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REMARKS ON A BOUNDARY VALUE PROBLEM FOR A
MATRIX VALUED ∂ EQUATION

CARLOS E. KENIG

Dedicado a la memoria de Pola Harboure

Abstract. In this short note, we discuss a boundary value problem for a
matrix valued ∂ equation.

The problem we will discuss arose in [3], in the author’s joint work with E. B.
Davey and J.-N. Wang, on the Landis conjecture [6]. This conjecture states that if
u is a real, bounded solution in RN of ∆u = V u, where V is real, ‖V ‖∞ ≤ 1, and
|u(x)| ≤ Cε exp(−|x|1+ε), ε > 0 as x→∞, then u ≡ 0. In [5], the author, in joint
work with L. Silvestre and J.-N. Wang observed that in the case when N = 2, and
V ≥ 0, one can use complex analysis to establish the conjecture (in quantitative
form). In [3], with Davey and Wang, we showed the same result under a suitable
(strong) decay assumption on V−, the negative part of V . It was here that we were
led to the matrix valued ∂ equation that we discuss in this note. Afterwards, E. B.
Davey, in [4], established the Landis conjecture under less strong decay on V−, and
finally, in [8], A. Logunov, E. Malinnikova, N. Nadirashvili, and F. Nazarov proved
the full Landis conjecture when N = 2, also using complex methods. Let A be a
2 × 2 matrix with complex entries in R2, with ‖A‖∞ ≤ M . Given H a bounded
matrix on ∂D, where D = {z ∈ C : |z| < 1}, assume that ‖H‖∞ ≤ N1, and that
the matrix HH∗ is strictly positive definite, with ‖(HH∗)−1‖∞ ≤ N2. Consider
the problem {

∂P = AP in D

PP ∗ = HH∗ in ∂D, a.e. (non-tangentially)
(1)

where P is a 2× 2 complex matrix in D, and the boundary values are taken in the
sense of non-tangential convergence.
Theorem 1. There exists a solution P to (1), so that P and P−1 are bounded in
D. Moreover, if P1, P2 are two solutions, then P1 = P2U , where U is a constant
unitary matrix.
Remark 2. Consider the scalar case of Theorem 1, namely when A and P are
scalars. Let α(z) = 1

π

∫
|ξ|<2

A(ξ)
z−ξ dξ = TD2(A)(z), where TD2 denotes the Cauchy–

Pompeiu operator on the disc D2 = {|ξ| < 2}. Then, ∂α = A in D2 and
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|α(z)| . M in D. Let q(z) = e−αP , where P is as in (1). Then, ∂q = 0 in D,
|q|2 = e−2 Reα|P |2 = e−2 Reα|H|2 on ∂D. The existence and uniqueness of q then
follows from a classical theorem of Szegö [12], which in turn gives the existence
and uniqueness of P (modulo unimodular constants for the uniqueness). Note that
commutativity of the product is crucial for this argument.

Remark 3. Consider next the 2 × 2 matrix valued case, when A ≡ 0. Thus,
P is a holomorphic matrix. Theorem 1 is then a consequence of the Wiener–
Masani theorem [13, Theorem 7.13]. Note that the uniqueness assertion is not
made in [13], but it is made and proved in [14]. More recent proofs of the Wiener–
Masani theorem, under higher regularity assumptions and conclusions are given,
for instance, in the works of Berndtsson–Rosay [1] and Lempert [7].

We now turn to the proof of Theorem 1. For the proof of the existence part of
Theorem 1, we will combine the next Proposition 4, due to Davey–Kenig–Wang [3,
Proposition 2] with the Wiener–Masani theorem.

Proposition 4. Let A be a 2 × 2 matrix defined on R = [−2, 2] × [−2, 2], with
M = ‖A‖∞. There exists an invertible solution to ∂P1 = AP1 in R, with the
property that

‖P1‖∞ + ‖P−1
1 ‖∞ . exp

[
CM2 (logM)2

]
.

Note that ∂P1 = AP1, ∂P−1
1 = P−1

1 A, and since the right-hand sides are
bounded on R, P1 and P−1

1 are in Cβ(D) 0 < β < 1, with Cβ norm bounded
by exp[C̃M2(logM)2].

