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HOMOGENEOUS WEIGHT ENUMERATORS OVER
INTEGER RESIDUE RINGS AND FAILURES

OF THE MACWILLIAMS IDENTITIES

JAY A. WOOD

In memoriam: Tadashi Nagano, 1930–2017

Abstract. The MacWilliams identities for the homogeneous weight enumer-
ator over Z/mZ do not hold for composite m ≥ 6. For such m, there exist two
linear codes over Z/mZ that have the same homogeneous weight enumerator,
yet whose dual codes have different homogeneous weight enumerators.

1. Introduction

Suppose R is a finite ring with 1, and let w be an integer-valued weight on R.
That is, w is a function w : R → Z, with w(0) = 0 and w(r) > 0 for r ̸= 0. Write
wmax for the largest value of w on R. The weight w extends additively to a weight
on Rn, w : Rn → Z, by w(r1, r2, . . . , rn) =

∑n
i=1 w(ri).

A left linear code over R of length n is a left R-submodule C ⊆ Rn. The weight
w determines the w-weight enumerator of a linear code C:

wweC(X,Y ) =
∑
c∈C

Xnwmax−w(c)Y w(c) =
nwmax∑

j=0
Aj(C)Xnwmax−jY j ,

where Aj(C) is the number of codewords c ∈ C having w(c) = j. (We will write
Aw

j (C) if the weight w is not obvious from context.) To save space later in the
paper, we will sometimes write wweC with X = 1 and Y = t, so that

wweC =
∑
c∈C

tw(c) =
nwmax∑

j=0
Aj(C)tj .

In Rn, define the standard dot product by x · y =
∑n

i=1 xiyi ∈ R for x =
(x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn. Given a linear code C ⊆ Rn, define its (right)
dual code by

C⊥ = {y ∈ Rn : x · y = 0 for all x ∈ C}.
In favorable circumstances one can express the weight enumerator of C⊥ in

terms of the weight enumerator of C, via a linear change of variables. The famous
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‘MacWilliams identities’ do exactly that when w is the Hamming weight and R is
a finite field [10, 11] or a finite Frobenius ring [12].

This paper discusses the situation for the homogeneous weight on Z/mZ. The
main result is the failure of the MacWilliams identities for the homogeneous weight
enumerator (howe) over R = Z/mZ for composite m ≥ 6. More specifically, we
prove the existence of two linear codes C,D over Z/mZ such that howeC = howeD,
yet howeC⊥ ̸= howeD⊥ , because Aj(C⊥) ̸= Aj(D⊥) for some j.

2. Homogeneous weight in general

The homogeneous weight for Z/mZ was first defined by Constantinescu and
Heise [3]; the definition was generalized to all finite rings in [6] and [8].

Let R be a finite ring with 1. We present a formula for the homogeneous weight,
as found in [6]. Let P be the poset of principal left ideals of R under set contain-
ment, and let µ be the Möbius function of P. Denote the group of units of R by
U = U(R). For r, s ∈ R, it is known that Rs = Rs if and only if Ur = Us, [12,
Proposition 5.1]. For a positive real number ζ, the homogeneous weight of average
weight ζ on R is given by

w(x) = ζ

(
1 − µ(0, Rx)

|Ux|

)
. (2.1)

For a fixed ζ > 0, the homogeneous weight w is characterized by three properties:
(1) w(0) = 0;
(2) w is constant on left U-orbits: w(ux) = w(x) for all u ∈ U and x ∈ R;
(3) the average weight on nonzero principal left ideals is the constant ζ:∑

y∈Rx

w(y) = ζ|Rx|,

for any Rx ̸= 0.
In addition, if R is Frobenius, then the average weight on any nonzero left ideal is
ζ (and conversely) [6, Corollary 1.6].

It is typical to set ζ = 1, and the resulting values of w are rational numbers, but
not usually integers. In order to ensure that w has integer values, we will choose ζ
so as to clear the denominators in (2.1).

The homogeneous weight of a finite field Fq, with ζ = (q − 1)/q, equals the
Hamming weight. As the MacWilliams identities hold for the Hamming weight
over finite fields, they also hold for the homogeneous weight enumerator over finite
fields—in particular, over the prime fields Fp

∼= Z/pZ, p prime.
The homogeneous weight of Z/4Z, with ζ = 1, equals the Lee weight, so the

MacWilliams identities hold also in that context [7, Equation (9)].

3. Prime powers

In this section we consider R = Z/paZ, with p prime. If a = 1, then Z/pZ is a
finite field. As we saw at the end of the previous section, the homogeneous weight
on a finite field is just a multiple of the Hamming weight, and the MacWilliams
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identities hold. Similarly, when p = a = 2, the homogeneous weight on Z/4Z is the
Lee weight, and again the MacWilliams identities hold. For all other cases, we will
see that the MacWilliams identities fail for the homogeneous weight: there exist
two linear codes whose homogeneous weight enumerators are equal, yet their dual
codes have different homogeneous weight enumerators.

The ideals of Z/paZ form a chain:

Z/paZ = (1) = (p0) ⊃ (p) ⊃ (p2) ⊃ · · · ⊃ (pa−1) ⊃ (pa) = (0).

The ideals have size
|(pi)| = pa−i. (3.1)

Choosing ζ = p− 1, one obtains the following values for w:

w(a) =


0, a = 0,
p, a ∈ (pa−1) − {0},
p− 1, a ̸∈ (pa−1).

Remark 3.1. Call a vector with exactly one nonzero entry a singleton; a vector
with exactly two nonzero entries is a doubleton. Over R = Z/paZ, note that
any vector v ∈ Rn with w(v) = p − 1 must be a singleton with nonzero entry
r ̸∈ (pa−1). Similarly, any vector v with w(v) = p must be a singleton with nonzero
entry r ∈ (pa−1) − (0), or (only when p = 2) v is a doubleton with both nonzero
entries not in (pa−1). I call the p = 2 exception the ‘curse of small values.’

For a ≥ 2, define two linear codes over Z/paZ via the following two generator
matrices of sizes 1 × (p+ 1) and 2 × (p+ 1), respectively:

G1 =
[
pa−1 pa−2 pa−2 pa−2 · · · pa−2]

,

G2 =
[

0 pa−1 pa−1 pa−1 · · · pa−1

pa−1 0 pa−1 2pa−1 · · · (p− 1)pa−1

]
.

(3.2)

Theorem 3.2. Suppose p is a prime and a ≥ 2 is an integer. If C1 and C2 are the
linear codes over Z/paZ generated by (3.2), then howeC1 = howeC2 = 1+(p2−1)tp2 .
If a = p = 2, then howeC⊥

1
= howeC⊥

2
. In all other cases, howeC⊥

1
̸= howeC⊥

2
. The

smallest weights at which the numbers of dual codewords differ appear in the table
below.

Code p a Ap−1 Ap

C⊥
1 ≥ 3 2 p− 1

C⊥
2 p2 − 1

C⊥
1 ≥ 2 ≥ 3 2pa−1 − p2 − p

C⊥
2 pa + pa−1 − p2 − p

Proof. The codewords of C1 have the form rG1 for r ∈ Z/p2Z, because p2 an-
nihilates G1; |C1| = p2. If r is a unit, then w(rG1) = w(pa−1) + pw(pa−2) =
p + p(p − 1) = p2. There are p2 − p units. If r has the form r = up, u a unit,
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then w(upG1) = pw(pa−1) = p2. There are p − 1 elements of the form up. Thus
howeC1 = 1 + (p2 − 1)tp2 .

