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UPPER ENDPOINT ESTIMATES AND EXTRAPOLATION
FOR COMMUTATORS

KANGWEI LI, SHELDY OMBROSI, AND ISRAEL P. RIVERA-RÍOS

Abstract. In this note we revisit the upper endpoint estimates for commu-
tators following the line by Harboure, Segovia, and Torrea [Illinois J. Math.
41 no. 4 (1997), 676–700]. Relying upon the suitable BMO subspace suited
for the commutator that was introduced in Accomazzo’s PhD thesis (2020),
we obtain a counterpart for commutators of the upper endpoint extrapolation
result by Harboure, Maćıas and Segovia [Amer. J. Math. 110 no. 3 (1988),
383–397]. Multilinear counterparts are provided as well.

1. Introduction and main results

Extrapolation has been a fruitful area of research since the 80s. The first results
in that direction were due to Rubio de Francia [14, 13]. We briefly discuss the
general principle behind that kind of results in the following lines.

We say that w is a weight if it is a non-negative locally integrable function on
Rn. Recall that w ∈ Ap for 1 < p <∞ if

[w]Ap = sup
Q

 
Q

w

( 
Q

w−
1
p−1

)p−1
<∞

and that w ∈ A1 if
[w]A1 =

∥∥∥∥Mw

w

∥∥∥∥
L∞

<∞,

where M stands for the Hardy–Littlewood maximal function

Mf(x) = sup
x∈Q

 
Q

|f(y)|dy,

where each Q is a cube of Rn with its sides parallel to the axis.
A fundamental property of the Ap classes is that they characterize the weighted

Lp boundedness of the Hardy–Littlewood maximal operator and they are good
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weights for a number of operators in the theory such as singular integrals, commu-
tators and some further ones.

The Rubio de Francia extrapolation results say that if T is a sublinear operator
such that for some 1 < p0 <∞

‖Tf‖Lp0 (w) ≤ cw,T,p0‖f‖Lp0 (w) (1.1)
for every w ∈ Ap0 , then

‖Tf‖Lp(w) ≤ cw,T,p‖f‖Lp(w) (1.2)
for every w ∈ Ap and every 1 < p <∞.

This approach has been extensively studied by a number of authors in a wide
variety of settings. For instance, in the linear setting there are fundamental works
due to Cruz-Uribe, Martell, and Pérez [9, 4, 5, 8, 7, 6], Duoandikoetxea [11, 12],
Dragicevic, Grafakos, Petermichl, Pereyra [10], Harboure, Maćıas, Segovia [18,
17]. After a number of intermediate results in the multilinear setting (see for
instance [16, 2, 7]) the question was succesfully solved in the last years, in works
such as [26, 25, 28].

A useful development in the area since Rubio de Francia’s pioneering works
consisted in learning that the operator involved in (1.1) and (1.2) actually plays no
role. To be more precise, it can be replaced by a condition on pairs of functions.
Assume that F is a family of pairs of functions such that for some 1 < p0 <∞

‖f‖Lp0 (w) ≤ cw,T,p0‖g‖Lp0 (w)

for every (f, g) ∈ F and every w ∈ Ap0 , then
‖f‖Lp(w) ≤ cw,T,p‖g‖Lp(w)

for every (f, g) ∈ F , for every w ∈ Ap and every 1 < p <∞.
Another line of research would consist in considering the endpoints, namely

p0 = ∞ or p0 = 1 as a “departing” point for extrapolation. For instance, the
following result was obtained in [15, 9]

Theorem 1. Let (f, g) be a pair of functions and suppose that
‖gw‖L∞ ≤ cw‖fw‖L∞

holds for all w with w−1 ∈ A1, where cw depends only on [w−1]A1 . Then for all
1 < p <∞ and all w ∈ Ap, we have

‖g‖Lp(w) ≤ c̃w‖f‖Lp(w),

where c̃w depends only on [w]Ap .

There are a number of operators that do not map L∞ into L∞ such as the
Hilbert transform. However for the Hilbert transform H itself and even for a larger
class of operators, the Calderón–Zygmund operators, it is possible to show that
they map L∞ into BMO. Weighted versions of that result were studied first in [27].
There it was shown that if w ∈ A1, then 

Q

|Hf − (Hf)Q| ≤ C
∥∥∥∥ fw
∥∥∥∥
L∞

ess inf
Q

w(x). (1.3)
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In view of this estimate, it seems natural to think about extending this result
to Calderón–Zygmund operators, and also, within the framework of extrapolation
whether it would be possible to extrapolate from that weighted L∞ → BMO bound
in order to obtain weighted Lp estimates. Those questions were answered in the
positive in the inspiring paper [18] by Harboure, Maćıas, and Segovia. In that work
the following extrapolation result was settled.

