ± η

2 |Ay|2
)

dy ds

=
(

−∂u

∂t
(x, t) ± η

)
−
∫ t

t− n
n+2 ε2

(s − t) ds + 1
2

−
∫

Bε(0)

〈
At(D2u(x, t) ± ηI)Ay, y

〉
dy

= n

2(n + 2) ε2
(

−∂u

∂t
(x, t) ± η

)
+ 1

2
−
∫

Bε(0)

〈
At(D2u(x, t) ± ηI)Ay, y

〉
dy.

By Lemma 3.4 we get

−
∫

Bε(0)

1
2 ⟨At

(
D2u(x, t) ± ηI

)
Ay, y⟩ dy = ε2

2(n + 2) trace
(
At
(
D2u(x, t) ± ηI

)
A
)
,

and hence we obtain

−
∫ t

t− n
n+2 ε2

−
∫

Bε(0)
P ±

η (x + Ay, s) dy ds − u(x, t)

= n

2(n + 2) ε2
(

−∂u

∂t
(x, t) ± η

)
+ ε2

2(n + 2) trace(At
(
D2u(x, t) ± ηI

)
A).

Therefore,

inf
det(A)=1
A≤ϕ(ε)I

−
∫ t

t− n
n+2 ε2

−
∫

Bε(0)
P ±

η (x + Ay, s) dy ds − u(x, t)

= n

2(n + 2) ε2
(

−∂u

∂t
(x, t) ± η

)
+ ε2

2(n + 2) inf
det(A)=1
A≤ϕ(ε)I

trace
(
At
(
D2u(x, t) ± ηI

)
A
)

.

Observe that A ≤ ϕ(ε)I and |y| ≤ ε imply x + Ay ∈ Bδ(x) for ε < ε0 (since
εϕ(ε) → 0 as ε → 0). Therefore, given η > 0 if ε < ε0, we have

P −
η (x + Ay, s) ≤ u(x + Ay, s) ≤ P +

η (x + Ay, s) for every y ∈ Bε(0).
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Then, we get

n ε2

2(n + 2)

{(
−∂u

∂t
(x, t) − η

)
+ 1

n
inf

det(A)=1
A≤ϕ(ε)I

trace
(
At
(
D2u(x, t) − ηI

)
A
)}

≤ inf
det A=1
A≤ϕ(ε)I

−
∫ t

t− n
n+2 ε2

−
∫

Bε(0)
(u(x + Ay, s) − u(x, t)) dy ds

≤ n ε2

2(n + 2)

{(
−∂u

∂t
(x, t) + η

)
+ 1

n
inf

det(A)=1
A≤ϕ(ε)I

trace
(
At
(
D2u(x, t) + ηI

)
A
)}

.

From here, the result follows from Lemma 3.8 since both the upper and lower
bound involve an expression that converges to

−∂u

∂t
(x, t) + (det (D2u(x, t)))1/n = −f(x, t)

as η → 0.
Now, if det(D2u(x, t)) = 0, then we use a minor modification of the above

argument. The upper bound is still at our disposal but we have to obtain a new
lower bound. Here we use the convexity in space of u to get

inf
det(A)=1
A≤ϕ(ε)I

{
−
∫ t

t− n
n+2 ε2

−
∫

Bε(0)
u(x + Ay, s) dy ds

}
− u(x, t)

≥ −
∫ t

t− n
n+2 ε2

u(x, s) ds − u(x, t) ≥ − n

2(n + 2) ε2
(

∂u

∂t
(x, t)

)
+ o(ε2),

and the result follows.
For the viscosity case, it is enough to use convex (in space) smooth functions

as test functions in the definition of a viscosity solution. Let u(x, t) be a viscosity
solution to

∂u

∂t
(x, t) = (det (D2u(x, t)))1/n + f(x, t).

Take ϕ(x, t) a C2,1 function, convex in space, that touches u from above at (x, t),
that is, we have

u(y, s) − ϕ(y, s) ≤ u(x, t) − ϕ(x, t), for every |y − x| ≤ a, t − a ≤ s ≤ t.