The codewords of C2 have the form [r s]G2 with r, s ∈ Z/pZ; |C2| = p2. For
r ̸= 0 (a unit) and s = 0, w([r 0]G2) = pw(pa−1) = p2. There are p − 1 such
codewords. For arbitrary r and s ̸= 0, there are exactly p entries of [r s]G2 that
are unit multiples of pa−1 and one entry equal to zero (in the position indexed by
−rs−1). Then w([r s]G2) = p2, and there are p(p− 1) = p2 − p codewords of this
form. Thus howeC2 = 1 + (p2 − 1)tp2 .

When a = p = 2, [7, Equation (9)] implies that howeC⊥
1

= howeC⊥
2

.
Continue with a = 2, but allow any p ≥ 2. All a ∈ Z/p2Z with w(a) = p− 1 are

units. Any vector v with w(v) = p − 1 is a singleton with nonzero entry being a
unit; see Remark 3.1. There being no zero-columns in the two generator matrices,
we conclude that Ap−1(C⊥

1 ) = Ap−1(C⊥
2 ) = 0. Now consider Ap(C⊥

1 ) and Ap(C⊥
2 ).

If p > 2, any vector of weight p is a singleton with nonzero entry from (p) − (0).
(When p = 2, see Remark 3.3.) Such a singleton will annihilate G1 if and only if its
nonzero entry is in the first position. This implies that Ap(C⊥

1 ) = |(p)−(0)| = p−1.
On the other hand, a singleton with a nonzero entry from (p)−(0) (in any position)
always annihilates C2, so that Ap(C⊥

2 ) = (p− 1)(p+ 1) = p2 − 1.
Now assume a ≥ 3. A vector v with w(v) = p − 1 must be a singleton with

nonzero entry r ∈ R− (pa−1). Such a singleton annihilates G1 when r annihilates
the entry of G1 in its position. This happens when r ∈ (p) − (pa−1) is in the first
position or when r ∈ (p2) − (pa−1) is in any of the last p positions. Using (3.1), we
see that Ap−1(C⊥

1 ) = (pa−1 − p) + p(pa−2 − p), which simplifies as claimed.
Similarly, a singleton v with nonzero entry r ∈ R−(pa−1) will annihilateG2 when

r annihilates the column of G2 in its position. This happens when r ∈ (p) − (pa−1)
is in any of the p + 1 possible positions. Thus Ap−1(C⊥

2 ) = (p + 1)(pa−1 − p), as
claimed. We used a ≥ 3 to ensure that (p) − (pa−1) is nonempty. □

Remark 3.3. Consider the case p = 2, a = 2 more closely. When p = 2, there
are doubletons of weight 2 with exactly two unit entries (the ‘curse of small values’
from Remark 3.1). Doubletons of this form account for an additional 2 elements
of A2(C⊥

1 ). This makes the final count A2(C⊥
1 ) = 3, which equals A2(C⊥

2 ).

Remark 3.4. The results of this section also hold for finite commutative chain
rings.

Example 3.5. For m = 8 = 23, p = 2, a = 3, the generator matrices of (3.2) are

G3 =
[
4 2 2

]
, G4 =

[
0 4 4
4 0 4

]
.

Then howeC3 = howeC4 = 1 + 3t4, while a computation gives

howeC⊥
3

= 1 + 2t+ 31t2 + 60t3 + 31t4 + 2t5 + t6,

howeC⊥
4

= 1 + 6t+ 15t2 + 84t3 + 15t4 + 6t5 + t6.

The counts for A1(C⊥
∗ ) = Ap−1(C⊥

∗ ) are consistent with Theorem 3.2.
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Example 3.6. For m = 8 = 23, p = 2, a = 3, there is an earlier example in
the literature due to the referee of [14, Example 5.6], that also appears in [1,
Example 5.3]. Set

G5 =
[
1 1 4

]
, G6 =

[
2 2 4
0 4 0

]
.

Let C5 and C6 be the linear codes over Z/8Z generated by G5 and G6, respectively.
Then howeC5 = howeC6 = 1 + 2t2 + 5t4, but

howeC⊥
5

= 1 + 2t+ 7t2 + 44t3 + 7t4 + 2t5 + t6,

howeC⊥
6

= 1 + 2t+ 23t2 + 12t3 + 23t4 + 2t5 + t6.

Example 3.7. For m = 9 = 32, p = 3, a = 2, the generator matrices of (3.2) are

G7 =
[
3 1 1 1

]
, G8 =

[
0 3 3 3
3 0 3 6

]
.

Then howeC7 = howeC8 = 1 + 8t9, while a computation gives
howeC⊥

7
= 1 + 2t3 + 18t4 + 18t5 + 132t6 + 72t7

+ 126t8 + 266t9 + 72t10 + 18t11 + 4t12,

howeC⊥
8

= 1 + 8t3 + 240t6 + 464t9 + 16t12.

The counts for A3(C⊥
∗ ) = Ap(C⊥

∗ ) are consistent with Theorem 3.2.

Example 3.8. For m = 27 = 33, p = 3, a = 3, the generator matrices of (3.2) are

G9 =
[
9 3 3 3

]
, G10 =

[
0 9 9 9
9 0 9 18

]
.

Then howeC9 = howeC10 = 1 + 8t9, while a computation gives
howeC⊥

9
= 1 + 6t2 + 8t3 + 378t4 + 36t5 + 6234t6 + 1512t7

+ 36846t8 + 12452t9 + 1512t10 + 48t11 + 16t12,

howeC⊥
10

= 1 + 24t2 + 8t3 + 216t4 + 144t5 + 6720t6 + 864t7

+ 36576t8 + 13424t9 + 864t10 + 192t11 + 16t12.

The counts for A2(C⊥
∗ ) = Ap−1(C⊥

∗ ) are consistent with Theorem 3.2.

4. Homogeneous weight on Z/mZ

As preparation for the situations where m is not a prime power, we look at the
homogeneous weight on Z/mZ in more detail.

Using formula (2.1), one can develop an explicit formula for w on R = Z/mZ.
If m is not clear from context, we write wm for the homogeneous weight on Z/mZ.
Denote the prime factorization of m by m = pa1

1 · · · pak

k , where p1 < p2 < · · · < pk

are distinct primes and the exponents ai are positive integers. The ideals of R
are generated by divisors of m. Every element of R has the form x = upb1

1 · · · pbk

k

for some unit u ∈ U and integers bi satisfying 0 ≤ bi ≤ ai; the bi are uniquely
determined by x. The socle of R, denoted by soc(R), is defined to be the ideal
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generated by the minimal ideals of R; for R = Z/mZ, soc(R) is the ideal generated
by pa1−1

1 · · · pak−1
k = m/(p1 · · · pk). Every element of the socle is a unit multiple of

some m/f , where f is a square-free polynomial expression in the pi: f = pϵ1
1 · · · pϵk

k ,
where each ϵi equals 0 or 1. For any such f , define δf = {i : ϵi = 1}, so that
f =

∏
i∈δf

pi. (The empty product is equal to 1.) Write δ̄f for the set complement
δ̄f = {1, 2, . . . , k} − δf .

The next result appeared in [8, Proposition 7]; also see [4, Section 3]. The
number ζ =

∏k
i=1(pi − 1) may be written ζm when m is not clear from context.

