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TWO-WEIGHTED ESTIMATES
OF THE MULTILINEAR FRACTIONAL INTEGRAL OPERATOR
BETWEEN WEIGHTED LEBESGUE AND LIPSCHITZ SPACES

WITH OPTIMAL PARAMETERS
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Abstract. Given an m-tuple of weights ~v = (v1, . . . , vm), we characterize the
classes of pairs (w,~v) involved in the boundedness properties of the multilinear
fractional integral operator from

∏m

i=1 L
pi
(
v
pi
i

)
into suitable Lipschitz spaces

associated to a parameter δ, Lw(δ). Our results generalize some previous
estimates not only for the linear case but also for the unweighted problem in
the multilinear context. We emphasize the study related to the range of the
parameters involved in the problem described above, which is optimal in the
sense that they become trivial outside of the region obtained. We also exhibit
nontrivial examples of pairs of weights in this region.

1. Introduction

In 1972 B. Muckenhoupt characterized the nonnegative functions w for which
the classical Hardy–Littlewood maximal operator M is bounded in Lp(w), for 1 <
p < ∞ (see [8]). More precisely, the author proved that M : Lp(w) ↪→ Lp(w) if
and only if w ∈ Ap, that is, w satisfies the inequality(

1
|Q|

∫
Q

w

)(
1
|Q|

∫
Q

w1−p′
)p−1

≤ C

for every cube Q. These classes became very important for many estimates in
Harmonic Analysis and were further studied by many authors.

Later on, in [9], B. Muckenhoupt and R. Wheeden introduced a variant of these
sets of functions, the Ap,q classes, given by the collection of weights w such that(

1
|Q|

∫
Q

wq
)1/q ( 1

|Q|

∫
Q

w−p
′
)1/p′

≤ C,
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for every cube Q, where 1 < p, q < ∞. These classes played an important role on
the boundedness properties of the fractional maximal operator Mγ , 0 < γ < n and
the fractional integral operator Iγ given by the expression

Iγf(x) =
∫
Rn

f(y)
|x− y|n−γ

dy,

whenever the integral is finite. It was proved in [9] that if 1 < p < n/γ and
1/q = 1/p − γ/n, then this operator maps Lp(wp) into Lq(wq) if and only if
w ∈ Ap,q. For the endpoint case p = n/γ it was also shown that the operator Iγ
maps Ln/γ(wn/γ) into a weighted version of the bounded mean oscillation spaces
BMO if and only if w−n/(n−γ) ∈ A1. Although the Ap,q classes above are a variant
of Ap, they are intimately related with them. It is well-known that w ∈ Ap,q is
equivalent either to wq ∈ A1+q/p′ or w−p′ ∈ A1+p′/q (see [9]).

Later on, in [12] the author proved that for n/γ ≤ p < n/(γ−1)+ and δ = γ−n/p
the operator Iγ maps Lp(wp) into suitable weighted Lipschitz spaces related to the
parameter δ. These spaces are a generalization of those introduced in [9] which
correspond to δ = 0. A two-weighted problem was also studied, giving the optimal
parameters for which the associated classes of weights are nontrivial.

In [5] E. Harboure, O. Salinas and B. Viviani had introduced another class of
weighted Lipschitz spaces wider than those considered in [12]. Concretely, they
defined the class Lw(δ) as the collection of locally integrable functions f such that

sup
B⊂Rn

1
w−1(B)|B|δ/n

∫
B

|f(x)− fB | dx <∞. (1.1)

They characterized the weights involved in the continuity properties of Iγ acting
between Lp(w) into Lw(δ) for 1 < p < n/(γ − 1)+ and δ = γ − n/p. The class of
weights turned out wider than the corresponding class considered in [12], being the
same under certain additional assumptions on the weight. Inspired by that work,
a two-weighted problem was also studied in [11].

Given m ∈ N and 0 < γ < mn the multilinear fractional integral operator of
order m, Iγ,m, is defined as follows:

Iγ,m ~f(x) =
∫

(Rn)m

∏m
i=1 fi(yi)

(
∑m
i=1 |x− yi|)mn−γ

d~y,

where ~f = (f1, f2, . . . , fm) and ~y = (y1, y2, . . . , ym), provided the integral is finite.
The continuity properties of Iγ,m were studied by several authors. For example,

it was shown in [7] that if 0 < γ < mn then Iγ,m :
∏m
i=1 L

pi ↪→ Lq, where
1/p =

∑m
i=1 1/pi and 1/q = 1/p − γ/n. The author also considered weighted

versions of these estimates, generalizing the results of [9] to the multilinear context.
On the other hand, in [1] unweighted estimates of Iγ,m between

∏m
i=1 L

pi and
Lipschitz-δ spaces were given, with 0 ≤ δ < 1 and δ = γ − n/p. For other type
of estimates involving multilinear versions of the fractional integral operator see
also [3], [4], [6] and [13].

Rev. Un. Mat. Argentina, Vol. 66, No. 1 (2023)



TWO-WEIGHTED ESTIMATES OF Iγ,m 71

Recently in [2] we studied the boundedness of Iγ,m between
∏m
i=1 L

pi (vpii ) into
the space Lw(δ) defined by the collection of locally integrable functions f such that

sup
B⊂Rn

‖wXB‖∞
|B|1+δ/n

∫
B

|f(x)− fB | dx <∞,

characterizing the weights involved as those satisfying the condition Hm(~p, γ, δ)
given by

‖wXB‖∞
|B|(δ−1)/n

m∏
i=1

(∫
Rn

v
−p′i
i (y)

(|B|1/n + |xB − y|)(n−γi+1/m)p′
i

dy

)1/p′i

≤ C. (1.2)

The purpose of this article is to study the boundedness of the operator Iγ,m
between a product of weighted Lebesgue spaces into the Lipschitz space Lw(δ)
defined in (1.1). Our result generalizes the linear case when p > n/γ. We do not
only consider adequate extensions of the one-weight estimates in the linear case
proved in [5], but also a generalization of the corresponding two-weighted problem
given in [11] for m = 1. We characterize the classes of weights for which the
problem described above holds. We also show the optimal range of the parameters
involved. The optimality is understood in the sense that the parameters describe
certain region in which we can find concrete examples of weights belonging to the
class, becoming trivial outside of it. The results obtained in this paper not only
extend the results in [5] and [11] but also they generalize the unweighted multilinear
results proved in [1] .

