REMARKS ON A BOUNDARY VALUE PROBLEM FOR A MATRIX VALUED $\bar{\partial}$ EQUATION

CARLOS E. KENIG

Dedicado a la memoria de Pola Harboure

Abstract. In this short note, we discuss a boundary value problem for a
matrix valued $\bar{\partial}$ equation.

The problem we will discuss arose in [3, in the author's joint work with E. B. Davey and J.-N. Wang, on the Landis conjecture [6. This conjecture states that if u is a real, bounded solution in \mathbb{R}^{N} of $\Delta u=V u$, where V is real, $\|V\|_{\infty} \leq 1$, and $|u(x)| \leq C_{\epsilon} \exp \left(-|x|^{1+\epsilon}\right), \epsilon>0$ as $x \rightarrow \infty$, then $u \equiv 0$. In [5], the author, in joint work with L. Silvestre and J.-N. Wang observed that in the case when $N=2$, and $V \geq 0$, one can use complex analysis to establish the conjecture (in quantitative form). In [3], with Davey and Wang, we showed the same result under a suitable (strong) decay assumption on V_{-}, the negative part of V. It was here that we were led to the matrix valued $\bar{\partial}$ equation that we discuss in this note. Afterwards, E. B. Davey, in [4], established the Landis conjecture under less strong decay on V_{-}, and finally, in [8], A. Logunov, E. Malinnikova, N. Nadirashvili, and F. Nazarov proved the full Landis conjecture when $N=2$, also using complex methods. Let A be a 2×2 matrix with complex entries in \mathbb{R}^{2}, with $\|A\|_{\infty} \leq M$. Given H a bounded matrix on ∂D, where $D=\{z \in \mathbb{C}:|z|<1\}$, assume that $\|H\|_{\infty} \leq N_{1}$, and that the matrix $H H^{*}$ is strictly positive definite, with $\left\|\left(H H^{*}\right)^{-1}\right\|_{\infty} \leq N_{2}$. Consider the problem

$$
\begin{cases}\bar{\partial} P=A P & \text { in } D \tag{1}\\ P P^{*}=H H^{*} & \text { in } \partial D, \text { a.e. (non-tangentially) }\end{cases}
$$

where P is a 2×2 complex matrix in D, and the boundary values are taken in the sense of non-tangential convergence.
Theorem 1. There exists a solution P to (1), so that P and P^{-1} are bounded in \bar{D}. Moreover, if P_{1}, P_{2} are two solutions, then $P_{1}=P_{2} U$, where U is a constant unitary matrix.
Remark 2. Consider the scalar case of Theorem 1. namely when A and P are scalars. Let $\alpha(z)=\frac{1}{\pi} \int_{|\xi|<2} \frac{A(\xi)}{z-\xi} \mathrm{d} \xi=T_{D_{2}}(A)(z)$, where $T_{D_{2}}$ denotes the CauchyPompeiu operator on the disc $D_{2}=\{|\xi|<2\}$. Then, $\bar{\partial} \alpha=A$ in D_{2} and

[^0]$|\alpha(z)| \lesssim M$ in \bar{D}. Let $q(z)=e^{-\alpha} P$, where P is as in 11. Then, $\bar{\partial} q=0$ in D, $|q|^{2}=e^{-2 \operatorname{Re} \alpha}|P|^{2}=e^{-2 \operatorname{Re} \alpha}|H|^{2}$ on ∂D. The existence and uniqueness of q then follows from a classical theorem of Szegö [12], which in turn gives the existence and uniqueness of P (modulo unimodular constants for the uniqueness). Note that commutativity of the product is crucial for this argument.
Remark 3. Consider next the 2×2 matrix valued case, when $A \equiv 0$. Thus, P is a holomorphic matrix. Theorem 1 is then a consequence of the WienerMasani theorem [13, Theorem 7.13]. Note that the uniqueness assertion is not made in [13], but it is made and proved in [14]. More recent proofs of the WienerMasani theorem, under higher regularity assumptions and conclusions are given, for instance, in the works of Berndtsson-Rosay [1] and Lempert [7].