Proposition 4.1. Let R = Z/mZ, with m = pa1
1 · · · pak

k . Then the homogeneous
weight w with ζ =

∏k
i=1(pi − 1) has the form

w(x) =
{
ζ − (−1)|δf | ∏

j∈δ̄f
(pj − 1), x = u(m/f) ∈ soc(R),

ζ, x ̸∈ soc(R).
(4.1)

In particular, the values of w are integers.

Remark 4.2. When a1 = a2 = · · · = ak = 1, soc(R) = R, and there are no
elements in R with w = ζ. If some ai > 1, then there are elements x ∈ R with
w(x) = ζ. For example, w(pi) = ζ if ai > 1.

The group Um of units acts on Z/mZ by multiplication. Denote the orbit of
x ∈ Z/mZ under this action by orb(x). Another way to say that x = u(m/f) is
that x ∈ orb(m/f).

If we let A = pa1−1
1 · · · pak−1

k = m/(p1p2 · · · pk), which is the generator of the
socle, then any x = u(m/f) ∈ soc(R) has the form x = uA

∏
j∈δ̄f

pj .

Proposition 4.3. Let R = Z/mZ, with m = pa1
1 · · · pak

k , and let w be the homo-
geneous weight with ζ =

∏k
i=1(pi − 1). Assume k ≥ 2. For every 1 ≤ i < j ≤ k,

w(m/(pipj)) < ζ. The smallest nonzero value of w occurs at unit multiples of
x0 = m/(p1p2). Moreover, 2w(x0) ≥ ζ, with equality occurring if and only if
p1 = 2 and p2 = 3.

Proof. For elements x = u(m/f) ∈ soc(R), we see from (4.1) that w(x) < ζ when
|δf | is even. Similarly, w(x) is as small as possible when (−1)|δf | ∏

j∈δ̄f
(pj − 1) is

positive and as large as possible. This forces |δf | to be even, the product
∏

j∈δ̄f
(pj −

1) to have as many terms as possible, and for those terms to be as large as possible.
If δf is empty, then w(x) = 0. Thus the smallest nonzero value of w occurs when
|δf | = 2 and δf = {1, 2} (since the primes are arranged in ascending order).

To address the inequality 2w(x0) ≥ ζ, note that 2w(x0) − ζ simplifies to

2w(x0) − ζ =

 k∏
j=3

(pj − 1)

 ((p1 − 1)(p2 − 1) − 2) .

Since p1 ≥ 2 and p2 ≥ 3, the result follows. □

Remark 4.4. This remark extends Remark 3.1. Over R = Z/mZ, m not prime,
any doubleton v has w(v) ≥ 2w(x0) ≥ ζ. Thus, any vector v ∈ Rn with w(v) < ζ
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must be a singleton. Similarly, any vector v with w(v) = ζ must be a singleton or
(only when 6 | m) a doubleton with both nonzero entries being unit multiples of
x0. This is another example of the ‘curse of small values.’

Given positive integers m and m′, we next compare the homogeneous weights
of Z/mZ and Z/mm′Z. Denote by ∆ the set of primes that divide m′ but do not
divide m. Define νm′ : Z/mZ → Z/mm′Z by νm′(x) = m′x for x ∈ Z/mZ.

Lemma 4.5. The map νm′ is a well-defined injective group homomorphism, and

wmm′(νm′(x)) = wm(x)
∏
p∈∆

(p− 1) (4.2)

for all x ∈ Z/mZ. In particular, if ∆ is empty, then wmm′(νm′(x)) = wm(x) for
all x ∈ Z/mZ. If m and m′ are relatively prime, then wmm′(νm′(x)) = ζm′wm(x)
for all x ∈ Z/mZ.

Proof. The homomorphism claims are exercises. Factor m and m′ into primes:

m = pa1
1 · · · pak

k , m′ = pb1
1 · · · pbℓ

ℓ ,

where ℓ ≥ k, ai ≥ 1, bi ≥ 0 for 1 ≤ i ≤ k, and bj ≥ 1 for k + 1 ≤ j ≤ ℓ. The set ∆
equals {pk+1, . . . , pℓ}, and

mm′ = pa1+b1
1 · · · pak+bk

k pbk

k+1 · · · pbℓ

ℓ .

Refer to (4.1). Then ζm =
∏k

i=1(pi − 1), and ζmm′ =
∏ℓ

i=1(pi − 1). The
socle of Z/mZ is generated by pa1−1

1 · · · pak−1
k , while the socle of Z/mm′Z is gen-

erated by pa1+b1−1
1 · · · pak+bk−1

k p
bk+1−1
k+1 · · · pbℓ−1

ℓ . If x ∈ soc(Z/mZ), then m′x ∈
soc(Z/mm′Z). Moreover, if x = u(m/f), then m′x = u(mm′/f). Viewed over
Z/mm′Z, δ̄f contains {k + 1, . . . , ℓ}. Then the expression for wmm′(νm′(x)) in
(4.1) is

∏
p∈∆(p− 1) times the expression for wm(x).

If x ̸∈ soc(Z/mZ), then m′x ̸∈ soc(Z/mm′Z). Then wmm′(νm′(x)) = ζmm′ =
ζm

∏
p∈∆(p− 1) = wm(x)

∏
p∈∆(p− 1), as desired. □

Suppose a linear code C over Z/mZ has a generator matrix G. The next result
describes producing a linear code C ′ over Z/mm′Z of the same length and with
essentially the same weight enumerator.

Proposition 4.6. Let C be a linear code over Z/mZ with a generator matrix G.
Define G′ to be the matrix over Z/mm′Z obtained by applying νm′ to every entry
of G, and define C ′ to be the linear code over Z/mm′Z generated by G′. Then
|C ′| = |C|, and all weights multiply by N =

∏
p∈∆(p− 1), so that

Aw(C ′) =
{

0, N ∤ w,
Aw/N (C), N | w.

Proof. Any element of mZ/mm′Z annihilates every entry of G′. Thus the coeffi-
cients used to form codewords in C ′ reduce to (Z/mm′Z)/(mZ/mm′Z) ∼= Z/mZ.
From this, |C ′| = |C| follows. The weight formulas follow from (4.2). □
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5. Two prime powers

In this section, we examine the cases where m = paqb with primes p < q. We
will begin with m = pq and build up from there.

Let m = pq for distinct primes p < q. Choosing ζ = (p − 1)(q − 1), the
homogeneous weight w on Z/mZ is constant on the four orbits of Um, as in the
table that follows. We also include the sizes of the orbits.

orbit orb(0) orb(1) orb(p) orb(q)
w 0 pq − p− q pq − q pq − p

size 1 (p− 1)(q − 1) q − 1 p− 1
(5.1)

Remark 5.1. One of the first difficulties we face is that, when p > 2, we cannot
find failures of the MacWilliams identities for the homogeneous weight enumerator
by using generator matrices with only one row. Let G be such a generator matrix,
size 1×n, with at least one entry being a unit. Let C be the linear code over Z/mZ
generated by G. Because w is constant on orbits of Um, we see that

howeC = 1 + |orb(1)|tw(G) + |orb(p)|tw(pG) + |orb(q)|tw(qG)

= 1 + (p− 1)(q − 1)tw(G) + (q − 1)tw(pG) + (p− 1)tw(qG).