The fact that u is a viscosity solution implies that

∂ϕ

∂t
(x, t) − (det(D2ϕ(x, t)))1/n ≤ f(x, t).
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On the other hand, from our previous computations, using that ϕ ∈ C2,1, we obtain

inf
det(A)=1
A≤ϕ(ε)I

−
∫ t

t− n
n+2 ε2

−
∫

Bε(0)
ϕ(x + Ay, s) dy ds − ϕ(x, t)

= − n

2(n + 2) ε2
(

∂ϕ

∂t
(x, t) − (det(D2ϕ(x, t)))1/n

)
+ o(ε2)

≥ − n

2(n + 2) ε2f(x, t) + o(ε2).

An analogous computation shows that a C2,1 convex function ϕ(x, t) that touches
u from below at (x, t) satisfies

inf
det(A)=1
A≤ϕ(ε)I

−
∫ t

t− n
n+2 ε2

−
∫

Bε(0)
ϕ(x + Ay, s) dy ds − ϕ(x, t) ≤ − n

2(n + 2) ε2f(x, t) + o(ε2).

This proves that a viscosity solution to the PDE satisfies the asymptotic mean
value formula in the viscosity sense.

For the converse, let u be a convex function that satisfies the asymptotic mean
value property in the viscosity sense. Take ϕ(x, t) a convex smooth function that
touches u from above at (x, t); then we have

u(y, s) − u(x, t) ≤ ϕ(y, s) − ϕ(x, t), for every |y − x| ≤ a, t − a ≤ s ≤ t.

Since u satisfies the asymptotic mean value property in the viscosity sense, we have

−
∫ t

t− n
n+2 ε2

−
∫

Bε(0)
ϕ(x + Ay, s) dy ds − ϕ(x, t) ≥ − n

2(n + 2) ε2f(x, t) + o(ε2).

Using again our previous computations for a C2,1 function, we obtain

− n

2(n + 2) ε2
(

∂ϕ

∂t
(x, t) − (det(D2ϕ(x, t)))1/n

)
≥ − n

2(n + 2) ε2f(x, t) + o(ε2).

Taking the limit as ε → 0 we obtain(
∂ϕ

∂t
(x, t) − (det(D2ϕ(x, t)))1/n + f(x, t)

)
≥ 0.

This proves that u is a viscosity subsolution to the parabolic Monge–Ampère equa-
tion.

To prove that u is a viscosity supersolution we proceed in a similar way, touching
u from below with a convex smooth function ϕ and using the asymptotic mean value
property with the reverse inequality. □

Remark 4.1. Using (3.2),

trace(M) = n

ε2 −
∫

∂Bε(0)
⟨My, y⟩ dHn−1(y),
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instead of (3.3), we can obtain an asymptotic mean value formula involving means
over surfaces of ellipsoids: u is a viscosity solution of the parabolic Monge–Ampère
equation (4.1) if and only if

u(x, t) = inf
det(A)=1
A≤ϕ(ε)I

{
−
∫ t

t−ε2
−
∫

∂Bε(0)
u(x + Ay, s) dy ds

}
+ 1

2 f(x, t) ε2 + o(ε2)

as ε → 0 for x ∈ Ω and t ∈ (t1, t2), in the viscosity sense.

Remark 4.2. We can also deal with equations with coefficients such as

a(x, t)∂u

∂t
(x, t) = b(x, t)(det(D2u(x, t))1/n + c(x, t)f(x, t)

(see [13]). In this case we obtain an asymptotic mean value property of the form

u(x, t) = inf
det(A)=1
A≤ϕ(ε)I

{
−
∫ t

t−k1(x,t)ε2
−
∫

Bε(0)
u(x + Ay, s) dy ds

}

+ n

2(n + 2) k2(x, t)f(x, t) ε2 + o(ε2)

as ε → 0 for x ∈ Ω and t ∈ (t1, t2) with an appropriate choice of k1(x, t) and
k2(x, t).