Proof of the existence part of Theorem 1. Let H̃ = P−1
1 H, where P1 is as in Propo-

sition 4. Clearly, the invertibility of P−1
1 in R shows that, since HH∗ is strictly

positive and invertible on ∂D, so is H̃H̃∗. By the Wiener–Masani theorem (the
case A ≡ 0 of Theorem 1), there exists Q invertible and bounded in D, with
Q−1 bounded, Q,Q−1 holomorphic in D, and QQ∗ = H̃H̃∗ on ∂D. Let now
P = P1Q. Since Q is holomorphic ∂P = AP in D. On ∂D, PP ∗ = P1QQ

∗P ∗1 =
P1(P−1

1 H)(P−1
1 H)∗P ∗1 = HH∗, concluding the proof of existence.

For the proof of uniqueness, assume that P, P̃ are two solutions, as in Theo-
rem 1. Let Q = P̃−1P . Then ∂Q = ∂(P̃−1)P + P̃−1∂P = −P̃−1∂P̃ P̃−1P +
P̃−1AP = −P̃−1AP̃ P̃−1P + P̃−1AP = 0. Also, on ∂D, QQ∗ = P̃−1PP ∗(P̃−1)∗
= P̃−1HH∗(P̃−1)∗. But P̃ P̃ ∗ = HH∗, so that P̃ = HH∗(P̃ ∗)−1, and P̃−1 =
P̃ ∗(HH∗)−1, hence P̃−1HH∗(P̃−1)∗ = P̃ ∗(HH∗)−1HH∗(P̃−1)∗ = I. Thus, QQ∗ =
I on ∂D, and, ∂Q = 0 in D. By the uniqueness in the Wiener–Masani theorem,
Q ≡ U , U a constant unitary matrix, and so P = P̃U as claimed. �

We next turn to a proof of the uniqueness in the Wiener–Masani theorem via
the “multiplicative integral”. The multiplicative integral is a multiplicative analog
of the classical Riemann–Stieltjes integrals. It first arose in the work of V. Volterra
(1887) on the study of systems of ordinary differential equations. See [2], [11], [9]
for discussions of the topic. Here we follow the exposition in the Master’s Thesis
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of Joris Roos (2014), which is unpublished, but can be found in [10]. The defi-
nition of the multiplicative integral that is given in [10] is a multiplicative analog
of the Stieltjes one. We consider the space Mm or m × m matrices A, endowed
with the matrix norm ‖A‖ = sup|x|=1 |Ax|, where |x| = (

∑m
j=1 x

2
j )1/2. We con-

sider t ∈ [a, b], and use the standard notion of a Hermitian matrix being positive,
strictly positive, etc. We consider a partition τ = {ti}ni=0 of the interval [a, b],
∆iτ = ti − ti−1, i = 1, . . . , n, γ(τ) = maxi ∆iτ . For a matrix valued function
E : [a, b] → Mm, we define varτ[a,b] =

∑n
i=1 ‖∆iE‖, where ∆iE = ∆τ

iE = E(ti) −
E(ti−1), and call E of bounded variation if var[a,b]E = supτ∈τba varτ[a,b]E < ∞,
τ ba = {all partitions of [a, b]}. We denote by BV([a, b],Mm) the space of func-
tions of bounded variation. We call |E|(t) = var[a,t]E. Given a partion τ , choose
intermediate points ξ = (ξi)i=1,...,n, ξi ∈ [ti−1, ti]. For f on [a, b], with values
in C, or in Mm, we define P (f,E, τ, ξ) = P (τ, ξ) =

∏yn
i=1 exp(f(ξi)∆iE). Here,∏yn

i=1Ai = A1A2 · · ·An denotes multiplication of the matrices (Ai)i from left to
right. Let T ba be the set of tagged partitions (τ, ξ), such that τ is a subdivision of
[a, b] and ξ is a choice of corresponding intermediate points. We say that P ∈Mm is
the (right) multiplicative Stieltjes integral corresponding to f : [a, b]→Mm (or C),
E : [a, b]→Mm, if ∀ε > 0, there exists a (τ0, ξ0) ∈ T ba such that ‖P (τ, ξ)− P‖ < ε
for every (τ, ξ) < (τ0, ξ0), i.e. for all τ ⊂ τ0. One can show that if f : [a, b] → C is
continuous and E : [a, b]→Mm is of bounded variation, then

∫yb

a
exp(fdE), which

is, by definition, the right multiplicative integral just defined, exists.
An important result (see [10, Proposition 2.7]) is

det
∫ yb

a

exp (f(t) dE(t)) = exp
(∫ b

a

f(t) d trE(t)
)
, (2)

where trA is the trace of the matrix A. Note that, in particular, multiplicative
integrals always yield invertible matrices.