When p > 2, the four orbits all have different sizes. The weight enumerator then
determines the weights w(xG) as a function of x. By the extension theorem for w [6,
Theorem 2.5], this determines the matrix G, up to monomial equivalence. Equiva-
lent codes have equivalent dual codes with equal homogeneous weight enumerators.
Remark 5.2. When p = 2, the orbits orb(1) and orb(p) have the same size. This
allows for examples of linear codes, such as those with m = 6 in [1, Example 5.2],
that have the same homogeneous weight enumerator because they interchange the
weights supported on those two orbits. There are similar examples for all m = 2aqb.

Indeed, let G11 and G12 be 1 × q matrices over Z/2aqbZ, where G11 has all q of
its entries equal to qb−1, and G12 has q− 2 entries equal to qb−1 and the remaining
2 entries equal to qb. If C11 and C12 are the linear codes generated by G11 and G12
over Z/2aqbZ, then howeC11 = howeC12 = 1 + (q− 1)tq(q−2) + 2q(2a−1 − 1)tq(q−1) +
(q − 1)tq2 + t2q(q−1). However, howeC⊥

11
̸= howeC⊥

12
. The following table shows the

smallest weights at which the numbers of dual codewords differ.

Code q b Aq−1 Aq

C⊥
11 3 1 6

C⊥
12 4

C⊥
11 3 ≥ 2 3b + 3

C⊥
12 7 · 3b−1 + 3

C⊥
11 ≥ 5 1 0 0

C⊥
12 0 2q − 2

C⊥
11 ≥ 5 ≥ 2 qb − q2

C⊥
12 3qb − 2qb−1 − q2
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These examples are not needed for our main result, so we omit the details.

For later use, we make explicit a ring isomorphism Z/pZ × Z/qZ → Z/pqZ, for
primes p < q. (This is a simple version of the Chinese remainder theorem.)

Let p < q be two primes. Because they are relatively prime, there exist integers
s, t so that sp+ tq = 1. Set E1 = tq and E2 = sp. Define two maps

ϕ : Z/pZ × Z/qZ → Z/pqZ, ϕ(x, y) = xE1 + yE2 mod pq,
ψ : Z/pqZ → Z/pZ × Z/qZ, ψ(z) = (z mod p, z mod q).

(5.2)

Proposition 5.3. Assume p < q are primes. Viewed as elements of Z/pqZ, E1 and
E2 are orthogonal idempotents, i.e., E2

1 = E1, E2
2 = E2, E1E2 = 0, and E1 +E2 =

1. Moreover, pE1 = 0, qE2 = 0, E1 ∈ orb(q), E2 ∈ orb(p), w(E1) = w(q), and
w(E2) = w(p). The maps ϕ, ψ of (5.2) are ring isomorphisms, with ψ = ϕ−1.

Proof. For example, we verify that E2
1 = E1, using sp+ tq = 1:

E2
1 − E1 = (1 − sp)2 − (1 − sp) = −sp(1 − sp) = −sptq = 0.

The other claims are similar or are routine verifications. □

Continue to assume that R = Z/mZ, with m = pq for primes p < q. The
group of units Um acts by scalar multiplication on the R-module M = R⊕RE2 =
R ⊕ pR. Viewed as column matrices, representatives of the Um-orbits fall into
the four groupings listed below. The groupings are distinguished by the greatest
common divisor of the entries of the vectors: 0, 1, E1, and E2, respectively.[

0
0

]
;

[
E1
E2

]
,

[
1
0

]
,

[
1
E2

]
,

[
1

2E2

]
, . . . ,

[
1

(q − 1)E2

]
; (5.3)[

E1
0

]
;

[
0
E2

]
,

[
E2
0

]
,

[
E2
E2

]
,

[
E2
2E2

]
, . . . ,

[
E2

(q − 1)E2

]
. (5.4)

The orbit of the zero vector has size 1. Call the next q+1 vectors in (5.3) grouping I ;
the orbits generated by each vector in grouping I have size (p − 1)(q − 1) = |Um|.
The first vector in (5.4), grouping II, has an orbit of size p− 1, while the remaining
q + 1 vectors in (5.4), grouping III, each generate orbits of size q − 1. This is
summarized in the following table.

grouping 0 I II III
number 1 q + 1 1 q + 1

size of orbits 1 (p− 1)(q − 1) p− 1 q − 1
(5.5)

Observe the patterns obtained when grouping I is multiplied by one of the idem-
potents: by E1, yielding grouping II; by E2, yielding grouping III, in order. Note
that E2 annihilates grouping II and E1 annihilates grouping III.

We will construct linear codes over Z/mZ using generator matrices with columns
coming from the nonzero vectors in (5.3) and (5.4). A generator matrix G will be
specified by a function η, a multiplicity function, that records the number of times
each nonzero vector in (5.3) and (5.4) appears as a column of G. Multiplying a
multiplicity function by a scalar will be called replication; replication concatenates
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copies of G. When η is multiplied by c, all weights are also multiplied by c. If C
is the linear code over Z/pqZ generated by G, then every codeword of C has the
form [x y]G. Notice that [0 E1]G = 0, so we may assume y ∈ RE2. Recall that w
is constant on Um-orbits, so that w(u[x y]G) = w([x y]G) for all u ∈ Um. Thus,
in order to calculate howeC , it suffices to know w([x y]G) as [x y]⊤ varies over the
vectors in (5.3) and (5.4). To be specific, let W be the (2q + 3) × (2q + 3) matrix
whose rows and columns are indexed by the nonzero vectors in (5.3) and (5.4)
and whose entry at position (vi, vj) is w(v⊤

i vj). Similarly, write the multiplicity
function η as a (2q + 3) × 1 column vector. We then have

w(viG) =
∑

j

w(v⊤
i vj)η(vj), (5.6)

which is the vi-entry of Wη. Except for degenerate cases (when [x y] 7→ [x y]G is
not injective), the weight enumerator of C is

howeC =
∑

i

|orb(vi)|tw(viG). (5.7)

Remark 5.4. The matrix W has appeared in different guises in [2, 5, 9, 13].

Our next objective is to prove that the matrix W is invertible. With that in
mind, let P be a permutation matrix of size (q+ 1) × (q+ 1); i.e., P is an invertible
integer matrix with entries from {0, 1} having exactly one 1 in each row and each
column. Then set P (s, t) = sJ + (t − s)P , where J is the all-1 matrix; P (s, t) is
a (q + 1) × (q + 1) matrix with every entry equal to s except that each row and
column contains exactly one t (in positions given by P ). The notation col(s) (resp.
row(s)) means a column vector (resp. row vector) of size q + 1 with every entry
equal to s.

Proposition 5.5. There exists a permutation matrix P so that the W -matrix for
the homogeneous weight with M = R⊕RE2 = R⊕ pR has the form

W =


P (w(1),w(q)) col(w(q)) P (w(p), 0)

row(w(q)) w(q) row(0)
P (w(p), 0) col(0) P (w(p), 0)

 .
The matrix P has a 1 in positions (1, 2) and (2, 1). The matrices P and W are
symmetric.

We emphasize that the same P is used four times in W .

Proof. One must determine the homogeneous weights of the dot products of the
nonzero vectors in (5.3) and (5.4). Fix a vector v from grouping I. Its dot product
with another vector v′ from grouping I will be a unit with exactly one exception.
For example, if v = [1, iE2]⊤ and v′ = [1, jE2]⊤ with i ̸= 0, their dot product
is 1 + ijE2 = E1 + (1 + ij)E2. Because the multiples of E2 form a copy of the
field Z/qZ, there is exactly one value of j with 1 + ij = 0, namely j = −i−1. In
that case, the dot product equals E1, and w(E1) = w(q). Units have weight w(1).
The vectors [E1, E2]⊤ and [1, 0]⊤ also pair to E1, handling the remaining cases in
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grouping I. This means that the permutation matrix P has a 1 in positions (1, 2)
and (2, 1).