4.2. Second version. Now we deal with

−∂u

∂t
(x, t) · det

(
D2u(x, t)

)
= f(x, t) (4.2)

and our goal is to prove Theorem 2.5, that is, to show that viscosity solutions to
(4.2) are characterized by the asymptotic mean value formula

u(x, t) = inf
det(A)×b=1

A≤ϕ(ε)I, b≤ϕ(ε)

{
−
∫ t

t− b2
n+2 ε2

−
∫

Bε(0)
u(x + Ay, s) dy ds

}

− n + 1
2(n + 2) f(x, t)

1
n+1 ε2 + o(ε2)

as ε → 0 for x ∈ Ω in the viscosity sense.

Proof of Theorem 2.5. Let us first prove the result for classical solutions. Assume
that u is C2,1, convex in space, non-increasing in t, and a solution to

−∂u

∂t
(x, t) · det

(
D2u(x, t)

)
= f(x, t).

As in the proof of Theorem 2.1, we define the parabolic paraboloid

P (y, s) = u(x, t)+ ∂u

∂t
(x, t)(s−t)+⟨∇u(x, t), (y −x)⟩+ 1

2 ⟨D2u(x, t)(y −x), (y −x)⟩.

Since u ∈ C2,1, the Taylor expansion of u(y, s) yields

u(y, s) − P (y, s) = o(|y − x|2 + |t − s|) as y → x, s → t,
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which means that for every η > 0, there exists δ > 0 such that

P (y, s) − η

(
|y − x|2

2 + |t − s|
)

≤ u(y, s) ≤ P (y, s) + η

(
|y − x|2

2 + |t − s|
)

(4.3)

for every (y, s) ∈ Bδ(x) × (t − δ, t + δ). For convenience, we denote

P ±
η (y, s) = P (y, s) ± η

(
|y − x|2

2 + |t − s|
)

.

We assume first that D2u(x, t) > 0 and that −∂u

∂t
(x, t) > 0. In this case we

have

−
∫ t

t− b2
n+2 ε2

−
∫

Bε(0)
P ±

η (x + Ay, s) dy ds − u(x, t)

= −
∫ t

t− b2
n+2 ε2

−
∫

Bε(0)

(
∂u

∂t
(x, t)(s − t) ± η|t − s|

)
dy ds

+ −
∫ t

t− b2
n+2 ε2

−
∫

Bε(0)

(
⟨∇u(x, t), Ay⟩ + 1

2 ⟨D2u(x, t)Ay, Ay⟩ ± η

2 |Ay|2
)

dy ds

=
(

−∂u

∂t
(x, t) ± η

)
−
∫ t

t− b2
n+2 ε2

(t − s) ds + 1
2

−
∫

Bε(0)

〈
At(D2u(x, t) ± ηI)Ay, y

〉
dy

= b2

2(n + 2) ε2
(

−∂u

∂t
(x, t) ± η

)
+ 1

2
−
∫

Bε(0)

〈
At(D2u(x, t) ± ηI)Ay, y

〉
dy.

By Lemma 3.4 we have that

−
∫

Bε(0)

〈
At(D2u(x, t) ± ηI)Ay, y

〉
dy = ε2

n + 2 trace
(
At
(
D2u(x, t) ± ηI

)
A
)

and we obtain

inf
det(A)×b=1

A≤ϕ(ε)I, b≤ϕ(ε)

{
−
∫ t

t− b2
n+2 ε2

−
∫

Bε(0)
P ±

η (x + Ay, s) dy ds

}
− u(x, t)

= ε2

2(n + 2)

× inf
det(A)×b=1

A≤ϕ(ε)I, b≤ϕ(ε)

{
b2
(

−∂u

∂t
(x, t) ± η

)
+ trace

(
At
(
D2u(x, t) ± ηI

)
A
)}

.