Next we sketch a proof of the uniqueness in the Wiener–Masani theorem, using
multiplicative integrals. Thus, let ∂Q = 0 in D, Q,Q−1 bounded in D, QQ∗ = I on
∂D. Note first that ‖Q(z)‖ ≤ 1 for all z ∈ D, since ‖Q‖ is subharmonic [10, Lemma
A.4], ‖Q(z)‖ = 1, z ∈ ∂D. Then, by [10, Theorem 3.1], Potapov’s decomposi-
tion [9], Q(z) = B(z)

∫yL

0 exp(hz(θ(t)) dE(t)), where B(z) is a Blaschke–Potapov
product corresponding to the zeros of detQ, 0 ≤ L ≤ ∞, E is an increasing ma-
trix valued function such that trE(t) = t, t ∈ [0, L], θ : [0, L] → [0, 2π] is a right
continuous increasing function, and hz(θ) = z+eiθ

z−eiθ is the Herglotz kernel. Since
detQ(z) 6= 0 in D, B(z) = U , U a constant unitary matrix.

Next we claim that q(z) = detQ(z) ≡ eiθ0 in D. Assuming this, we have that

1 = |eiθ0 | = |q(0)| = |detQ(0)|

=

∣∣∣∣∣detU
∫ L

0
exp(h0(θ(t)) dE(t))

∣∣∣∣∣ =

∣∣∣∣∣det
∫ L

0
exp(h0(θ(t)) dE(t))

∣∣∣∣∣
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(by (2)) =

∣∣∣∣∣exp
∫ L

0
h0(θ(t)) d trE(t)

∣∣∣∣∣ =

∣∣∣∣∣exp
∫ L

0

eiθ(t)

−eiθ(t) dt

∣∣∣∣∣ = exp(−L).

But then, L = 0, Q(z) = U .

We turn to the proof of the claim. Let q(z) 6= 0, z ∈ D, q, q−1 be holomorphic
in D, bounded in D, |q(z)| = 1, z ∈ ∂D. Consider u(z) = log |q(z)|, which
is harmonic in D, bounded on D (since q−1 is bounded in D). Then u(0) =
log |q(0)| = 1

2π
∫ 2π

0 log |q(eiθ)|dθ = 0. Also, since u(z) ≡ 0, z ∈ ∂D, by the
maximum principle u(z) ≤ 0 in D. But since u(0) = 0, u ≡ 0, so |q(z)| ≡ 1, z ∈ D,
and since q is holomorphic in D, q is constant, and thus q(z) ≡ eiθ0 .

Finally, we turn to the main open question, which motivates this note. Let H
in Theorem 1 be the identity matrix, and P the corresponding solution. By the
construction of P and Proposition 4, we know that ‖P‖∞ and ‖P−1‖∞ are bounded
by exp(CM2(logM)2), where ‖A‖∞ ≤ M , and we assume, for convenience, that
M ≥ 1. We would like to know:

Question 5. Are ‖P‖∞, ‖P−1‖∞ bounded by exp(CεM1+ε), for each ε > 0?

An affirmative answer to this question would give, following the argument in [3],
a proof of the Landis conjecture for N = 2 (which is now the theorem of Logunov–
Malinnikova–Nadirashvili–Nazarov [8]). Notice that we can reduce ourselves to the
case when trA = 0, and hence detP ≡ eiθ0 , so that ‖P‖∞ = ‖P−1‖∞. Indeed,
a simple computation yields that, if q = detP , then ∂q = (trA)q, so that, if
trA = 0, q is holomorphic, and so is q−1, and |q(z)| = 1, z ∈ ∂D, since on ∂D,
PP ∗ = I. Thus as before, q(z) = eiθ0 . To reduce to the trA = 0 case, note that
if A = A1 + A2, ∂P1 = A1P1, and P2 solves ∂P2 = P2B, where B = −P−1

1 A2P1,

then P = P1P
−1
2 solves ∂P = AP . Let A2 =

( trA
2 0
0 trA

2

)
, A1 = A− A2, so that

tr(A1) = 0. Also, since A2 is a scalar matrix, B = −P−1
1 A2P1 = −A2, so that

∂P2 = P2A2 = A2P2. Since A2 is scalar, and for the scalar equation we have the
exponential bounds with M to the power 1 (see Remark 2), and P = P1P

−1
2 , it

suffices to give the bounds for P1, which solves ∂P1 = A1P1, with trA1 = 0. (In
the case of the Landis conjecture, the matrix in [3] has trace 0 to begin with). This
is a challenging question in its own right.

Final remark. It was with great sadness that I learned of the unexpected death of
Pola Harboure. Pola and I became good friends during the time that she spent at
Minnesota in the early 1980s and we kept in touch over the years. Her death is a
great loss for mathematics, especially in Argentina and Latin America, where she
was a pillar of the mathematical community. It is also a great loss for her family
and friends, for whom she was so important. We continue to mourn her.
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