The vector [E1, 0]⊤ of grouping II has dot product equal to E1 when paired with
any vector from groupings I or II; it has dot product 0 when paired with any vector
from grouping III.

When a fixed vector from grouping III is paired with grouping I or III all but
one dot product will be a unit multiple of E2; the remaining value will be 0. The
same argument involving 1 + ij = 0 occurs, so that the same permutation matrix
is being used four times.

The matrices are symmetric because the ring R is commutative. □

Remark 5.6. We reiterate a comment made in the proof above: the permutation
matrix P has a 1 in positions (1, 2) and (2, 1). In particular, this means the rest of
the entries in row 2 are 0. Consequently, row 2 of P (s, t) consists of a t in column 1,
followed by q entries equal to s.

Proposition 5.7. The matrix W is invertible, and

W−1 =


P (−a, b) col(a) P (a,−b)
row(a) c row(−a)
P (a,−b) col(−a) P (d, e)

 ,
with the same permutation matrix P as in Proposition 5.5, and with

a = 1
pq2 , b = q − 1

pq2 , c = 1
(q − 1)pq2 , d = 1

(p− 1)pq2 , e = q − 1
(p− 1)pq2 .

Proof. A computation shows that WW−1 = I. □

Define a matrix G13 of size 2 × (2q+ 3) whose columns consist of all the nonzero
vectors in (5.3) and (5.4), each appearing once. The multiplicity function η13 is
the all-1 vector. Let C13 be the linear code generated by G13 over R = Z/pqZ.

Proposition 5.8. The linear code C13 is isomorphic to R⊕ pR, and |C13| = pq2.
The weights of nonzero elements are

w(vG13) =


2pq2 − 2q2 + pq − 2p, gcd(v) = 1,
pq2 + pq − 2p, gcd(v) = q,

2pq2 − 2q2, gcd(v) = p.

Proof. Using (5.6) and Proposition 5.5, the weights of nonzero elements are deter-
mined by Wη13:

w(xG13) =


qw(1) + w(q) + w(q) + qw(p), gcd(x) = 1,
(q + 1)w(q) + w(q), gcd(x) = q,

qw(p) + qw(p), gcd(x) = p.

Using (5.1), the weight formulas then simplify to those stated. □
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Refer to the weights listed in Proposition 5.8 as α, β, γ, respectively:
α = 2pq2 − 2q2 + pq − 2p,
β = pq2 + pq − 2p,
γ = 2pq2 − 2q2.

(5.8)

Observe that β < γ < α when p is odd, and γ < α = β when p = 2. Recall that
the orbits of vectors have different sizes when p is odd, depending on the gcd of
the vector, (5.5).

Corollary 5.9. The linear code C13 has homogeneous weight enumerator
howeC13 = 1 + (p− 1)tβ + (q2 − 1)tγ + (p− 1)(q2 − 1)tα

when p is odd, and, when p = 2, the enumerator is
howeC13 = 1 + (q2 − 1)tγ + q2tα.

We will use the linear code C13 and W−1 to define two linear codes with the
same homogeneous weight enumerator but whose dual codes have different weight
enumerators. The list of weights of U-orbits of codewords is given by Wη, as in
(5.6), where η is the multiplicity function of the code. The code C13 of Propo-
sition 5.8 has η13 equal to the all-1 vector, and the list of weights is the column
vector w = ⟨α, . . . , α;β; γ, . . . , γ⟩, where there are q + 1 of both α and γ. Making
use of the different sizes of orbits, (5.5), we create a new list of weights:

w′ = ⟨γ, α, . . . , α;β; γ, . . . , γ, α, . . . , α⟩,
consisting of one γ followed by q α’s in grouping I, then one β in grouping II, and
finishing with q− p+ 2 γ’s and p− 1 α’s in grouping III. Taking the different sizes
of orbits into account, w and w′ yield the same weight enumerator, as in (5.7).

We will show that there exists a linear code D13 that achieves this list w′ of
weights, at least up to a replication factor. By replicating both C13 and D13 in
the same way (call the results C14 and D14), we achieve, by design, howeD14 =
howeC14 . We will also show that Aw(p)(D⊥

14) ̸= Aw(p)(C⊥
14) when pq ̸= 6 and that

A2(D⊥
14) ̸= A2(C⊥

14) when pq = 6.

Remark 5.10. We call attention to one technical detail. In w′, the p − 1 α’s
occupy the last positions in grouping III. In the matrix P (s, t) of Proposition 5.5,
the second row has a t in the first column. This means that the last columns of
grouping III in that same row all have entries equal to s. See Remark 5.6.

Lemma 5.11. The entries of W−1w′ are positive rational numbers.

Proof. The form of the entries depends on the location of the exceptional entries
of P (s, t): Is the initial γ in w′ multiplied by s or by t? Is there a t in the last p−1
columns or not? The answers to these questions lead to four possibilities of the
form of the entries in grouping I and, similarly, four possibilities in grouping III.
However, Remark 5.10 says that one of the four possibilities is prohibited (marked
with ∗). The formats, together with the number d of times they appear, are in
Table 5.1, with the entry for grouping II marked with †. Because 2 ≤ p < q, all
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of these expressions are positive rational numbers, with the exception of the very
first—which is prohibited from occurring. □

Table 5.1. Formats of entries in W−1w′

(∗) bγ − qaα+ aβ + (q − p+ 2)aγ + (p− 2)aα− bα

= (pq − q2 − 2p+ 4q)/q2, d = 0,
bγ − qaα+ aβ + (q − p+ 1)aγ − bγ + (p− 1)aα

= (pq − 2p+ 2q)/q2, d = 1,
−aγ + bα− (q − 1)aα+ aβ + (q − p+ 2)aγ + (p− 2)aα− bα

= (pq − 2p+ 2q)/q2, d = p− 1,
−aγ + bα− (q − 1)aα+ aβ + (q − p+ 1)aγ − bγ + (p− 1)aα

= (pq + q2 − 2p)/q2, d = q − p+ 1;

(†) aγ + qaα+ cβ − (q − p+ 2)aγ − (p− 1)aα
= (q2 − pq + 2p)/q2, d = 1;

(∗) − bγ + qaα− aβ + (q − p+ 2)dγ + (p− 2)dα− eα

= (2pq − 2p− 3q + 4)/(p− 1)q, d = 0,
−bγ + qaα− aβ + (q − p+ 1)dγ − eγ + (p− 1)dα

= 2(q − 1)/q, d = 1,
aγ − bα+ (q − 1)aα− aβ + (q − p+ 2)dγ + (p− 2)dα− eα

= (pq − 2q + 2)/(p− 1)q, d = p− 1,
aγ − bα+ (q − 1)aα− aβ + (q − p+ 1)dγ − eγ + (p− 1)dα

= 1, d = q − p+ 1.