Observe that A ≤ ϕ(ε)I and |y| ≤ ε imply x + Ay ∈ Bδ(x) for ε < ε0 (since
εϕ(ε) → 0 as ε → 0). Similarly, b ≤ ϕ(ε) implies

(
t − b2

n+2 ε2, t
)

⊂ (t − δ, t + δ) for
ε < ε0. Therefore, (4.3) implies that given η > 0 there is ε0 such that if ε < ε0,
then

P −
η (x + Ay, s) ≤ u(x + Ay, s) ≤ P +

η (x + Ay, s)

Rev. Un. Mat. Argentina, Vol. 64, No. 1 (2022)



154 P. BLANC, F. CHARRO, J. J. MANFREDI, AND J. D. ROSSI

for every (y, s) ∈ Bε(0) ×
(

t − b2

n+2 ε2, t
)

. Consequently, we obtain

ε2

2(n + 2) inf
det(A)×b=1

A≤ϕ(ε)I, b≤ϕ(ε)

{
b2
(

−∂u

∂t
(x, t) − η

)
+ trace

(
At
(
D2u(x, t) − ηI

)
A
)}

≤ inf
det(A)×b=1

A≤ϕ(ε)I, b≤ϕ(ε)

−
∫ t

t− b2
n+2 ε2

−
∫

Bε(0)
(u(x + Ay, s) − u(x, t)) dy ds

≤ ε2

2(n + 2)

× inf
det(A)×b=1

A≤ϕ(ε)I, b≤ϕ(ε)

{
b2
(

−∂u

∂t
(x, t) + η

)
+ trace

(
At
(
D2u(x, t) + ηI

)
A
)}

.

Now, we notice that

b2
(

−∂u

∂t
(x, t) ± η

)
+ trace

(
At
(
D2u(x, t) ± ηI

)
A
)

= trace
(

Ct
b,A

[
−∂u

∂t
(x, t) ± η 0

0 D2u(x, t) ± ηI

]
Cb,A

)
,

where the matrix Cb,A ∈ Sn+1 is given by

Cb,A =
[

b 0
0 A

]
.

Then, from Lemma 3.8 (notice that we assumed that D2u(x, t) is strictly positive
and −∂u

∂t
(x, t) is also strictly positive; in this case we have f(x, t) ̸= 0) we get that

lim
η→0

 inf
det(A)×b=1

A≤ϕ(ε)I, b≤ϕ(ε)

trace
(

Ct
b,A

[
−∂u

∂t
(x, t) ± η 0

0 D2u(x, t) ± ηI

]
Cb,A

)
= lim

η→0

{
inf

det(A)×b=1
trace

(
Ct

b,A

[
−∂u

∂t
(x, t) ± η 0

0 D2u(x, t) ± ηI

]
Cb,A

)}

= (n + 1)
(

−∂u

∂t
(x, t) · det

(
D2u(x, t)

)) 1
n+1

for ε small enough, and the result follows.
Now, if

−∂u

∂t
(x, t) · det(D2u(x, t)) = 0
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(i.e., f(x, t) = 0), the parabolic convexity of u and a minor modification of the
previous arguments yield

inf
det(A)×b=1

A≤ϕ(ε)I, b≤ϕ(ε)

{
−
∫ t

t− b2
n+2 ε2

−
∫

Bε(0)
u(x + Ay, bs) dy ds

}
− u(x, t) ≥ o(ε2).

Since the upper bound is still at our disposal, the result follows.
Finally, for the viscosity version of our asymptotic mean value formulas, we

proceed as in the proof of Theorem 2.1, by touching u from above or below with a
parabolically convex, smooth test function ϕ and using our previous computations
that showed that a smooth parabolically convex function satisfies an inequality like

−∂ϕ

∂t
(x, t) · det(D2ϕ(x, t)) ≥ f(x, t)

if and only if

ϕ(x, t) ≤ inf
det(A)×b=1

A≤ϕ(ε)I, b≤ϕ(ε)

{
−
∫ t

t− b2
n+2 ε2

−
∫

Bε(0)
ϕ(x + Ay, s) dy ds

}

− n + 1
2(n + 2) (f(x, t))

1
n+1 ε2 + o(ε2),

proving our characterization of viscosity solutions to (4.2). □

Remark 4.3. With the same ideas, from the formula

trace(M) = n

ε2 −
∫

∂Bε(0)
⟨My, y⟩ dHn−1(y),

we can obtain an asymptotic mean value formula involving means over surfaces of
ellipsoids: u is a viscosity solution to the parabolic Monge–Ampère equation

−∂u

∂t
(x, t) · det

(
D2u(x, t)

)
= f(x, t)

if and only if

u(x, t) = inf
det(A)×b=1

A≤ϕ(ε)I, b≤ϕ(ε)

{
−
∫ t

t− b2
n ε2

−
∫

∂Bε(0)
u(x + Ay, s) dy ds

}

+ n + 1
2n

(f(x, t))
1

n+1 ε2 + o(ε2)

as ε → 0 in the viscosity sense.