We now turn to the proof of Theorem 1. For the proof of the existence part of Theorem 1, we will combine the next Proposition 4 due to Davey-Kenig-Wang [3] Proposition 2] with the Wiener-Masani theorem.
Proposition 4. Let A be a 2×2 matrix defined on $R=[-2,2] \times[-2,2]$, with $M=\|A\|_{\infty}$. There exists an invertible solution to $\bar{\partial} P_{1}=A P_{1}$ in R, with the property that

$$
\left\|P_{1}\right\|_{\infty}+\left\|P_{1}^{-1}\right\|_{\infty} \lesssim \exp \left[C M^{2}(\log M)^{2}\right] .
$$

Note that $\bar{\partial} P_{1}=A P_{1}, \bar{\partial} P_{1}^{-1}=P_{1}^{-1} A$, and since the right-hand sides are bounded on R, P_{1} and P_{1}^{-1} are in $C^{\beta}(\bar{D}) 0<\beta<1$, with C^{β} norm bounded by $\exp \left[\tilde{C} M^{2}(\log M)^{2}\right]$.
Proof of the existence part of Theorem 1. Let $\tilde{H}=P_{1}^{-1} H$, where P_{1} is as in Proposition 4 Clearly, the invertibility of P_{1}^{-1} in R shows that, since $H H^{*}$ is strictly positive and invertible on ∂D, so is $\tilde{H} \tilde{H}^{*}$. By the Wiener-Masani theorem (the case $A \equiv 0$ of Theorem 11, there exists Q invertible and bounded in \bar{D}, with Q^{-1} bounded, Q, Q^{-1} holomorphic in D, and $Q Q^{*}=\tilde{H} \tilde{H}^{*}$ on ∂D. Let now $P=P_{1} Q$. Since Q is holomorphic $\bar{\partial} P=A P$ in D. On $\partial D, P P^{*}=P_{1} Q Q^{*} P_{1}^{*}=$ $P_{1}\left(P_{1}^{-1} H\right)\left(P_{1}^{-1} H\right)^{*} P_{1}^{*}=H H^{*}$, concluding the proof of existence.

For the proof of uniqueness, assume that P, \tilde{P} are two solutions, as in Theorem 1 Let $Q=\tilde{P}^{-1} P$. Then $\bar{\partial} Q=\bar{\partial}\left(\tilde{P}^{-1}\right) P+\tilde{P}^{-1} \bar{\partial} P=-\tilde{P}^{-1} \bar{\partial} \tilde{P} \tilde{P}^{-1} P+$ $\tilde{P}^{-1} A P=-\tilde{P}^{-1} A \tilde{P} \tilde{P}^{-1} P+\tilde{P}^{-1} A P=0$. Also, on $\partial D, Q Q^{*}=\tilde{P}^{-1} P P^{*}\left(\tilde{P}^{-1}\right)^{*}$ $=\tilde{P}^{-1} H H^{*}\left(\tilde{P}^{-1}\right)^{*}$. But $\tilde{P} \tilde{P}^{*}=H H^{*}$, so that $\tilde{P}=H H^{*}\left(\tilde{P}^{*}\right)^{-1}$, and $\tilde{P}^{-1}=$ $\tilde{P}^{*}\left(H H^{*}\right)^{-1}$, hence $\tilde{P}^{-1} H H^{*}\left(\tilde{P}^{-1}\right)^{*}=\tilde{P}^{*}\left(H H^{*}\right)^{-1} H H^{*}\left(\tilde{P}^{-1}\right)^{*}=I$. Thus, $Q Q^{*}=$ I on ∂D, and, $\bar{\partial} Q=0$ in D. By the uniqueness in the Wiener-Masani theorem, $Q \equiv U, U$ a constant unitary matrix, and so $P=\tilde{P} U$ as claimed.