We now define a replicated version C14 of the linear code C13 of Proposition 5.8,
as well as a linear code D14. Note that the least common multiple of the denomi-
nators appearing in Table 5.1 is (p− 1)q2.
Definition 5.12. Define the multiplicity function ηC14 of C14 to be the vector of
length 2q+ 3 all of whose entries equal (p− 1)q2; C14 is a replicated version of C13.
Define the multiplicity function ηD14 of D14 to be the vector of length 2q+ 3 equal
to (p− 1)q2W−1w′; by Lemma 5.11, all the entries of ηD14 are positive integers.
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Remark 5.13. We record for later use the number of columns in generator matri-
ces for C14 and D14 from the three groupings in (5.3) and (5.4). These counts use
the formulas and multiplicities d found in Table 5.1, together with the replication
factor (p− 1)q2.

Grouping C14 D14

I (q + 1)(p− 1)q2 (p− 1)(q3 + q2 + pq − 2p)
II (p− 1)q2 (p− 1)(q2 − pq + 2p)
III (q + 1)(p− 1)q2 (q + 1)(p− 1)q2

(5.9)

Note that the counts for grouping III are equal and that the totals over all three
groupings are also equal (so the codes have the same length).

Before we analyze dual codewords of small weight, we isolate a situation that
will occur often.

Lemma 5.14. Suppose C is a linear code of length n over Z/mZ with generator
matrix G. Fix a Um-orbit orb(x), x ∈ Z/mZ. If scalar multiplication by x annihi-
lates N(x) columns of G, then singletons with nonzero entry in orb(x) contribute
|orb(x)| ·N(x) to Aw(x)(C⊥).

Proof. Consider a singleton v with nonzero entry ux, for some u ∈ Um. Then
w(v) = w(x), and v ∈ C⊥ if and only if the position of the nonzero entry of v
matches the position of a column of G annihilated by x. □

Recall that α, β, γ are defined in (5.8).

Theorem 5.15. For m = pq, p < q prime, the linear codes C14, D14 over Z/mZ
from Definition 5.12 have the same homogeneous weight enumerator and their dual
codes have different homogeneous weight enumerators. Specifically, the common
weight enumerator for C14 and D14 is

1 + (p− 1)t(p−1)q2β + (q2 − 1)t(p−1)q2γ + (p− 1)(q2 − 1)t(p−1)q2α

when p is odd, and is

1 + (q2 − 1)t(p−1)q2γ + q2t(p−1)q2α

when p = 2. Moreover, Aw(p)(C⊥
14) ̸= Aw(p)(D⊥

14) for m ̸= 6, and A2(C⊥
14) ̸=

A2(D⊥
14) when m = 6.

Proof. By construction and the choice of w′, C14 and D14 have the same homo-
geneous weight enumerator. The format follows from Corollary 5.9, with all the
weights multiplied by the replication factor (p− 1)q2.

Note from (5.1) that w(1) < w(p) < w(q). Except for m = 6, i.e., p = 2,
q = 3, we also have w(p) < 2w(1); this implies that a vector v with w(v) = w(p)
must be a singleton whose nonzero entry is a unit multiple of p. (When m = 6,
2w(1) = 2 < 3 = w(2): another ‘curse of small values.’) See Remark 4.4.
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The column in grouping II is annihilated by p and its unit multiples. Thus
Aw(p)(C⊥

14) = (q − 1)(p− 1)q2, (5.10)
Aw(p)(D⊥

14) = (q − 1)(p− 1)(q2 − pq + 2p), (5.11)

using the (†) expression in Table 5.1 and (5.9). Because 2 ≤ p < q, Aw(p)(C⊥
14) ̸=

Aw(p)(D⊥
14) for m ̸= 6.

When m = 6, choose ζ = 2, so that w has the following values:
x 0 ±1 ±2 3

w(x) 0 1 3 4 .

There are no dual codewords of weight 1 because there are no zero-columns in the
generator matrices. The only vectors having weight 2 are doubletons with nonzero
entries equaling ±1. The columns in (5.3) and (5.4) represent different Um-orbits,
so the only way for columns to be ±1 multiples of each other is for the columns
to be in the same orbit. Moreover, only the column in grouping II has order two.
For columns from grouping II, all four signs in (±1,±1) are possible; for all other
columns, only two choices of signs, ±(1,−1), are possible. Thus, a linear code C
with multiplicity function η has

A2(C⊥) = 4
(
η(II)

2

)
+ 2

∑
v∈I∪III

(
η(v)

2

)
.

For our particular codes, a calculation gives A2(C⊥
14) = 720 and A2(D⊥

14) = 722. □

We now generalize Theorem 5.15 to the case where m = paqb for primes p < q,
a, b ≥ 1. As in (4.1) and (5.1), we choose ζ = (p−1)(q−1), so that the homogeneous
weight on Z/paqbZ has the following values.

orbit w
orb(0) 0
orb(pa−1qb−1) pq − p− q

orb(paqb−1) pq − q

orb(pa−1qb) pq − p

others pq − p− q + 1

The ‘others’ subset is empty when a = b = 1, by Remark 4.2.
We now define two linear codes C15, D15 over Z/paqbZ. The generator matrices

of C15, D15 are obtained from the generator matrices of C14, D14 (whose columns
have the form given in (5.3) and (5.4)) by applying Proposition 4.6 with m′ =
pa−1qb−1. Recall that α, β, γ are defined in (5.8).

Theorem 5.16. The linear codes C15, D15 over Z/mZ, m = paqb, with primes p <
q, satisfy howeC15 = howeD15 and howeC⊥

15
̸= howeD⊥

15
. Specifically, the common

weight enumerator for C15 and D15 is

1 + (p− 1)t(p−1)q2β + (q2 − 1)t(p−1)q2γ + (p− 1)(q2 − 1)t(p−1)q2α
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when p is odd, and is

1 + (q2 − 1)t(p−1)q2γ + q2t(p−1)q2α

when p = 2.
The following table shows the smallest weights at which the numbers of dual code-

words differ; T1, T2, T3 are non-zero constants depending on m that are explained
in the proof.

Code pq a b Apq−p−q Apq−p−q+1 Apq−q

C⊥
15 6 1 1 0 720

D⊥
15 0 722

C⊥
15 ̸= 6 1 1 0 0 (5.10)

D⊥
15 0 0 (5.11)

C⊥
15 all ≥ 2 1 (p− 1) · (5.10)

D⊥
15 (p− 1) · (5.11)

C⊥
15 all ≥ 1 ≥ 2 T1 T2 + T3 · (5.10)

D⊥
15 T1 T2 + T3 · (5.11)

Proof. By Lemma 4.5 and Proposition 4.6, the homogeneous weight enumerators
of C15, D15 are exactly the same as those of C14, D14, hence equal.

Now examine the dual codes. As in the proof of Theorem 5.15, we need to
distinguish the case where pq = 6, i.e., p = 2, q = 3, from the cases where pq ̸= 6.
We begin with pq ̸= 6.

When pq ̸= 6, the following inequalities hold:

pq − p− q < pq − p− q + 1 < pq − q < 2(pq − p− q).

Thus, in order for a vector to have weight pq− p− q, pq− p− q+ 1, or pq− q, the
vector must be a singleton whose nonzero entry is, respectively, a unit multiple of
pa−1qb−1, an element not in the socle of Z/mZ, or a unit multiple of paqb−1. In
addition, in order for a singleton to be in the dual code, its nonzero entry must
annihilate the corresponding column of the generator matrix. Any such column, of
course, is of the form νm′ applied to a column from (5.3) and (5.4). We will call
these new columns ‘m′-scaled columns.’

When a = b = 1, we are in the situation of Theorem 5.15, so the counts for
Apq−q = Aw(p) match those in (5.10) and (5.11).