We shall now introduce the classes of weights and the notation required in order
to state our main results.

Along the manuscript the multilinear parameter will be denoted by m ∈ N. Let
0 < γ < mn, δ ∈ R and ~p = (p1, p2, . . . , pm) be an m-tuple of exponents where
1 ≤ pi ≤ ∞ for 1 ≤ i ≤ m. We define p such that 1/p =

∑m
i=1 1/pi.

We shall be dealing with a wider class of multilinear weights than those satisfying
(1.2) (see [2]) and defined as follows. Given the weights w, v1, . . . , vm, if ~v =
(v1, v2, . . . , vm) we say that a pair (w,~v) belongs to the class Hm(~p, γ, δ) if there
exists a positive constant C such that the inequality

|B|1+(1−δ)/n

w−1(B)

m∏
i=1

(∫
Rn

v
−p′i
i (y)

(|B|1/n + |xB − y|)(n−γi+1/m)p′
i

dy

)1/p′i

≤ C

holds for every ball B = B(xB , R), where
∑m
i=1 γi = γ, with 0 < γi < n for every

i and xB denotes the center of B. The integral above is understood as usual when
pi = 1, (see § 2 for further details).

When m = 1 the class given above was first introduced in [11] (for w = v see
also [10] for the case δ = 0 and [5] for the one-weight case). In that paper the
author showed nontrivial weights when δ ≤ min{1, γ − n/p}. A similar restriction,
as we shall prove, appears in the multilinear context.

Remark 1. It is easy to check that Hm(~p, γ, δ) ⊂ Hm(~p, γ, δ) and, if w−1 ∈ A1,
both classes coincide. The same statement is true for the classes Lw(δ) and Lw(δ).
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We recall that a weight w belongs to the reverse Hölder class RHs, 1 < s <∞,
if there exists a positive constant C such that the inequality(

1
|B|

∫
B

ws
)1/s

≤ C

|B|

∫
B

w

holds for every ball B in Rn. It is not difficult to see that RHt ⊂ RHs whenever
1 < s < t. We also consider weights belonging to the class RH∞, that is, the
collection of weights w such that the inequality

sup
B
w ≤ C

|B|

∫
B

w

holds for some positive constant C.
We are now in a position to state our main results.

Theorem 1.1. Let 0 < γ < mn, δ ∈ R, and ~p a vector of exponents that verifies
p > n/γ. Let (w,~v) a pair such that v−p

′
i

i ∈ RHm, for i ∈ I2 = {1 ≤ i ≤ m : 1 <
pi ≤ ∞}. Then the following statements are equivalent:
(1) The operator Iγ,m is bounded from

∏m
i=1 L

pi(vpii ) to Lw(δ);
(2) The pair (w,~v) belongs to Hm(~p, γ, δ).

Observe that a reverse Hölder condition for the weights vi is required for our
theorem to hold. Although this seems to be a restriction, it does trivially hold
when we consider m = 1, as expected. A condition of this type was also required
for the class Hm(~p, γ, δ) in [2].

We also notice that whilst there is no restriction on δ in the previous theorem,
they arise as a consequence of the nature of the corresponding weights. The follow-
ing theorem establishes the range of parameters involved in the class Hm(~p, γ, δ)
where the weights are trivial, that is, vi =∞ a.e. for some i or w = 0 a.e.

Theorem 1.2. Let 0 < γ < mn, δ ∈ R, and ~p a vector of exponents. The following
statements hold:
(a) If δ > 1 or δ > γ − n/p then condition Hm(~p, γ, δ) is satisfied if and only if

vi =∞ on a subset of Rn of positive measure, for some 1 ≤ i ≤ m.
(b) The same conclusion holds if δ = γ − n/p = 1.

In § 5 we shall exhibit nontrivial examples of pairs (w,~v), for which the class
Hm(~p, γ, δ) is nonempty, depicting the corresponding regions described by the pa-
rameters. By Remark 1 we have that these regions include the corresponding ones
given in [2].

Regarding the case when w =
∏m
i=1 vi, which generalizes the one-weighted prob-

lem when m = 1, we have proved in [2] that condition Hm(~p, γ, δ) reduces to the
multilinear class A~p,∞. This is the natural multilinear extension for the condition
v−p

′ ∈ A1 on the linear setting. When (w,~v) ∈ Hm(~p, γ, δ) and w =
∏m
i=1 vi we

shall directly say that ~v ∈ Hm(~p, γ, δ), that is, there exists a positive constant C
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such that the inequality

|B|(1−δ)/n
m∏
i=1

(∫
Rn

v
−p′i
i (y)

(|B|1/n + |xB − y|)(n−γi+1/m)p′
i

dy

)1/p′i

≤ C

|B|

∫
B

m∏
i=1

v−1
i

holds for every ball B, with the obvious changes when pi = 1 for some i. The
following theorem deals with this case of related weights.

Theorem 1.3. Let 0 < γ < mn, δ ∈ R and ~p a vector of exponents. If ~v ∈
Hm(~p, γ, δ) and p/(mp− 1) > 1, then we have that δ = γ − n/p.

When m = 1, the theorem above was given in [14]. As an immediate consequence
we have the following result.

Corollary 1.4. Given 0 < γ < mn, ~p a vector of exponents and δ = γ − n/p. If
~v ∈ Hm(~p, γ, δ) and α = p/(mp− 1) > 1, then we have that

∏m
i=1 v

−1
i ∈ RHα.

Notice that, when m = 1, α = p′ > 1 and the corollary establishes that if
v ∈ H1(p, γ, δ), then v−1 ∈ RHp′ , a property proved in [5].

2. Preliminaries and definitions

Throughout the paper, C will denote an absolute constant that may change in
every occurrence. By A . B we mean that there exists a positive constant c such
that A ≤ cB. We say that A ≈ B when A . B and B . A.

Let m ∈ N. Given a set E, with Em we shall denote the cartesian product of E
m times.

It will be useful for us to consider the operator

Jγ,m ~f(x) =
∫

(Rn)m

(
1

(
∑m
i=1 |x− yi|)mn−γ

−
1−XB(0,1)m(~y)
(
∑m
i=1 |yi|)mn−γ

) m∏
i=1

fi(yi) d~y.

(2.1)
which differs from Iγ,m only by a constant term, therefore it has the same Lipschitz
norm as Iγ,m, so it will be enough to give the results for Jγ,m.