5. Infimum and inf-sup operators

5.1. Infimum operators. In this section we deal with equations of the form

F
(

x, t,
∂u

∂t
, D2u

)
= inf

(A,b)∈Ax,t

{
trace(AtD2u(x, t)A) − b

∂u

∂t
(x, t)

}
= 0. (5.1)

Here Ax,t ⊂ Sn
+(R) × R+ are bounded subsets for each x ∈ R and t ∈ [t1, t2].

Rev. Un. Mat. Argentina, Vol. 64, No. 1 (2022)



156 P. BLANC, F. CHARRO, J. J. MANFREDI, AND J. D. ROSSI

Observe that we are assuming that the sets Ax,t are bounded. This has to be
contrasted to the previous case, the Monge–Ampère case, where the set of relevant
matrices Ax = {A ∈ Sn

+(R) : det(A) = 1} is unbounded.
The fact that we are taking a bounded set of coefficients in (5.1) is equivalent

to assuming that F is well defined and finite.

Lemma 5.1. The operator

F (x, t, z, M) = inf
(A,b)∈Ax,t

{
trace(AtMA) − bz

}
is finite for every M ∈ Sn(R) and every z ∈ R if and only if Ax,t is bounded.

Proof. Suppose that Ax,t is not bounded. First, assume that there exists a sequence
of matrices Ak ∈ Ax such that their largest eigenvalue λk diverges. Let vk be the
corresponding unitary eigenvectors. Since vk are unitary vectors, we can extract
a subsequence (still denoted by vk) that has a limit, that is, vk → v. Let M be
the symmetric matrix with eigenvector v of eigenvalue −1 and eigenvalue 0 with
multiplicity n − 1. Then

trace(At
kMAk) ≤ −λ2

k∥ projv(vk)∥ + λ2
k∥ projv⊥(vk)∥,

which is a contradiction since the right-hand side goes to −∞.
Next, consider the case where the set Ax,t contains an unbounded set of b. If

bk → +∞, we just take z = −1 and if bk → −∞ then take z = 1, to obtain the
contradiction. □

Now we are ready to prove Theorem 2.7.

Proof of Theorem 2.7. As in the previous proofs, let us use the Taylor expansion
of u(y, s),

u(y, s) = u(x, t) + ∂u

∂t
(x, t)(s − t) + ⟨∇u(x, t), (y − x)⟩

+ 1
2 ⟨D2u(x, t)(y − x), (y − x)⟩ + o(|t − s| + |x − y|2).

Notice that now, since the sets of involved coefficients (matrices) are bounded,
the error terms in the Taylor expansion are uniform; therefore, we can avoid the
use of paraboloids here.

As before, we start with the proof of the case in which the solution u is a classical
C2,1 solution. We have

−
∫ t

t− b
n+2 ε2

−
∫

Bε(0)
u(x + Ay, s) dy ds − u(x, t)

= −
∫ t

t− b
n+2 ε2

−
∫

Bε(0)

∂u

∂t
(x, t)(s − t) dy ds

+ −
∫ t

t− b
n+2 ε2

−
∫

Bε(0)
⟨∇u(x, t), Ay⟩ + 1

2 ⟨D2u(x, t)Ay, Ay⟩ dy ds + o(ε2)
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= ∂u

∂t
(x, t) −

∫ t

t− b
n+2 ε2

(s − t) ds + −
∫

Bε(0)

1
2 ⟨At(D2u(x, t))Ay, y⟩ dy + o(ε2)

= − b

2(n + 2)ε2 ∂u

∂t
(x, t) + −

∫
Bε(0)

1
2 ⟨At(D2u(x, t))Ay, y⟩ dy + o(ε2).

Now, we use one more time Lemma 3.4 to obtain

−
∫

Bε(0)

1
2 ⟨At(D2u(x, t))Ay, y⟩ dy = ε2

n + 2 trace(At(D2u(x, t))A).