Theorem 2. Let T be a sublinear operator defined on C∞0 (Rn) satisfying that for
any cube Q ⊂ Rn and any w ∈ A1 

Q

|Tf − (Tf)Q| ≤ cw,T
∥∥∥∥ fw
∥∥∥∥
L∞

ess inf
Q

w.

Then for every 1 < p <∞ and every w ∈ Ap we have that

‖Tf‖Lp(w) ≤ cw‖f‖Lp(w).

Quite recently in [3], a quantitative version of this result was obtained. In that
paper it was shown that if δ ∈ (0, 1) and

inf
c∈R

( 
Q

|Tf − c|δ
) 1
δ

≤ cn,δ,Tϕ([w]A1)
∥∥∥∥ fw
∥∥∥∥
L∞

ess inf
Q

w,

then
‖Tf‖Lp(w) ≤ cnϕ(‖M‖Lp(w)) ‖M‖Lp′ (σ) ‖f‖Lp(w),

where σ = w−
1
p−1 . Note that since ‖M‖Lp(w) . [w]

1
p−1
Ap

such an estimate yields

‖Tf‖Lp(w) ≤ cnϕ([w]
1
p−1
Ap

)[w]Ap′‖f‖Lp(w).

In the same paper it is shown that for Calderón–Zygmund operators

inf
c∈R

( 
Q

|Tf − c|δ
) 1
δ

≤ cn,δ,T [w]A1

∥∥∥∥ fw
∥∥∥∥
L∞

ess inf
Q

w, (1.4)

namely ϕ(t) = t and hence the sharp exponent for the Ap constant max
{

1, 1
p−1

}
for that class is not recovered. Such a fact is not surprising since the current best
known extrapolation argument from the lower endpoint neither recovers the sharp
estimate. At this point we would like to note that a way more general version of the
aforementioned extrapolation result, replacing Lp(w) spaces by function Banach
spaces and the Ap constant by suitable boundedness constants of the maximal
function over those spaces, was obtained very recently in [29]. Also a quantitative
multilinear result in that direction was provided in [28, Corollary 4.14]

Now we turn our attention to our contribution in this work. We recall that given
b ∈ BMO, the Coifman–Rochberg–Weiss commutator is defined as

[b, T ]f(x) = b(x)Tf(x)− T (bf)(x).
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It is well known that [b, T ] is bounded on Lp(w) and that, as Pérez showed in [30],
[b, T ] is not of weak type (1, 1) but it satisfies the following estimate instead:

w ({|[b, T ]f(x)| > t}) . [w]2A1
log(e+ [w]A1)

ˆ
Rn

Φ
(
|f |
t

)
w,

where Φ(t) = t log(e+ t). The quantitative dependence was obtained in [23].
In view of (1.3) and (1.4) one may wonder what can be said about commutators.

In [19, Theorem A], Harboure, Segovia, and Torrea provided the following result.

Theorem 3. Let T be a Calderón–Zygmund operator and let b ∈ BMO. Then the
following statements are equivalent:

(1) For every ball B and every f ∈ L∞c (Rn), 
B

|[b, T ]f(x)− ([b, T ]f)B |dx . ‖f‖L∞ . (1.5)

(2) The function b satisfies the following condition. For any cube Q and u ∈ Q( 
Q

|b− bQ|
)
T (fχ(2Q)c)(u) ≤ C‖f‖L∞(Rn)

for every f ∈ L∞c (Rn).

Also in [19] the authors point out that if T is the Hilbert transform and any of
the conditions in the preceding Theorem are satisfied, then necessarily b is constant
and hence [b,H] = 0. This fact leads us to think about the possibility of considering
a “smaller” oscillation in the left hand side of (1.5).

Aiming for a dual of the Hardy spaces for commutators studied by Pérez [30]
and Ky [21], Accomazzo introduced in [1] the spaces BMOqb which are defined as
follows. Given a function b, and q ∈ [1,∞) we have that f ∈ BMOqb if

‖f‖BMOq
b

:= sup
B

(
inf

c0,c1∈R

 
B

|f(x)− c0 + c1b(x)|q
) 1
q

.