By a weight we understand any positive and locally integrable function. As we
said in the introduction, given δ ∈ R and a weight w we say that a locally integrable
function f ∈ Lw(δ) if there exists a positive constant C such that

1
w−1(B)|B|δ/n

∫
B

|f(x)− fB | dx ≤ C

for every ball B, where fB = |B|−1 ∫
B
f .

If δ = 0 the space Lw(δ) coincides with some weighted versions of BMO spaces
introduced in [10]. Concerning the unweighted case, when 0 < δ < 1 it is equivalent
to the classical Lipschitz classes Λ(δ) given by the collection of functions f satisfying
|f(x) − f(y)| ≤ C|x − y|δ and, if −n < δ < 0, they are Morrey spaces. On the
other hand, this space was studied for example in [5] and in [11].
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The class Hm(~p, γ, δ) is given by the pairs (w,~v) for which the inequality

sup
B⊂Rn

|B|1+(1−δ)/n

w−1(B)

m∏
i=1

(∫
Rn

v
−p′i
i (y)

(|B|1/n + |xB − y|)(n−γi+1/m)p′
i

dy

)1/p′i

<∞ (2.2)

holds. For those index i such that pi = 1 we understand the corresponding factor
on the product above as∥∥∥∥ v−1

i

(|B|1/n + |xB − ·|)(n−γi+1/m)

∥∥∥∥
∞
.

Let I1 = {1 ≤ i ≤ m : pi = 1} and I2 = {1 ≤ i ≤ m : pi > 1}. We will also
denote with mj the cardinal of the set Ij , that is, mj = #Ij for j = 1, 2. We shall
use this notation throughout the paper.

Observe that if (w,~v) belongs to Hm(~p, γ, δ), then the inequalities

|B|1−δ/n+γ/n−1/p

w−1(B)
∏
i∈I1

‖v−1
i XB‖∞

∏
i∈I2

(
1
|B|

∫
B

v
−p′i
i

)1/p′i
≤ C (2.3)

and
|B|1+(1−δ)/n

w−1(B)
∏
i∈I1

∥∥∥∥∥ v−1
i XRn\B

(|B|1/n + |xB − ·|)(n−γi+1/m)

∥∥∥∥∥
∞

×
∏
i∈I2

(∫
Rn\B

v
−p′i
i (y)

|xB − y|(n−γi+1/m)p′
i

dy

)1/p′i

≤ C, (2.4)

hold for every ball B. We shall refer to these inequalities as the local and the global
conditions, respectively. Furthermore, if I and J partition the set I1, from (2.2)
we can write
|B|1+(γ−δ)/n−1/p

w−1(B)
∏
i∈I

∥∥v−1
i X2B−B

∥∥
∞

∏
i∈J

∥∥v−1
i XB

∥∥
∞

∏
i∈I2

(
1
|2B|

∫
2B
v
−p′i
i

)1/p′i
≤ C

(2.5)
for every ball B. This inequality will be useful for our purposes later.

On the other hand, when v−1
i ∈ RH∞ for i ∈ I1 and v

−p′i
i is doubling for

i ∈ I2, the corresponding local and global conditions imply (2.2). Before stating
and proving this result, we shall introduce some useful notation.

Given m ∈ N we denote Sm = {0, 1}m. Given a set B and σ ∈ Sm, σ =
(σ1, σ2, . . . , σm) we define

Bσi =
{
B, if σi = 1
Rn\B, if σi = 0.

With the notation Bσ we will understand the cartesian product Bσ1 × Bσ2 ×
· · · × Bσm . In particular, if we set 1 = (1, 1, . . . , 1) and 0 = (0, 0, . . . , 0) then we
have
B1 = B×B×· · ·×B = Bm and B0 = (Rn\B)×(Rn\B)×· · ·×(Rn\B) = (Rn\B)m.
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Lemma 2.1. Let 0 < γ < mn, δ ∈ R, ~p a vector of exponents and (w,~v) a pair
of weights such that v−1

i ∈ RH∞ for i ∈ I1 and v
−p′i
i is doubling for i ∈ I2. Then

condition Hm(~p, γ, δ) is equivalent to (2.4).

Proof. We have already seen that Hm(~p, γ, δ) implies (2.4). In order to prove the
converse, we let θi = n− γi + 1/m for every i. Recall that m2 = #I2. By splitting
the integral into the ball B and its complement and by computing the product we
have that

∏
i∈I2

(∫
Rn

v
−p′i
i

(|B|1/n + |xB − ·|)θip
′
i

) 1
p′
i

=
∑

σ∈Sm2

m2∏
i=1

(∫
Bσi

v
−p′i
i

(|B|1/n + |xB − ·|)θip
′
i

) 1
p′
i

,

where we have used a possible rearrangement and re-indexing of i ∈ I2.
Fix σ ∈ Sm2 . If σi = 0, we have that

(∫
Bσi

v
−p′i
i

(|B|1/n + |xB − ·|)θip
′
i

) 1
p′
i

=
(∫

Rn\B

v
−p′i
i

(|B|1/n + |xB − ·|)θip
′
i

) 1
p′
i

≤

(∫
Rn\B

v
−p′i
i (y)

|xB − y|θip
′
i

dy

) 1
p′
i

.

For σi = 1, since v−p
′
i

i is doubling, we have that

(∫
Bσi

v
−p′i
i (y)

(|B|1/n + |xB − y|)θip
′
i

dy

) 1
p′
i

=
(∫

B

v
−p′i
i (y)

(|B|1/n + |xB − y|)θip
′
i

dy

) 1
p′
i

≤ 1
|B|1−γi/n+1/(mn)

(∫
B

v
−p′i
i

)1/p′i

.
1

|2B|1−γi/n+1/(mn)

(∫
2B\B

v
−p′i
i

)1/p′i

≤

(∫
2B\B

v
−p′i
i (y)

|xB − y|(n−γi+1/m)p′
i

)1/p′i

≤

(∫
Rn\B

v
−p′i
i (y)

|xB − y|(n−γi+1/m)p′
i

)1/p′i

.

Therefore, for every σ ∈ Sm2 , we obtain

m2∏
i=1

(∫
Bσi

v
−p′i
i

(|B|1/n + |xB − ·|)θip
′
i

)1/p′i

.
∏
i∈I2

(∫
Rn\B

v
−p′i
i

|xB − ·|θip
′
i

)1/p′i

. (2.6)
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On the other hand, for i ∈ I1 we proceed similarly as above replacing ‖ · ‖p′
i

by
‖ · ‖∞ and using the RH∞ condition for v−1

i . Indeed, observe that∥∥v−1XB
∥∥
∞ ≤

C

|B|

∫
B

v−1 ≤ C

|B|

∫
2B\B

v−1 ≤ C
∥∥v−1X2B\B

∥∥
∞ .