We next turn to a proof of the uniqueness in the Wiener-Masani theorem via the "multiplicative integral". The multiplicative integral is a multiplicative analog of the classical Riemann-Stieltjes integrals. It first arose in the work of V. Volterra (1887) on the study of systems of ordinary differential equations. See [2], 11], 9] for discussions of the topic. Here we follow the exposition in the Master's Thesis
of Joris Roos (2014), which is unpublished, but can be found in [10. The definition of the multiplicative integral that is given in [10] is a multiplicative analog of the Stieltjes one. We consider the space M_{m} or $m \times m$ matrices A, endowed with the matrix norm $\|A\|=\sup _{|x|=1}|A x|$, where $|x|=\left(\sum_{j=1}^{m} x_{j}^{2}\right)^{1 / 2}$. We consider $t \in[a, b]$, and use the standard notion of a Hermitian matrix being positive, strictly positive, etc. We consider a partition $\tau=\left\{t_{i}\right\}_{i=0}^{n}$ of the interval $[a, b]$, $\Delta_{i} \tau=t_{i}-t_{i-1}, i=1, \ldots, n, \gamma(\tau)=\max _{i} \Delta_{i} \tau$. For a matrix valued function $E:[a, b] \rightarrow M_{m}$, we define $\operatorname{var}_{[a, b]}^{\tau}=\sum_{i=1}^{n}\left\|\Delta_{i} E\right\|$, where $\Delta_{i} E=\Delta_{i}^{\tau} E=E\left(t_{i}\right)-$ $E\left(t_{i-1}\right)$, and call E of bounded variation if $\operatorname{var}_{[a, b]} E=\sup _{\tau \in \tau_{a}^{b}} \operatorname{var}_{[a, b]}^{\tau} E<\infty$, $\tau_{a}^{b}=\{$ all partitions of $[a, b]\}$. We denote by $\mathrm{BV}\left([a, b], M_{m}\right)$ the space of functions of bounded variation. We call $|E|(t)=\operatorname{var}_{[a, t]} E$. Given a partion τ, choose intermediate points $\xi=\left(\xi_{i}\right)_{i=1, \ldots, n}, \xi_{i} \in\left[t_{i-1}, t_{i}\right]$. For f on $[a, b]$, with values in \mathbb{C}, or in M_{m}, we define $P(f, E, \tau, \xi)=P(\tau, \xi)=\prod_{i=1}^{\curvearrowright n} \exp \left(f\left(\xi_{i}\right) \Delta_{i} E\right)$. Here, $\prod_{i=1}^{\curvearrowright n} A_{i}=A_{1} A_{2} \cdots A_{n}$ denotes multiplication of the matrices $\left(A_{i}\right)_{i}$ from left to right. Let T_{a}^{b} be the set of tagged partitions (τ, ξ), such that τ is a subdivision of $[a, b]$ and ξ is a choice of corresponding intermediate points. We say that $P \in M_{m}$ is the (right) multiplicative Stieltjes integral corresponding to $f:[a, b] \rightarrow M_{m}$ (or \mathbb{C}), $E:[a, b] \rightarrow M_{m}$, if $\forall \epsilon>0$, there exists a $\left(\tau_{0}, \xi_{0}\right) \in T_{a}^{b}$ such that $\|P(\tau, \xi)-P\|<\epsilon$ for every $(\tau, \xi)<\left(\tau_{0}, \xi_{0}\right)$, i.e. for all $\tau \subset \tau_{0}$. One can show that if $f:[a, b] \rightarrow \mathbb{C}$ is continuous and $E:[a, b] \rightarrow M_{m}$ is of bounded variation, then $\int_{a}^{\curvearrowright b} \exp (f d E)$, which is, by definition, the right multiplicative integral just defined, exists.

An important result (see [10, Proposition 2.7]) is

$$
\begin{equation*}
\operatorname{det} \int_{a}^{\curvearrowright b} \exp (f(t) \mathrm{d} E(t))=\exp \left(\int_{a}^{b} f(t) \mathrm{d} \operatorname{tr} E(t)\right) \tag{2}
\end{equation*}
$$

where $\operatorname{tr} A$ is the trace of the matrix A. Note that, in particular, multiplicative integrals always yield invertible matrices.

Next we sketch a proof of the uniqueness in the Wiener-Masani theorem, using multiplicative integrals. Thus, let $\bar{\partial} Q=0$ in D, Q, Q^{-1} bounded in $\bar{D}, Q Q^{*}=I$ on ∂D. Note first that $\|Q(z)\| \leq 1$ for all $z \in D$, since $\|Q\|$ is subharmonic [10, Lemma A.4], $\|Q(z)\|=1, z \in \partial D$. Then, by [10, Theorem 3.1], Potapov's decomposition [9], $Q(z)=B(z) \int_{0}^{\curvearrowright L} \exp \left(h_{z}(\theta(t)) \mathrm{d} E(t)\right)$, where $B(z)$ is a Blaschke-Potapov product corresponding to the zeros of $\operatorname{det} Q, 0 \leq L \leq \infty, E$ is an increasing matrix valued function such that $\operatorname{tr} E(t)=t, t \in[0, L], \theta:[0, L] \rightarrow[0,2 \pi]$ is a right continuous increasing function, and $h_{z}(\theta)=\frac{z+e^{i \theta}}{z-e^{i \theta}}$ is the Herglotz kernel. Since $\operatorname{det} Q(z) \neq 0$ in $\bar{D}, B(z)=U, U$ a constant unitary matrix.