Note that ‖f‖BMOq
b

= 0 if and only if f = α + βb and hence in order to consider
‖f‖BMOq

b
as a norm one needs to take quotient by the subspace 〈1, b〉 (the space of

linear combinations of 1 and b). It readily follows from the definition that BMO ⊂
BMOqb for every q. It is also easy to show that if b ∈ BMO then b2 ∈ BMOqb .
And for instance choosing b(x) = log(x), we have that log(x)2 ∈ BMOqb \BMO.

Inspired by the definition of BMOqb we provide the following result for commu-
tators.

Theorem 4. Let b ∈ BMO and T a Calderón–Zygmund operator satisfying a log-
Dini regularity condition. Then for every ball B, if δ ∈ (0, 1) and r > 1 we have
that

inf
c1∈R

( 
B

|[b, T ]f(x)− c1 − T (fχ(2B)c)(cB)b(x)|δdx
) 1
δ

. r′
∥∥∥∥ fw
∥∥∥∥
L∞
‖b‖BMO inf

z∈B
Mrw(z).
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Consequently,

inf
c1,c2∈R

( 
B

|[b, T ]f(x)− c1 − c2b(x)|δdx
) 1
δ

. r′
∥∥∥∥ fw
∥∥∥∥
L∞
‖b‖BMO inf

z∈B
Mrw(z).

The next natural question would be whether it is possible to extrapolate from the
condition above. We show that that is the case under some additional conditions.

Theorem 5. Let T be a linear operator such that for every b ∈ BMO and every
w ∈ A1

inf
c1∈R

( 
B

|[b, T ]f(x)− c1 − T (fχ(2B)c)(cB)b(x)|δdx
) 1
δ

≤ cw,T
∥∥∥∥ fw
∥∥∥∥
L∞
‖b‖BMO inf

z∈B
w(z)

and such that Lerner’s grand maximal operator

MT f(x) = sup
x∈B

ess sup
z∈B

T (fχ(2B)c)(z)

is bounded on Lp(v) for some p ∈ (1,∞) and some v ∈ Ap. Then

‖[b, T ]f‖Lp(v) ≤ cv,T ‖b‖BMO‖f‖Lp(v).

Observe that the operator MT was introduced in [22] in order to study sparse
domination. There it was shown that in the case of T being a Calderón–Zygmund
operator

MT f(x) .Mf(x) + T ∗f(x),
where T ∗ stands for the maximal Calderón–Zygmund operator. Since both M
and T ∗ are bounded on Lp(w) for w ∈ Ap, the result above combined with the
estimate in Theorem 1.4 allows to provide an alternative proof of the weighted Lp
boundedness of the commutator [b, T ].

Here we just presented the results in the linear setting. However results in the
multilinear setting are feasible as well and will be obtained in Section 4.

The remainder of the paper is organized as follows. In Section 2 we gather some
preliminaries.

In Section 3 we settle Theorems 4 and 5. Finally in Section 4 we present and
settle the multilinear counterparts of the main results.

2. Preliminaries

We recall that T is a Calderón–Zygmund operator if T is a linear operator that
is bounded on L2 and it admits a representation in terms of a kernel K

Tf(x) =
ˆ
Rn
K(x, y)f(y)dy x 6∈ supp f,

where K satisfies the following properties:
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• Size condition: |K(x, y)| ≤ CK |x− y|−n.

• Smoothness condition: Provided that |x− y| ≥ 2|x− z|,

|K(x, y)−K(z, y)|+ |K(y, x)−K(y, z)| ≤ ω
(
|x− z|
|x− y|

)
1

|x− y|n
,

where ω is a continuous subadditive function such thatˆ 1

0
ω(t) log

(
1
t

)
dt

t
<∞.

In the definition of commutators we used BMO functions. We recall that b ∈
BMO if

‖b‖BMO = sup
B

 
B

|b− bB | <∞.

A fundamental property of this space of functions is the well-known John–Nirenberg
that says that the integrability of the oscillations self-improves to exponential in-
tegrability, namely, there exist constants λ, c > 0 such that for every ball B and
every BMO function

|{x ∈ B : |b− bB | > λ}| . e−cλ/‖b‖BMO |B|.

Note that this in turn implies that 
B

|b− bB |α . max{α, 1}‖b‖BMO (2.1)

for every α > 0. Another fact that we will use in what follows is that if B is a ball
then

|b2jB − bB | . j‖b‖BMO. (2.2)

We remit the interested reader to [20] for more details on BMO.
Quite related to the definition of BMO is that of the sharp maximal function.