Therefore, we have

−
∫ t

t− b
n+2 ε2

−
∫

Bε(0)
u(x + Ay, s) dy ds − u(x, t)

= ε2

2(n + 2)

(
−b

∂u

∂t
(x, t) + trace(At(D2u(x, t))A)

)
+ o(ε2).

Hence, we conclude that

inf
(A,b)∈Ax,t

−
∫ t

t− b
n+2 ε2

−
∫

Bε(0)
u(x + Ay, s) dy ds − u(x, t)

= ε2

2(n + 2) inf
(A,b)∈Ax,t

(
−b

∂u

∂t
(x, t) + trace(At(D2u(x, t))A)

)
+ o(ε2)

= ε2

2(n + 2)F
(

x, t,
∂u

∂t
, D2u

)
+ o(ε2)

= o(ε2),
proving the asymptotic mean value formula in a pointwise sense for smooth solu-
tions.

As a consequence of the mean value property for smooth functions we can obtain
the characterization for viscosity solutions in Theorem 2.7. The details are left to
the reader. □

Remark 5.2. The previous proof shows that in fact viscosity supersolutions (sub-
solutions) to

inf
(A,b)∈Ax,t

{
trace(AtD2u(x, t)A) − b

∂u

∂t
(x, t)

}
= 0

are characterized by

inf
(A,b)∈Ax,t

−
∫ t

t− b
n+2 ε2

−
∫

Bε(0)
u(x + Ay, s) dy ds − u(x, t) ≤ o(ε2) (≥ o(ε2))

as ε → 0 in the viscosity sense.

5.1.1. Examples. Let us mention some examples of operators and the corresponding
set of matrices A such that the previous results apply. To this end, we denote by
λ1(M) ≤ λ2(M) ≤ · · · ≤ λn(M) the eigenvalues of the matrix M , or simply by λi

when the matrix involved is clear from the context.
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Parabolic equations related to Pucci operators. An important example under these
assumptions are the parabolic Pucci operators. For given 0 < θ < Θ, consider the
second order, uniformly parabolic operators,

M−
θ,Θ

(∂u

∂t
, D2u

)
= ∂u

∂t
−

(
θ

∑
λi(D2u)>0

λi(D2u) + Θ
∑

λi(D2u)<0

λi(D2u)
)

and

M+
θ,Θ

(∂u

∂t
, D2u

)
= ∂u

∂t
−

(
Θ

∑
λi(D2u)>0

λi(D2u) + θ
∑

λi(D2u)<0

λi(D2u)
)

.

In this case, we have as the involved set of matrices

A =
{

A ∈ Sn
+(R) :

√
θ ≤ λi(A) ≤

√
Θ
}

,

which is bounded uniformly in x. In fact, we can write(
θ
∑

λi(M)>0

λi(M) + Θ
∑

λi(M)<0

λi(M)
)

= inf
A∈A

trace(AtMA)

and(
θ
∑

λi(M)>0

λi(M) + Θ
∑

λi(M)<0

λi(M)
)

= inf
A∈A

trace(AtMA) = sup
A∈A

trace(AtMA).

For these operators we have: u is a viscosity solution to

∂u

∂t
(x, t) −

(
θ

∑
λi(D2u(x,t))>0

λi(D2u(x, t)) + Θ
∑

λi(D2u(x,t))<0

λi(D2u(x, t))
)

= 0

if and only if

u(x, t) = inf√
θ≤λi(A)≤

√
Θ

−
∫ t

t− ε2
n+2

−
∫

Bε(0)
u(x + Ay, s) dy ds + o(ε2)

as ε → 0 in the viscosity sense.

The evolution problem associated with the convex envelope, λ1(D2u). Notice, how-
ever, that the operators that satisfy (2.5) do not need to be uniformly elliptic. For
example, the operator

∂u

∂t
− λ1(D2u),

studied in [3] in connection with the convex envelope of a function, corresponds to
the set of matrices

A =
{

A ∈ Sn
+(R) : λ1 = · · · = λn−1 = 0 and λn = 1

}
.