When a ≥ 2, b = 1, the orbit of pa−1qb−1 = pa−1 annihilates m′-scaled columns
from grouping II only. The size of the orbit is (p − 1)(q − 1), so the counts for
Apq−p−q are p− 1 times those in (5.10) and (5.11).

When a = 1, b ≥ 2, the orbit of pa−1qb−1 = qb−1 annihilates m′-scaled columns
from grouping III only. Since C15 and D15 have the same number of columns of
grouping III (5.9), the contribution to Apq−p−q will be the same (call it T1). Of the
elements not in the socle of Z/mZ, the units do not annihilate any columns, and the
unit multiples of p annihilate m′-scaled columns of grouping II only (contributing
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a term of the form T3η(II) to Apq−p−q+1 of the dual codes). The unit multiples of
q, q2, . . . , qb−2 annihilate m′-scaled columns of grouping III only, and the remaining
elements not in the socle of Z/mZ annihilate m′-scaled columns of all groupings.
These last two contributions are the same for both codes (call it T2), because C15
and D15 have the same number of columns of grouping III and the same total
number of columns (5.9).

When a, b ≥ 2, pa−1qb−1 annihilates every m′-scaled column in (5.3) and (5.4).
Since C15 and D15 have the same total number of columns (5.9), the contribution
to Apq−p−q will be the same (again, call it T1). Elements of Z/mZ that are not in
the socle are in the orbits of piqj with i < a− 1 or j < b− 1. Those in the orbits
of p, p2, . . . , pa (i.e., i ≥ 1 and j = 0) annihilate m′-scaled columns in grouping II
only. Setting T3 = (

∑a
i=1|orb(pi)|)/(q − 1), these elements contribute T3 times

(5.10) and (5.11), resp., to Apq−p−q+1. The orbits of q, q2, . . . , qb (i.e., i = 0 and
j ≥ 1) annihilate m′-scaled columns from grouping III only, and the remaining
orbits not in the socle annihilate all m′-scaled columns. From (5.9), C15 and D15
have the same number of columns from grouping III as well as the same total
number of columns; these contributions to Apq−p−q+1 are the same, say T2.

We now shift to pq = 6, i.e., p = 2, q = 3. When a = b = 1, i.e., m = 6,
Theorem 5.15 applies, and A2(C⊥

15) = 720 while A2(D⊥
15) = 722. When a ≥ 2 and

b = 1, then the unit multiples of 2a−1 = 2a−13b−1 annihilate the m′-scaled column
from grouping II. The counts for A1 = Apq−p−q are thus those from (5.10) and
(5.11): A1(C⊥

15) = 18 and A1(D⊥
15) = 14.

When b ≥ 2, unit multiples of 2a−13b−1 annihilate m′-scaled columns from
grouping III only (when a = 1) or from all groupings (when a ≥ 2). In either case,
since C15 and D15 have the same number of such columns (5.9), the contribution
(called T1) to A1 of the dual codes will be the same.

Dual codewords of weight 2 come in two forms: singletons with nonzero entry
not in the socle of Z/mZ that annihilates an m′-scaled column; or doubletons with
nonzero entries of the form ±2a−13b−1,±2a−13b−1 so that the corresponding linear
combination of columns vanishes. The counts for single entries not in the socle are
as above: the contribution is of the form T2 +T3η(II). For the other situation, first
note that scalar multiplying the m′-scaled columns of (5.3) and (5.4) by 2a−13b−1

always annihilates grouping III. Groupings I and II are sent to [3b, 0]⊤ when a = 1,
and they are annihilated when a ≥ 2. Because 3b has order 2 when a = 1, all signs
are possible. Since the sum of the number of columns in groupings I and II is the
same for C15 and D15 (5.9), the contributions are the same to A2 = Apq−p−q+1 of
the dual codes and can be incorporated into T2. □

6. Main theorem for homogeneous weight enumerators

In this section we discuss the general case where m = pa1
1 pa2

2 · · · pak

k . In outline:
we carefully pick two of the primes, say p = pi and q = pj , and use Theorem 5.15
to produce two linear codes C ′, D′ over Z/pipjZ that have the same homogeneous
weight enumerator. The generator matrices of C ′ and D′ use columns from (5.3)
and (5.4) with p = pi and q = pj . We then use Proposition 4.6 with m′ = m/(pipj)
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to produce codes C,D over Z/mZ with the same homogeneous weight enumerator.
The generator matrices of C and D use m′-scaled columns. Finally, we analyze dual
codewords of small weight to show that the dual codes of C and D have different
weight enumerators.

Lemma 6.1. Let x ∈ Z/mZ. Then x annihilates m′-scaled columns in groupings I,
II, and III according to the chart below.

case x ∈ (pi)? x ∈ (pj)? x annihilates
1 no no none
2 no yes III only
3 yes yes all
4 yes no II only

Proof. In (5.3) and (5.4), with p = pi and q = pj , we have that E1 is a unit multiple
of pj and E2 is a unit multiple of pi. Now apply νm′ . The gcd of grouping I m′-
scaled columns is m′ = m/(pipj); these columns are annihilated by (pipj). The gcd
of grouping II m′-scaled columns is m/(pi); these columns are annihilated by (pi).
The gcd of grouping III m′-scaled columns is m/(pj); these columns are annihilated
by (pj). □

Theorem 6.2. Let m be a positive integer greater than 5 that is not prime.
Then there exist linear codes C and D over Z/mZ such that howeC = howeD

but howeC⊥ ̸= howeD⊥ .

Proof. Let m = pa1
1 pa2

2 · · · pak

k be the prime factorization of m, with primes p1 <
p2 < · · · < pk and exponents ai ≥ 1 for i = 1, 2, . . . , k. If k = 1, i.e., m is a prime
power, then the result follows from Theorem 3.2. If k = 2, the result follows from
Theorem 5.16. It remains to consider k ≥ 3, and we treat two cases.

1. Assume aj = 1 for some j ∈ {2, 3, . . . , k}. Set p = p1 and q = pj , where
aj = 1. Apply Theorem 5.15 to produce linear codes C ′ and D′ over Z/p1pjZ,
using (5.3) and (5.4), whose homogeneous weight enumerators are equal but whose
dual weight enumerators are different. Apply Proposition 4.6 with m′ = m/(p1pj)
to obtain linear codes C and D over Z/mZ generated by the m′-scaled generator
matrices of C ′ and D′. Also by Proposition 4.6, we have howeC = howeD.

Let ℓ be an element of {1, 2, . . . , k} − {1, j}; such an ℓ exists because k ≥ 3.
Set x = m/(pjpℓ). Write ξ = w(x); Proposition 4.3 implies that ξ < ζ. By
Remark 4.4, any vector v with w(v) = ξ must be a singleton. Note that x ∈ (p1)
and x ̸∈ (pj); the latter statement uses the hypothesis that aj = 1. By Lemma 6.1,
x annihilates the m′-scaled columns in grouping II only. Any singleton using x
or a unit multiple of x in a position with a grouping II column will contribute to
Aξ(C⊥) and to Aξ(D⊥). The numbers of such contributions are proportional to
η(II) of the two codes, which are different, (5.9).

Let y be any other element of Z/mZ with w(y) = ξ. By Lemma 6.1, singleton
vectors using y contribute equally to Aξ(C⊥) and Aξ(D⊥) (in cases 1, 2, and
3 of the lemma) or contribute differently (in case 4 of the lemma) in a manner
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proportional to η(II). Having considered all the singletons of weight ξ, we conclude
that Aξ(C⊥) ̸= Aξ(D⊥).