Then we can conclude that∏
i∈I1

∥∥∥∥ v−1
i

(|B|1/n + |xB − ·|)n−γ/m+1/m

∥∥∥∥
∞
.
∏
i∈I1

∥∥∥∥∥ v−1
i XRn\B

|xB − ·|n−γ/m+1/m

∥∥∥∥∥
∞

. (2.7)

Therefore, by combining (2.6), (2.7) and (2.4) we get that

|B|1+(1−δ)/n

w−1(B)
∏
i∈I1

∥∥∥∥ v−1
i

(|B|1/n + |xB − ·|)n−γ/m+1/m

∥∥∥∥
∞

×
∏
i∈I2

(∫
Rn

v
−p′i
i

(|B|1/n + |xB − ·|)θip
′
i

)1/p′i

≤ C,

as desired. �

Corollary 2.2. Under the hypotheses of Lemma 2.1 we have that condition (2.4)
implies (2.3).

3. Technical results

We now introduce some operators related to Iγ,m and some useful properties in
order to prove our main results.

Given a ball B = B(xB , R) and B̃ = 2B, as in [2] we can decompose the operator
in (2.1) as

Jγ,m ~f(x) = aB + I ~f(x),
where

aB =
∫

(Rn)m

(
1−XB̃m(~y)

(
∑m
i=1 |xB − yi|)mn−γ

−
1−XB(0,1)m(~y)
(
∑m
i=1 |yi|)mn−γ

) m∏
i=1

fi(yi) d~y (3.1)

and

I ~f(x) =
∫

(Rn)m

(
1

(
∑m
i=1 |x− yi|)mn−γ

− 1−XB̃m(~y)
(
∑m
i=1 |xB − yi|)mn−γ

) m∏
i=1

fi(yi) d~y.

(3.2)
We shall first prove that this operator is well-defined for ~f as in Theorem 1.1.

Lemma 3.1. Let 0 < γ < mn, δ ∈ R, and ~p a vector of exponents that verifies
p > n/γ. Let (w,~v) be a pair of weights in Hm(~p, γ, δ) such that v−p

′
i

i ∈ RHm, for
i ∈ I2. If ~f satisfies fivi ∈ Lpi for every 1 ≤ i ≤ m, then Jγ,m ~f is finite in almost
every x ∈ Rn.
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Proof. We are going to exhibit a sketch of the proof, since it follows similar lines
to that in [2, Lemma 3.1]. By using the same notation as in that lemma, fix a
ball B = B(xB , R) and write Jγ,m ~f = aB + I ~f , where we split aB = a1

B + a2
B and

I ~f = I1 ~f + I2 ~f . We proved that

|a1
B | ≤

(
1 + C

|B|m−γ/n

) m∏
i=1

(∫
B0

|fi(yi)| dyi
)
,

where B0 = B(0, R0) with R0 = 2(|xB | + R). By using Hölder’s inequality and
condition (2.3) we get

|a1
B | ≤

(
1 + C

|B|m−γ/n

) m∏
i=1
‖fivi‖pi

∏
i∈I1

∥∥v−1
i XB0

∥∥
∞

∏
i∈I2

(∫
B0

v
−p′i
i

)1/p′i

≤
(

1 + C

|B|m−γ/n

) m∏
i=1
‖fivi‖pi

w−1(B0)
|B0|

|B0|δ/n−γ/n+1/p

<∞.

In the same lemma we also proved that

|a2
B | ≤ C

m∏
i=1
‖fivi‖pi

∏
i∈I1

∥∥∥∥ v−1
i

(|B0|1/n + |xB0 − ·|)θi

∥∥∥∥
∞

×
∏
i∈I2

(∫
Rn

v
−p′i
i

(|B0|1/n + |xB0 − yi|)θip
′
i

)1/p′i

,

where θi = n− γi + 1/m. So by using condition (2.2) we get that

|a2
B | ≤ C

w−1(B0)
|B0|

|B0|(δ−1)/n
m∏
i=1
‖fivi‖pi <∞.

Let us now consider I1 ~f . By proceeding as in the corresponding estimate in [2] we
obtain∫
B

|I1 ~f(x)| dx ≤ C
m∏
i=1
‖fivi‖pi

∏
i∈I2

(
1
|B̃|

∫
B̃

v
−p′i
i

)1/p′i

×
∏
i∈I1

∥∥v−1
i XB̃

∥∥
∞ |B̃|

(γ−γ0)/n−m1+1/q′+1−1/(m0p
∗)

= C|B̃|γ/n−1/p+1
m∏
i=1
‖fivi‖pi

∏
i∈I1

∥∥v−1
i XB̃

∥∥
∞

∏
i∈I2

(
1
|B̃|

∫
B̃

v
−p′i
i

)1/p′i
.
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We rearrange the indices in I1 increasingly, in a way to get I1 = {i1, . . . , im1}.
Observe that∏

i∈I1

∥∥v−1
i XB̃

∥∥
∞ ≤

∏
i∈I1

(∥∥v−1
i XB̃−B

∥∥
∞ +

∥∥v−1
i XB

∥∥
∞

)
=

∑
σ∈Sm1

m1∏
j=1

∥∥∥v−1
ij
XB̃−B

∥∥∥σj
∞

∥∥∥v−1
ij
XB
∥∥∥1−σj

∞
.

Therefore,∫
B

|I1 ~f(x)| dx ≤ C
m∏
i=1
‖fivi‖pi

∑
σ∈Sm1

|B̃|γ/n−1/p+1
∏
i∈I2

(
1
|B̃|

∫
B̃

v
−p′i
i

)1/p′i

×
m1∏
j=1

∥∥∥v−1
ij
XB̃−B

∥∥∥σj
∞

∥∥∥v−1
ij
XB
∥∥∥1−σj

∞
.

Fix σ ∈ Sm1 and define the sets
I = {ij ∈ I1 : σj = 1} and J = {ij ∈ I1 : σj = 0}.