In this case the asymptotic mean value formula reads

u(x, t) = inf
|v|=1

−
∫ t

t− ε2
n+2

−
∫

Bε(0)
u
(
x + ⟨y, v⟩v, s

)
dy ds + o(ε2).
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5.2. Sup-inf operators. We also consider a special type of Isaacs operators where
for every x the supremum (or the infimum) is taken over a subset Ax,t of the parts
of Sn

+(R) × R+. More precisely, let Ax,t ⊂ P(Sn
+(R) × R+) be a subset for each

x ∈ Rn and t > 0 such that⋃
Ax,t =

{
(A, b) ∈ Sn

+(R) × R+ : (A, b) ∈ A for some A ∈ Ax,t

}
is bounded.

We consider the differential operator F : Ω × R × R × Sn(R) → R given by

F
(

x, t,
∂u

∂t
, D2u

)
= sup

A∈Ax,t

inf
(A,b)∈A

{
trace(AtD2u(x, t)A) − b

∂u

∂t
(x, t)

}
.

Since ∪Ax,t is bounded, Theorem 2.9 follows as before, and we have the asymp-
totic mean value characterization of viscosity solutions of

F
(

x, t,
∂u

∂t
, D2u

)
= 0

as those continuous functions that satisfy

sup
A∈Ax,t

inf
(A,b)∈A

−
∫ t

t− b
n+2 ε2

−
∫

Bε(0)
u(x + Ay, s) dy ds − u(x, t) = o(ε2)

as ε → 0 in the sense of viscosity. We leave the details to the reader.

5.2.1. Examples. As examples of operators such that the previous results apply we
mention the following.

Evolution problems associated with eigenvalues of the Hessian. This allows us to
prove asymptotic mean value formulas for degenerate parabolic operators such as

∂u

∂t
= λk(D2u)

that where studied in [3]. Here λk(D2u) stands for the k-th smallest eigenvalue of
the Hessian, given by the Courant–Fischer min-max principle

λk

(
D2u(x)

)
= min

dim(V )=n−k+1
min
v∈V
|v|=1

{
⟨D2u(x)v, v⟩

}
.

For example, for the operator λ2(D2u) we have the set of sets of matrices

A =
{

{A ∈ Sn
+(R) : λ1 = · · · = λn−1 = 0, λn = 1 and vn ∈ V }

: V a subspace of dimension n − 1
}

.

In this case the asymptotic mean value formula is given by

u(x, t) = sup
dim(V )=n−k+1

inf
v∈V
|v|=1

−
∫ t

t− ε2
n+2

−
∫

Bε(0)
u
(
x + ⟨y, v⟩v, s

)
dy ds + o(ε2).

For example, for the equation
∂u

∂t
(x, t) − λ2(D2u(x, t)) = 0,
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we can write the following asymptotic mean value formula:

u(x, t) = sup
|w|=1

inf
⟨v,w⟩=0

|v|=1

−
∫ t

t− ε2
n+2

−
∫

Bε(0)
u
(
x + ⟨y, v⟩v, s

)
dy ds + o(ε2).

6. A probabilistic interpretation

The asymptotic mean value formulas that we obtained can be interpreted in
terms of dynamic programming principles for two-player zero-sum games.

First, we describe a closely related random walk. For a small ε > 0 and a fixed
matrix A consider the following random walk in a bounded domain ΩT = Ω×(0, T ).
From (x, t) the next spacial position is given by x + Ay with y ∈ Bε chosen with
uniform distribution in the ball and the new time is t − b

2(n+2) ε2. The process
continues until the spacial position leaves Ω or when the time becomes nonpositive.
We call τ the stopping time given by the number of plays until the position of
the game leaves ΩT and call (xτ , tτ ) the last position of the process. We have
(xτ , tτ ) ̸∈ ΩT ; furthermore, (xτ , tτ ) ∈ Ωc

T := Rn × (−∞, T ) \ ΩT .
We fix a final payoff function g : Ωc

T → R and we define
vε(x, t) = Ex,t[g(xτ , tτ )].