2. Assume aj > 1 for all j ∈ {2, . . . , k}. Set p = p2 and q = p3, so that a2 > 1
and a3 > 1. Apply Theorem 5.15 to produce linear codes C ′ and D′ over Z/p2p3Z,
using (5.3) and (5.4), whose homogeneous weight enumerators are equal but whose
dual weight enumerators are different. Apply Proposition 4.6 with m′ = m/(p2p3)
to obtain linear codes C and D over Z/mZ generated by the m′-scaled generator
matrices of C ′ and D′. Also by Proposition 4.6, we have howeC = howeD.

Consider x = p2. Note that x is not in soc(Z/mZ) because x lacks (at least) a
factor of p3 (as a3 > 1). Then w(x) = ζ. Any other y that is not in soc(Z/mZ) also
has w(y) = ζ. Clearly, x ∈ (p2) and x ̸∈ (p3). By Lemma 6.1, x annihilates m′-
scaled columns in grouping II only. Then x contributes differently to Aζ(C⊥) and
Aζ(D⊥) in a manner proportional to η(II). Other y not in soc(Z/mZ) contribute
equally to Aζ(C⊥) and Aζ(D⊥) or differently in a manner proportional to η(II),
according to the cases in Lemma 6.1.

If 6 ∤ m, any vector v with w(v) = ζ must be a singleton, Remark 4.4, so there
are no further contributions with weight ζ. If 6 | m, then p1 = 2 and p2 = 3.
By Proposition 4.3, unit multiples of x0 = m/(p1p2) = m/6 satisfy 2w(x0) = ζ;
thus, doubleton vectors v with w(v) = ζ exist. However, x0 ∈ (p2) (as a2 > 1)
and x0 ∈ (p3) (as a3 ≥ 1); by Lemma 6.1, x0 annihilates m′-scaled columns of
all groupings. Since C and D have the same total number of columns, doubleton
vectors v with w(v) = ζ make the same contributions to Aζ(C⊥) and Aζ(D⊥).

In total, contributions to Aζ(C⊥) and Aζ(D⊥) have the form T1 + T2η(II). We
conclude that Aζ(C⊥) ̸= Aζ(D⊥). □

Example 6.3. Let m = 504 = 23 · 32 · 7. Set p = 2 and q = 7. Then E1 = 7 and
E2 = 8. The generator matrix for the code C ′

16 over Z/14Z is

G′
16 =

[
7 1 1 1 1 1 1 1 7 0 8 8 8 8 8 8 8
8 0 8 2 10 4 12 6 0 8 0 8 2 10 4 12 6

]
.

Then howeC′
16

= 1 + 48t98 + 49t108, consistent with Corollary 5.9. Obtain the
multiplicity function of the second code D′

16 via W−1w′, as in Definition 5.12.
This multiplicity function has denominators with 49 as least common multiple.

Obtain replicated versions of these codes, clearing denominators by multiplying
by 49. The multiplicity function of C ′

17 consists of 17 entries of 49, while the
multiplicity function of D′

17 is〈
59 24 24 59 59 59 59 59 39 49 84 14 49 49 49 49 49

〉
.

Then howeC′
17

= howeD′
17

= 1 + 48t4802 + 49t5292.
To get linear codes over Z/504Z, first note that 504 = 14 · 36. Apply ν36

to each entry of G′
16, and use the same multiplicity functions as above. Then

howeC17 = howeD17 = 1 + 48t9604 + 49t10584.
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With ζ = 12, the values of w on Z/504Z, by orbits, are

x 0 252 168 84 72 36 24 12 non-socle
|orb(x)| 1 1 2 2 6 6 12 12 462

w(x) 0 24 18 6 14 10 11 13 12

Set x = 36 = 504/14. Then ξ = w(x) = 10 < ζ = 12. The only elements r ∈
Z/504Z with w(r) = 10 are the six unit multiples of x. Those elements annihilate
grouping II columns, but no other groupings. Thus A10(C⊥

17) = 6 · 49 = 294,
while A10(D⊥

17) = 6 · 39 = 234. Similarly, using y = 24 = 504/21, one sees that
A11(C⊥

17) = 12 · 49 = 588, while A11(D⊥
17) = 12 · 39 = 468.
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linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Trans. Inform. Theory
40 (1994), no. 2, 301–319. MR 1294046.

[8] T. Honold and A. A. Nechaev, Weighted modules and representations of codes, Problems
Inform. Transmission 35 (1999), no. 3, 205–223. MR 1730800.

[9] J. MacWilliams, Error-correcting codes for multiple-level transmission, Bell System Tech. J.
40 (1961), 281–308. MR 0141541.

[10] J. MacWilliams, Combinatorial Problems of Elementary Abelian Groups, Thesis (Ph.D.)–
Radcliffe College, 1962. MR 2939359.

[11] J. MacWilliams, A theorem on the distribution of weights in a systematic code, Bell System
Tech. J. 42 (1963), 79–94. MR 0149978.

[12] J. A. Wood, Duality for modules over finite rings and applications to coding theory, Amer.
J. Math. 121 (1999), no. 3, 555–575. MR 1738408.

Rev. Un. Mat. Argentina, Vol. 64, No. 2 (2023)

https://mathscinet.ams.org/mathscinet-getitem?mr=4119402
https://mathscinet.ams.org/mathscinet-getitem?mr=0479646
https://mathscinet.ams.org/mathscinet-getitem?mr=1476368
https://mathscinet.ams.org/mathscinet-getitem?mr=3209298
https://mathscinet.ams.org/mathscinet-getitem?mr=1910395
https://mathscinet.ams.org/mathscinet-getitem?mr=1783936
https://mathscinet.ams.org/mathscinet-getitem?mr=1294046
https://mathscinet.ams.org/mathscinet-getitem?mr=1730800
https://mathscinet.ams.org/mathscinet-getitem?mr=0141541
https://mathscinet.ams.org/mathscinet-getitem?mr=2939359
https://mathscinet.ams.org/mathscinet-getitem?mr=0149978
https://mathscinet.ams.org/mathscinet-getitem?mr=1738408


HOMOGENEOUS WEIGHT ENUMERATORS 353

[13] J. A. Wood, Foundations of linear codes defined over finite modules: the extension theorem
and the MacWilliams identities, in Codes Over Rings, 124–190, Ser. Coding Theory Cryptol.,
6, World Sci. Publ., Hackensack, NJ, 2009. MR 2850303.

[14] J. A. Wood, Some applications of the Fourier transform in algebraic coding theory, in Algebra
for Secure and Reliable Communication Modeling, 1–40, Contemp. Math., 642, Amer. Math.
Soc., Providence, RI, 2015. MR 3380375.

Jay A. Wood
Department of Mathematics, Western Michigan University, 1903 W Michigan Ave, Kalamazoo
MI 49008-5248, USA
jay.wood@wmich.edu

Received: July 28, 2021
Accepted: November 17, 2021

Rev. Un. Mat. Argentina, Vol. 64, No. 2 (2023)

https://mathscinet.ams.org/mathscinet-getitem?mr=2850303
https://mathscinet.ams.org/mathscinet-getitem?mr=3380375

	1. Introduction
	2. Homogeneous weight in general
	3. Prime powers
	4. Homogeneous weight on Z/mZ
	5. Two prime powers
	6. Main theorem for homogeneous weight enumerators
	Acknowledgment
	References