We can apply condition (2.5) to bound every term of the sum by

C
w−1(B)

|B|1+(γ−δ)/n−1/p |B̃|
γ/n−1/p+1 = Cw−1(B)|B|δ/n.

Consequently, ∫
B

|I1 ~f(x)| dx ≤ Cw−1(B)|B|δ/n
(

m∏
i=1
‖fivi‖pi

)
.

Finally, for I2 ~f we have

|I2 ~f(x)| ≤ |B|1/n
∑

σ∈Sm,σ 6=1

∫
B̃σ

∏m
i=1 |fi(yi)|

(
∑m
i=1 |xB − yi|)mn−γ+1 d~y.

This expression is similar to a2
B , with B0 replaced by B̃. Observe that∥∥∥∥ v−1

i

|xB − ·|θi
XB̃c

∥∥∥∥
∞
≤
∥∥∥∥ v−1

i

|xB − ·|θi
XBc

∥∥∥∥
∞

for those indices i ∈ I1 such that σi = 0. On the other hand, if i ∈ I1 and σi = 1,
we can split the expression ‖v−1

i XB̃‖∞ as follows:∥∥v−1
i XB̃

∥∥
∞ ≤

∥∥v−1
i XB̃−B

∥∥
∞ +

∥∥v−1
i XB

∥∥
∞

and repeat the argument used in the estimation of I1 ~f . After applying condition
(2.5) we get that ∫

B

|I2 ~f(x)| dx ≤ Cw−1(B)|B|δ/n
m∏
i=1
‖fivi‖pi .

This concludes the proof of the lemma. �
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Remark 2. The corresponding bound obtained for I ~f will be used for the proof of
Theorem 1.1.

The next lemma was given in [2]. The sets involved in its statement are defined
as follows.

For a fixed ball B = B(xB , R) we set

A = {xB + h : h = (h1, h2, . . . , hn) : hi ≥ 0 for 1 ≤ i ≤ n},

C1 = B

(
xB −

R

12
√
n
u,

R

12
√
n

)
∩
{
xB −

R

12
√
n
u+ h : hi ≤ 0 for every i

}
,

and

C2 = B

(
xB −

R

3
√
n
u,

2R
3

)
∩
{
xB −

R

3
√
n
u+ h : hi ≤ 0 for every i

}
,

where u = (1, 1, . . . , 1).

Lemma 3.2. There exists a positive constant C = C(n) such that the inequality

1
(
∑m
j=1 |x− yj |)mn−γ

− 1
(
∑m
j=1 |z − yj |)mn−γ

≥ C |B|1/n

(|B|1/n +
∑m
j=1 |xB − yj |)mn−γ+1

holds for every x ∈ C1, z ∈ C2, and yj ∈ A for 1 ≤ j ≤ m.

Remark 3. It is not difficult to see that |Ci| ≈ |B| for i = 1, 2.

4. Proof of the main results

In this section we prove our main results.

Proof of Theorem 1.1. We shall first prove that (2) implies (1). We shall deal with
the operator Jγ,m since it differs from Iγ,m by a constant term. We want to prove
that for every ball B

1
w−1(B)|B|δ/n

∫
B

|Jγ,m ~f(x)− (Jγ,m ~f)B | dx ≤ C
m∏
i=1
‖fivi‖pi , (4.1)

with C independent of B. Fix a ball B = B(xB , R) and recall that Jγ,m ~f(x) =
aB + I ~f(x), where aB is given by (3.1) and I ~f by (3.2). In Lemma 3.1 we proved
that ∫

B

|I ~f(x)| dx ≤ Cw−1(B)|B|δ/n
m∏
i=1
‖fivi‖pi ,

which implies that∫
B

|Jγ,m ~f(x)− aB | dx ≤ Cw−1(B)|B|δ/n
m∏
i=1
‖fivi‖pi . (4.2)
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On the other hand, observe that∫
B

|Jγ,m ~f(x)− (Jγ,m ~f )B | dx ≤
∫
B

|Jγ,m ~f(x)− aB | dx+
∫
B

|(Jγ,m ~f )B − aB | dx

≤ 2
∫
B

|Jγ,m ~f(x)− aB | dx.

By combining this estimate with (4.2) we obtain the desired inequality.
We now prove that (1) implies (2). Assume that the component functions fi of

~f are nonnegative. We have that (4.1) holds for every ball B = B(xB , R). Also
observe that

1
|B|

∫
B

|g(x)− gB | dx ≈
1
|B|2

∫
B

∫
B

|g(x)− g(z)| dx dz,

and therefore the left-hand side of (4.1) is equivalent to
1

w−1(B)|B|1+δ/n

∫
B

∫
B

|Jγ,m ~f(x)− Jγ,m ~f(z)| dx dz = I.

Observe that, when yi ∈ B for every i we have

|B|1/n + |xB − yj | ≥
1
m

(
|B|1/n +

m∑
i=1
|xB − yi|

)
,

for every 1 ≤ j ≤ m. By combining Lemma 3.2 and Remark 3 with the inequality
above we can estimate I as follows

I ≥ 1
w−1(B)|B|1+δ/n

∫
C2

∫
C1

∫
Am

|B|1/n
∏m
i=1 fi(yi)

(|B|1/n +
∑m
i=1 |xB − yi|)mn−γ+1 d~y dx dz

≥ C |B|
1+(1−δ)/n

w−1(B)

m∏
i=1

(∫
A

fi(yi)
(|B|1/n + |xB − yi|)n−γi+1/m dyi

)
.

Since the set A is a quadrant from xB , a similar estimation can be obtained for
the other quadrants from xB . Thus, we get

I ≥ C |B|
1+(1−δ)/n

w−1(B)

m∏
i=1

(∫
Rn

fi(y)
(|B|1/n + |xB − y|)n−γi+1/m dy

)
,

which implies that
|B|1+(1−δ)/n

w−1(B)

m∏
i=1

(∫
Rn

fi(y)
(|B|1/n + |xB − y|)n−γi+1/m dy

)
≤ C

m∏
i=1
‖fivi‖pi . (4.3)

For every i ∈ I1 and k ∈ N we define V ik = {x : v−1
i (x) ≤ k} and the functionals

F ki (g) =
∫
Rn

g(y)v−1
i (y)XV i

k
(y)

(|B|1/n + |xB − y|)n−γi+1/m dy.