Then, it follows that vε satisfies

vε(x, t) = −
∫

Bε(0)
vε
(

x + Ay, t − b

2(n + 2)ε2
)

dy

for x ∈ Ω, t > 0. That is, the expected final payoff starting at (x, t) is equal to the
average of the expectation over all the possible next positions.

Next we describe the two-player zero-sum game. We are given Ax,t ⊂ P(Sn
+(R)×

(0, +∞)) for each (x, t) ∈ ΩT . The game starts at (x0, t0) ∈ ΩT ; the first player,
Player I, chooses a set of matrices and scalars A ∈ Ax,t (she chooses a casino, in
probabilistic terms) and next the second player, Player II, chooses a matrix and a
scalar (A, b) ∈ A (she chooses a game to play in the casino chosen by Player I).
The next position of the game is given by the previously described random walk,
that is,

x1 = x0 + Ay

with y ∈ Bε being chosen according to the uniform distribution in Bε and

t1 = t0 − b
1

2(n + 2)ε2.

The game continues from x1 accordingly to the same rules. The game finishes at
the first time at which the position (xτ , tτ ) leaves ΩT . At this point, Player I gets
g(xτ , tτ ) and Player II gets −g(xτ , tτ ) (one can think that Player II pays to Player I
the amount given by the final payoff).

When the two players decide what to play at each turn (they choose their strate-
gies), we can compute the expected payoff (the expected earnings for Player I)
playing with strategies SI and SII starting at (x, t) ∈ ΩT as

Ex,t
SI,SII

[g(xτ , tτ )].
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Then, the extreme values for this game are given by
uI(x, t) = inf

SII
sup
SI

Ex,t
SI,SII

[g(xτ , tτ )]

and
uII(x, t) = sup

SI

inf
SII

Ex,t
SI,SII

[g(xτ , tτ )].

We are taking sup and inf over the strategies for Player I and Player II respectively,
since Player I wants to maximize the value of g(xτ , tτ ) while Player II is trying to
minimize it. When these two extreme values coincide, we say that the game has a
value given by

uε(x, t) := uII(x, t) = uI(x, t).
It turns out that uε(x, t) is a solution to the dynamic programming principle asso-
ciated to this game that reads

uε(x, t) = sup
A∈Ax,t

inf
A∈A

−
∫

Bε(0)
uε

(
x + Ay, t − b

1
2(n + 2)ε2

)
dy.

Notice that this formula is just our asymptotic mean value formula (2.7) without
the error term.

When the next time position is also chosen with uniform probability in the
interval

(
t − b 1

n+1 ε2, t
)

we obtain

uε(x, t) = sup
A∈Ax

inf
A∈A

−
∫ t

t− b
n+2 ε2

−
∫

Bε(0)
uε(x + Ay, s) dy ds,

where the reader can recognize the left-hand side of (2.6) without the error term.
For the mean value formulas associated with Monge–Ampère operators we just

consider a game with only one player (a controller) that chooses at each point
the parameters involved in the random walk (the controller chooses the matrix A
involved in the random walk). We add a running payoff (at each point the player
pays n

2(n+2) f(x, t)ε2). In this case the value of the game is given by

uε(x, t) = inf
SI

Ex,t
SI

[
g(xτ , tτ ) +

τ−1∑
j=0

n

2(n + 2)f(xj , tj)ε2
]
,

and the associated dynamic programming principle reads

uε(x, t) = inf
det(A)=1
A≤ϕ(ε)I

{
−
∫ t

t− n
n+2 ε2

−
∫

Bε(0)
uε(x + Ay, s) dy ds

}
+ n

2(n + 2) f(x, t) ε2.

When the controller also chooses the coefficient b involved in the time step and
the running payoff is given by − n+1

2(n+2) (f(x, t))
1

n+1 ε2, we get

uε(x, t) = inf
det(A)×b=1

A≤ϕ(ε)I, b≤ϕ(ε)

{
−
∫ t

t− b2
n+2 ε2

−
∫

Bε(0)
uε(x + Ay, s) dy ds

}

− n + 1
2(n + 2) (f(x, t))

1
n+1 ε2.
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Further details on this program involving games and PDEs can be found in [6, 30,
31], the book [5], and references therein.

References
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