Next we claim that $q(z)=\operatorname{det} Q(z) \equiv e^{\mathrm{i} \theta_{0}}$ in \bar{D}. Assuming this, we have that

$$
\begin{aligned}
1 & =\left|e^{\mathrm{i} \theta_{0}}\right|=|q(0)|=|\operatorname{det} Q(0)| \\
& =\left|\operatorname{det} U \int_{0}^{L} \exp \left(h_{0}(\theta(t)) \mathrm{d} E(t)\right)\right|=\left|\operatorname{det} \int_{0}^{L} \exp \left(h_{0}(\theta(t)) \mathrm{d} E(t)\right)\right|
\end{aligned}
$$

$$
(\text { by }(2))=\left|\exp \int_{0}^{L} h_{0}(\theta(t)) \mathrm{d} \operatorname{tr} E(t)\right|=\left|\exp \int_{0}^{L} \frac{e^{\mathrm{i} \theta(t)}}{-e^{\mathrm{i} \theta(t)}} \mathrm{d} t\right|=\exp (-L)
$$

But then, $L=0, Q(z)=U$.
We turn to the proof of the claim. Let $q(z) \neq 0, z \in D, q, q^{-1}$ be holomorphic in D, bounded in $\bar{D},|q(z)|=1, z \in \partial D$. Consider $u(z)=\log |q(z)|$, which is harmonic in D, bounded on \bar{D} (since q^{-1} is bounded in \bar{D}). Then $u(0)=$ $\log |q(0)|=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|q\left(e^{\mathrm{i} \theta}\right)\right| \mathrm{d} \theta=0$. Also, since $u(z) \equiv 0, z \in \partial D$, by the maximum principle $u(z) \leq 0$ in D. But since $u(0)=0, u \equiv 0$, so $|q(z)| \equiv 1, z \in D$, and since q is holomorphic in D, q is constant, and thus $q(z) \equiv e^{\mathrm{i} \theta_{0}}$.

Finally, we turn to the main open question, which motivates this note. Let H in Theorem 1 be the identity matrix, and P the corresponding solution. By the construction of P and Proposition 4, we know that $\|P\|_{\infty}$ and $\left\|P^{-1}\right\|_{\infty}$ are bounded by $\exp \left(C M^{2}(\log M)^{2}\right)$, where $\|A\|_{\infty} \leq M$, and we assume, for convenience, that $M \geq 1$. We would like to know:

Question 5. Are $\|P\|_{\infty},\left\|P^{-1}\right\|_{\infty}$ bounded by $\exp \left(C_{\epsilon} M^{1+\epsilon}\right)$, for each $\epsilon>0$?
An affirmative answer to this question would give, following the argument in [3], a proof of the Landis conjecture for $N=2$ (which is now the theorem of Logunov-Malinnikova-Nadirashvili-Nazarov [8]). Notice that we can reduce ourselves to the case when $\operatorname{tr} A=0$, and hence $\operatorname{det} P \equiv e^{\mathrm{i} \theta_{0}}$, so that $\|P\|_{\infty}=\left\|P^{-1}\right\|_{\infty}$. Indeed, a simple computation yields that, if $q=\operatorname{det} P$, then $\bar{\partial} q=(\operatorname{tr} A) q$, so that, if $\operatorname{tr} A=0, q$ is holomorphic, and so is q^{-1}, and $|q(z)|=1, z \in \partial D$, since on ∂D, $P P^{*}=I$. Thus as before, $q(z)=e^{\mathrm{i} \theta_{0}}$. To reduce to the $\operatorname{tr} A=0$ case, note that if $A=A_{1}+A_{2}, \bar{\partial} P_{1}=A_{1} P_{1}$, and P_{2} solves $\bar{\partial} P_{2}=P_{2} B$, where $B=-P_{1}^{-1} A_{2} P_{1}$, then $P=P_{1} P_{2}^{-1}$ solves $\bar{\partial} P=A P$. Let $A_{2}=\left(\begin{array}{cc}\frac{\operatorname{tr} A}{2} & 0 \\ 0 & \frac{\operatorname{tr} A}{2}\end{array}\right), A_{1}=A-A_{2}$, so that $\operatorname{tr}\left(A_{1}\right)=0$. Also, since A_{2} is a scalar matrix, $B=-P_{1}^{-1} A_{2} P_{1}=-A_{2}$, so that $\bar{\partial} P_{2}=P_{2} A_{2}=A_{2} P_{2}$. Since A_{2} is scalar, and for the scalar equation we have the exponential bounds with M to the power 1 (see Remark 2), and $P=P_{1} P_{2}^{-1}$, it suffices to give the bounds for P_{1}, which solves $\bar{\partial} P_{1}=A_{1} P_{1}$, with $\operatorname{tr} A_{1}=0$. (In the case of the Landis conjecture, the matrix in [3] has trace 0 to begin with). This is a challenging question in its own right.