Therefore F ki is a functional in (L1)∗ = L∞. Indeed, if g ∈ L1,

|F ki (g)| ≤ ‖g‖L1

∥∥∥∥∥ v−1
i XV ik

(|B|1/n + |xB − ·|)n−γi+1/m

∥∥∥∥∥
∞

<∞,
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and we also get

|F ki (fivi)|
‖fivi‖L1

≤

∥∥∥∥∥ v−1
i XV ik

(|B|1/n + |xB − ·|)n−γi+1/m

∥∥∥∥∥
∞

for every i ∈ I1.
If i ∈ I2, then we set Ak = A ∩B(0, k) and consider

fki (y) = v
−p′i
i (y)

(|B|1/n + |xB − y|)(n−γi+1/m)/(pi−1)XAk(y)XV i
k
(y).

Let us choose ~f = (f1, . . . , fm), where fivi ∈ L1 for pi = 1 and fi = fki for
pi > 1, for fixed k. Therefore, the left-hand side of (4.3) can be written as follows:

|B|1+(1−δ)/n

w−1(B)
∏
i∈I1

F ki (fivi)
∏
i∈I2

(∫
Ak∩V ik

v
−p′i
i (y)

(|B|1/n + |xB − y|)(n−γi+1/m)p′
i

dy

)
and it is bounded by

C
∏
i∈I1

‖fivi‖L1

∏
i∈I2

(∫
Ak∩V ik

v
−p′i
i (y)

(|B|1/n + |xB − y|)(n−γi+1/m)p′
i

dy

)1/pi

.

This yields

|B|1+(1−δ)/n

w−1(B)
∏
i∈I1

|F ki (fivi)|
‖fivi‖L1

∏
i∈I2

(∫
Ak∩V ik

v
−p′i
i (y)

(|B|1/n + |xB − y|)(n−γi+1/m)p′
i

dy

)1/p′i

≤ C,

for every nonnegative fi such that fivi ∈ L1, i ∈ I1 and for every k ∈ N. By taking
the supremum over fi iteratively for i ∈ I1 we get

|B|1+(1−δ)/n

w−1(B)
∏
i∈I1

∥∥∥∥ v−1
i

(|B|1/n + |xB − ·|)n−γi+1/m

∥∥∥∥
∞

×
∏
i∈I2

∫ v
−p′i
i XAk∩V ik

(|B|1/n + |xB − ·|)(n−γi+1/m)p′
i


1
p′
i

≤ C.

By taking limit for k →∞, the left-hand side converges to
|B|1+(1−δ)/n

w−1(B)
∏
i∈I1

∥∥∥∥ v−1
i

(|B|1/n + |xB − ·|)n−γi+1/m

∥∥∥∥
∞

×
∏
i∈I2

(∫
Rn

v
−p′i
i (y)

(|B|1/n + |xB − y|)(n−γi+1/m)p′
i

dy

) 1
p′
i

which is precisely the condition Hm(~p, γ, δ). This completes the proof. �
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Proof of Theorem 1.2. We begin with item (a). We shall first assume that δ > 1.
If (w,~v) ∈ Hm(~p, γ, δ), we choose B = B(xB , R), where xB is a Lebesgue point of
w−1. From (2.2) we obtain

∏
i∈I1

∥∥∥∥ v−1
i

(|B|1/n + |xB − ·|)n−γi+1/m

∥∥∥∥
∞

∏
i∈I2

(∫
Rn

v
−p′i
i

(|B|1/n + |xB − ·|)(n−γi+1/m)p′
i

) 1
p′
i

.
w−1(B)
|B|R1−δ ,

for every R > 0. By letting R → 0 and applying the monotone convergence
theorem, we conclude that at least one limit factor in the product should be zero.
That is, there exists 1 ≤ i ≤ m such that vi =∞ almost everywhere.

On the other hand, if δ > γ − n/p and (w,~v) belongs to Hm(~p, γ, δ), we pick a
ball B = B(xB , R), where xB is a Lebesgue point of w−1 and every v−1

i . Then,
by applying (2.3), we have

m∏
i=1

1
|B|

∫
B

v−1
i ≤

∏
i∈I1

∥∥v−1
i XB

∥∥
∞

∏
i∈I2

(
1
|B|

∫
B

v
−p′i
i

)1/p′i

≤ Cw
−1(B)
|B|

Rδ−γ+n/p

for every R > 0. By letting R→ 0 we get
m∏
i=1

v−1
i (xB) = 0,

which yields that
∏m
i=1 v

−1
i is zero almost everywhere. This implies that M =⋂m

i=1{v
−1
i > 0} has null measure. Then there exists j and a set Ej ⊂ Rn of

positive measure such that vj =∞ in almost every point of Ej .
We turn now our attention to item (b), that is, δ = γ−n/p = 1. We shall prove

that if (w,~v) ∈ Hm(~p, γ, 1), there exists j such that vj =∞ almost everywhere in
Rn. We define

1
α

=
m∑
i=1

1
p′i

= mp− 1
p

.

By applying Hölder’s inequality we obtain∫
Rn

(
∏
i∈I2

v−1
i )α

(|B|1/n + |xB − y|)
∑

i∈I2
(n−γi+1/m)α

1/α

≤ C
∏
i∈I2

(∫
Rn

v
−p′i
i

(|B|1/n + |xB − ·|)(n−γi+1/m)p′
i

) 1
p′
i
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and since (w,~v) ∈ Hm(~p, γ, 1), this implies that

∏
i∈I1

∥∥∥∥ v−1
i

(|B|1/n + |xB − ·|)n−γi+1/m

∥∥∥∥
∞

∫
Rn

(
∏
i∈I2

v−1
i )α

(|B|1/n + |xB − y|)
∑

i∈I2
(n−γi+1/m)α

 1
α

.
w−1(B)
|B|

,

and furthermore(∫
Rn

(
∏m
i=1 v

−1
i )α

(|B|1/n + |xB − y|)(mn−γ+1)α

)1/α

.
w−1(B)
|B|

for every ball B = B(xB , R).
If we assume that the set E = {x :

∏m
i=1 v

−1
i (x) > 0} has positive measure,

we arrive at a contradiction by following the same argument as in item (b) from
[2, Theorem 1.2]. This yields |E| = 0, that is,

∏m
i=1 v

−1
i = 0 almost everywhere,

from where we can deduce that there exists an index j satisfying vj = ∞ almost
everywhere. �

5. The class Hm(~p, γ, δ)

We begin this section by exhibiting nontrivial pairs of weights satisfying condi-
tion Hm(~p, γ, δ). Concretely, we shall prove the following theorem.

Theorem 5.1. Given 0 < γ < mn there exist pairs of weights (w,~v) satisfying
(2.2) for every ~p and δ such that δ ≤ min{1, γ − n/p}, excluding the case δ = 1
when γ − n/p = 1.

Figure 1 shows the area in which we can find nontrivial weights satisfying con-
dition Hm(~p, γ, δ), split into the cases γ < 1, γ = 1 and γ > 1.

The following lemma will be useful in order to prove Theorem 5.1 (see [12]).

Lemma 5.2. If R > 0, B = B(xB , R) is a ball in Rn and α > −n, then∫
B

|x|α dx ≈ Rn (max{R, |xB |})α .

Proof of Theorem 5.1. In [2] we exhibited examples of weights in the class Hm(~p, γ, δ)
given by (1.2), for γ −mn ≤ δ ≤ min{1, γ − n/p}, excluding the case δ = 1 when
γ − n/p = 1. By Remark 1 the same examples satisfy Hm(~p, γ, δ), so it will be
enough to check the case δ < γ −mn.

Recall that θi = n/pi + (1 − γ)/m and I1 = {1 ≤ i ≤ m : pi = 1}. Let us first
assume that I1 6= ∅. Since γ < mn, we can choose −θi < βi < n/p′i for every i ∈ I2
and θi < 0, and 0 < βi < n/p′i if θi ≥ 0. This election implies that

ν =
∑

i∈I2,θi≥0
βi +

∑
i∈I2,θi<0

(βi + θi) > 0.
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γ > 1

δ

1

1/pm

γ −mn

δ = γ − n/p

γ = 1

δ

1

1/pm

γ −mn

δ = γ − n/p

γ < 1

δ

1

1/pm

γ −mn

δ = γ − n/p

Figure 1.

We now choose

0 < β < min
{
ν

m1
, n+ 1− γ

m

}
,

and take βi = −β for every i ∈ I1. Let α = δ +
∑m
i=1 βi + n/p− γ and define

w(x) = |x|α and vi(x) = |x|βi , for 1 ≤ i ≤ m.

Notice that

α = δ +
m∑
i=1

βi + n/p− γ < δ +
m∑
i=1

n

p′i
+ n

p
− γ = δ +mn− γ < 0,

since δ < γ−mn, so w−1 is a locally integrable function. On the other hand, since
v−1
i ∈ RH∞ for i ∈ I1 the same conclusion holds for these weights. For i ∈ I2 we

also have that v−p
′
i

i is locally integrable since βi < n/p′i. Therefore, by virtue of
Lemma 2.1, it will be enough to show that there exists a positive constant C such
that the inequality

|B|1+(1−δ)/n

w−1(B)
∏
i∈I1

∥∥∥∥∥ v−1
i XRn\B

|xB − ·|n−γ/m+1/m

∥∥∥∥∥
∞

∏
i∈I2

(∫
Rn\B

v
−p′i
i

|xB − ·|(n−γ/m+1/m)p′
i

)1/p′i

≤ C (5.1)
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holds for every ball B = B(xB , R). We shall first assume that |xB | ≤ R. By
Lemma 5.2 we have that

|B|1+(1−δ)/n

w−1(B) . R1−δ+α. (5.2)

On the other hand, if i ∈ I1 and Bk = B(xB , 2kR), k ∈ N, we have∥∥∥∥∥ v−1
i XRn\B

|xB − ·|n−γ/m+1/m

∥∥∥∥∥
∞

.
∞∑
k=0

∥∥∥∥∥ v−1
i XBk+1\Bk

|xB − ·|n−γ/m+1/m

∥∥∥∥∥
∞

.
∞∑
k=0

(
2kR

)−βi−n+γ/m−1/m

. R−βi−n+γ/m−1/m,

since −βi − n+ γ/m− 1/m < 0. This yields

∏
i∈I1

∥∥∥∥∥ v−1
i XRn\B

|xB − ·|n−γ/m+1/m

∥∥∥∥∥
∞

. R
−
∑

i∈I1
(βi+θi)

. (5.3)

Finally, since βi + θi > 0 for i ∈ I2, by Lemma 5.2 we obtain(∫
Rn\B

v
−p′i
i (y)

|xB − y|(n+ 1−γ
m )p′

i

dy

)1/p′i

.
∞∑
k=0

(2kR)−n+ γ−1
m

(∫
Bk+1\Bk

|y|−βip
′
i dy

)1/p′i

.
∞∑
k=0

(2kR)−n+γ/m−1/m−βi+n/p′i

. R−n/pi+γ/m−1/m−βi .

Therefore, we obtain

∏
i∈I2

(∫
Rn\B

v
−p′i
i (y)

|xB − y|(n−γ/m+1/m)p′
i

dy

)1/p′i

. R
−
∑

i∈I2
(βi+θi)

. (5.4)

By combining (5.2), (5.3) and (5.4), the left-hand side of (5.1) is bounded by

CR1−δ+α−
∑m

i=1
(θi+βi) = C.

Now we consider the case |xB | > R. By Lemma 5.2 we have that

|B|1+(1−δ)/n

w−1(B) . R1−δ|xB |α . R1−δ+α, (5.5)
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because α < 0. Since |xB | > R, there exists a number N ∈ N such that 2NR <
|xB | ≤ 2N+1R. For i ∈ I1 we write

∥∥∥∥∥ v−1
i XRn\B

|xB − ·|n−γ/m+1/m

∥∥∥∥∥
∞

.
N∑
k=0

∥∥∥∥∥ v−1
i XBk+1\Bk

|xB − ·|n−γ/m+1/m

∥∥∥∥∥
∞

+
∞∑

k=N+1

∥∥∥∥∥ v−1
i XBk+1\Bk

|xB − ·|n−γ/m+1/m

∥∥∥∥∥
∞

= Si1 + Si2.

By standard estimation we have that

Si1 . |xB |−βi
N∑
k=0

(
2kR

)−n+γ/m−1/m
. |xB |−βiR−n+γ/m−1/m = |xB |−βiR−θi

and

Si2 .
∞∑

k=N+1

(
2kR

)−βi−n+γ/m−1/m

.
(
2NR

)−βi−n+γ/m−1/m
∞∑
k=0

2k(−βi−n+γ/m−1/m)

. |xB |−βiR−n+γ/m−1/m = |xB |−βiR−θi .