Final remark. It was with great sadness that I learned of the unexpected death of Pola Harboure. Pola and I became good friends during the time that she spent at Minnesota in the early 1980s and we kept in touch over the years. Her death is a great loss for mathematics, especially in Argentina and Latin America, where she was a pillar of the mathematical community. It is also a great loss for her family and friends, for whom she was so important. We continue to mourn her.

References

[1] B. Berndtsson and J.-P. Rosay, Quasi-isometric vector bundles and bounded factorization of holomorphic matrices, Ann. Inst. Fourier (Grenoble) 53 no. 3 (2003), 885-901. MR Zbl Available at http://aif.cedram.org/item?id=AIF_2003_-53_3_885_0
[2] M. S. Brodskĭ̆, Triangular and Jordan representations of linear operators, Translations of Mathematical Monographs, Vol. 32, American Mathematical Society, Providence, RI, 1971. MR
[3] B. Davey, C. Kenig, and J.-N. Wang, On Landis' conjecture in the plane when the potential has an exponentially decaying negative part, Algebra i Analiz 31 no. 2 (2019), 204-226, translation in St. Petersburg Math. J. 31 (2020), no. 2, 337-353. DOI MR Zbl
[4] B. Davey, On Landis' conjecture in the plane for some equations with sign-changing potentials, Rev. Mat. Iberoam. 36 no. 5 (2020), 1571-1596. DOI MR Zbl
[5] C. Kenig, L. Silvestre, and J.-N. Wang, On Landis' conjecture in the plane, Comm. Partial Differential Equations 40 no. 4 (2015), 766-789. DOI MR Zbl
[6] V. A. Kondrat'ev and E. M. Landis, Qualitative theory of second-order linear partial differential equations, in Partial Differential Equations, 3 (Russian), Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1988, pp. 99-215, 220. MR Zbl
[7] L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 no. 4 (1981), 427-474. MR Zbl Available at http://www.numdam. org/item?id=BSMF_1981__109__427_0
[8] A. Logunov, E. Malinnikova, n. Nadirashvili, and F. Nazarov, The Landis conjecture on exponential decay, 2020. arXiv 2007.07034 [math.AP].
[9] V. P. Potapov, The multiplicative structure of J-contractive matrix functions, Amer. Math. Soc. Transl. (2) 15 (1960), 131-243. DOI MR
[10] J. Roos, Inner-Outer Factorization of Analytic Matrix-Valued Functions, Master's thesis, Mathematisch-Naturwissenschaftliche Fakultät der Rheinischen Friedrich-WilhelmsUniversität Bonn, 2014. Available at https://faculty.uml.edu/joris_roos/files/MasterThesis. pdf
[11] A. Slavík, Product Integration, Its History and Applications, Nečas Center for Mathematical Modeling vol. 1, Matfyzpress, Prague, 2007. MR Zbl Available at https://www2.karlin.mff. cuni.cz/~prusv/ncmm/notes/download/product_integration.pdf
[12] G. Szegö, Über die Randwerte einer analytischen Funktion, Math. Ann. 84 no. 3-4 (1921), 232-244. DOI MR Zbl
[13] N. Wiener and P. Masani, The prediction theory of multivariate stochastic processes, I. The regularity condition, Acta Math. 98 (1957), 111-150. DOI MR Zbl
[14] N. Wiener and P. Masani, The prediction theory of multivariate stochastic processes, II. The linear predictor, Acta Math. 99 (1958), 93-137. DOI MR Zbl

Carlos E. Kenig

Department of Mathematics, University of Chicago, Chicago, IL 60637, USA
ckenig@uchicago.edu

Received: February 4, 2023
Accepted: April 15, 2023

[^0]: 2020 Mathematics Subject Classification. Primary 30E25; Secondary 35B60.
 Supported in part by NSF Grant DMS-2153794.