These inequalities imply that

∏
i∈I1

∥∥∥∥∥ v−1
i XRn\B

|xB − ·|n−γ/m+1/m

∥∥∥∥∥
∞

. |xB |
−
∑

i∈I1
βi
R
−
∑

i∈I1
θi
. (5.6)

If i ∈ I2, we split the integral in a similar way to get

(∫
Rn\B

v
−p′i
i (y)

|xB − y|(n−γ/m+1/m)p′
i

dy

)1/p′i

.
∞∑
k=0

(2kR)−n+γ/m−1/m
(∫

Bk

|y|−βip
′
i dy

)1/p′i

=
N∑
k=0

+
∞∑

k=N+1

= Si1 + Si2.
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We shall estimate the sum Si1 + Si2 by distinguishing into the cases θi < 0, θi = 0
and θi > 0. Let us first assume that θi < 0. Then by Lemma 5.2 we obtain

Si1 .
N∑
k=0

(2kR)−n+γ/m−1/m+n/p′i |xB |−βi

. |xB |−βiR−θi
N∑
k=0

2−kθi

. |xB |−βi(2NR)−θi

. |xB |−βi−θi ,

since θi < 0. For Si2 we apply again Lemma 5.2 in order to get

Si2 .
∞∑

k=N+1
(2kR)−n+γ/m−1/m+n/p′i−βi

.
∞∑

k=N+1

(
2kR

)−βi−θi
=
(
2N+1R

)−βi−θi ∞∑
k=0

2−k(βi+θi)

. |xB |−βi−θi ,

since θi + βi > 0. This yields

Si1 + Si2 . |xB |−βi−θi (5.7)

when θi < 0.
Now assume that θi = 0. By proceeding similarly as in the previous case, we

have

Si1 . |xB |−βiN . |xB |−βi log2

(
|xB |
R

)
,

and

Si2 . |xB |−βi

since βi > 0 when θi = 0. Consequently,

Si1 + Si2 . |xB |−βi
(

1 + log2

(
|xB |
R

))
. |xB |−βi log2

(
|xB |
R

)
. (5.8)
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We finally consider the case θi > 0. For Si2 we can proceed exactly as in the
case θi < 0 and get the same bound. On the other hand, for Si1 we have that

Si1 .
N∑
k=0

(2kR)−n+γ/m−1/m+n/p′i |xB |−βi

. |xB |−βiR−θi
N∑
k=0

2−kθi

. |xB |−βi
(
2NR

)−θi 2Nθi

. |xB |−βi−θi2Nθi .

Therefore, if i ∈ I2 and θi > 0, we get

Si1 + Si2 . |xB |−βi−θi
(
1 + 2Nθi

)
. 2Nθi |xB |−βi−θi . (5.9)

By combining (5.7),(5.8), and (5.9) we obtain

∏
i∈I2

(∫
Rn\B

v
−p′i
i (y)

|xB − y|(n+ 1−γ
m )p′

i

dy

)1/p′i

.
∏

i∈I2,θi<0
|xB |−βi−θi

∏
i∈I2,θi=0

|xB |−βi log2

(
|xB |
R

) ∏
i∈I2,θi>0

|xB |−βi−θi2Nθi

. |xB |
−
∑

i∈I2
(βi+θi)2N

∑
i∈I2,θi>0

θi
(

log2

(
|xB |
R

))#{i∈I2,θi=0}
.

The estimate above combined with (5.5) and (5.6) allows us to bound the left-
hand side of (5.1) by

CR1−δ+α|xB |
−
∑

i∈I1
βi
R
−
∑

i∈I1
θi |xB |

−
∑

i∈I2
(βi+θi)2N

∑
i∈I2,θi>0

θi

×
(

log2

(
|xB |
R

))#{i∈I2,θi=0}

or equivalently by(
R

|xB |

)1−δ+α−
∑

i∈I1
θi−
∑

i∈I2,θi>0
θi (

log2

(
|xB |
R

))#{i∈I2,θi=0}
. (5.10)

Since
∑m
i=1 θi = n/p+ 1− γ and α = δ +

∑m
i=1 βi + n/p− γ, then the exponent of

R/|xB | is equal to

1− δ + α−
∑
i∈I1

θi −
∑

i∈I2,θi>0
θi = 1 +

m∑
i=1

βi + n/p− γ −
∑
i∈I1

θi −
∑

i∈I2,θi>0
θi

=
∑

i∈I2,θi<0
(βi + θi) +

∑
i∈I1

βi +
∑

i∈I2,θi≥0
βi

= ν −m1β,
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which is positive from our election of β. Since log t . ε−1tε for every t ≥ 1 and
every ε > 0, we can bound (5.10) by

C

(
R

|xB |

)ν−m1β−ε#{i∈I2,θi=0}
,

and this exponent is positive provided we choose ε > 0 sufficiently small. The
proof is complete when I1 6= ∅. Otherwise, we can follow the same steps and define
the same parameters, omitting the factor corresponding to I1. This concludes the
proof. �

We finish with the proof of the theorem dealing with the case w =
∏m
i=1 vi.

Proof of Theorem 1.3. Let α = p/(mp − 1) and assume that α > 1. If ~v ∈
Hm(~p, γ, δ), then by condition (2.3) we get

|B|−δ/n+γ/n−1/p
∏
i∈I1

‖v−1
i XB‖∞

∏
i∈I2

(
1
|B|

∫
B

v
−p′i
i

)1/p′i
≤ C

|B|

∫
B

m∏
i=1

v−1
i . (5.11)

Notice that
∑m
i=1 α/p

′
i = 1. Therefore we apply Hölder’s inequality with p′i/α in

order to obtain(
1
|B|

∫
B

(
m∏
i=1

v−1
i

)α)1/α

≤
∏
i∈I1

‖v−1
i XB‖∞

∏
i∈I2

(
1
|B|

∫
B

v
−p′i
i

)1/p′i
.

By multiplying each side of the inequality above by |B|−δ/n+γ/n−1/p and using
(5.11) we get

|B|−δ/n+γ/n−1/p

(
1
|B|

∫
B

(
m∏
i=1

v−1
i

)α)1/α

≤ C

|B|

∫
B

m∏
i=1

v−1
i .

From this estimate we can conclude that
|B|−δ/n+γ/n−1/p ≤ C

for every ball B, since α > 1. Then we must have that δ/n = γ/n− 1/p. �
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