Given δ > 0, we define

M],δ(f)(x) = sup
x∈B

inf
c∈R

( 
B

|f − c|δ
) 1
δ

.

We would like to end this preliminaries section by gathering some basic facts
about multilinear theory. We recall that a linear operator T is anm-linear Calderón–
Zygmund operator if T : Lp1 × · · · × Lpm → Lp for some 1 < p1, . . . , pm <∞ with
1
p =

∑m
i=1

1
pi

and it admits the following representation:

T (~f)(x) =
ˆ
Rnm

K(x, y1, . . . , ym)f(y1) . . . f(ym)dy1 . . . dym,

where x 6∈ supp(fi) for any i ∈ {1, . . . ,m}, in terms of a kernel K that satisfies the
following properties:
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• Size condition: |K(x, ~y)| ≤ CK(
∑m
i=1 |x− yi|)−mn.

• Smoothness condition: Given ω a continuous subadditive function such
that

´ 1
0 ω(t) log

( 1
t

)
dt
t <∞, the following conditions hold

|K(x, ~y)−K(z, ~y)| ≤ ω
(

|x− z|
maxi∈{1,...,m} |x− yi|

)
1

(
∑m
i=1 |x− yi|)

mn

provided that maxi∈{1,...,m} |x − yi| ≥ 2|x − z|, and also, for any j ∈
{1, . . . ,m}

|K(x, y1, . . . , yj , . . . , ym)−K(x, y1, . . . , y
′
j , . . . , ym)|

≤ ω
( |yj − y′j |

maxi∈{1,...,m} |x− yi|

)
1

(
∑m
i=1 |x− yi|)

mn ,

where maxi∈{1,...,m} |x− yi| ≥ 2|yj − y′j |.

Note that in this context the commutator [b, T ]j ~f(x) is defined as

[b, T ]j ~f(x) = b(x)T (~f)(x)− T (f1, . . . , fjb, . . . , fm).

Note that the definition is essentially equivalent whichever index we commute in.
Hence throughout the remainder of this work we will consider just the case [b, T ]1.

Let us also recall that we say ~w = (w1, . . . , wm) ∈ A~p, if

sup
Q

( 
Q

wp
) 1
p
m∏
i=1

( 
Q

w
−p′i
i

) 1
p′
i <∞, w :=

m∏
i=1

wi,

where ~p = (p1, . . . , pm) with 1 ≤ pi ≤ ∞ and 1/p = 1/p1 + · · · + 1/pm. A conse-
quence of the multilinear extrapolation result that appeared first in [28, Theorem
4.12] (see as well [25]) states the following.

Theorem 6. Let (f, f1, . . . , fm) be an (m+ 1)-tuple of functions. Suppose that

‖fw‖L∞ ≤ c~w
m∏
i=1
‖fiwi‖L∞

holds for all ~w with ~w ∈ A(∞,...,∞), where c~w depends only on [~w]A(∞,...,∞) . Then
for all ~p with pi > 1, i = 1, . . . ,m, and all ~w ∈ A~p, we have

‖fw‖Lp ≤ c~w
m∏
i=1
‖fiwi‖Lpi ,

where c̃~w depends only on [~w]A~p .

3. Proofs of the main results

3.1. Proof of Theorem 4. Let B be a ball and c2, λ constants to be chosen. Let

c1 = −λTf2(cB)− T ((b− λ)f2)(cB),

where f2 = fχRn\2B . Then we begin arguing as follows:
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(  
B

|[b, T ]f(x)− c1 − c2b(x)|δdx
) 1
δ

=
( 

B

|[b− λ, T ]f(x)− c1 − c2b(x)|δdx
) 1
δ

.

( 
B

|(b(x)− λ)Tf(x) + λTf2(cB)− c2b(x)|δdx
) 1
δ

+
( 

B

|T ((b− λ)f)(x)− T ((b− λ)f2)(cB)|δdx
) 1
δ

=: L1 + L2.

Note that for L1, choosing λ = b2B we have that for δ < ε < 1, calling f1 = fχ2B ,

L1 =
( 

B

|(b(x)− b2B)Tf(x) + b2BTf2(cB)− c2b(x)|δdx
) 1
δ

.

( 
B

|(b(x)− b2B)Tf1(x)|δdx
) 1
δ

+
( 

B

|(b(x)− b2B)Tf2(x) + b2BTf2(cB)− c2b(x)|δdx
) 1
δ

=: L11 + L12.

First we focus on L11. We argue as follows:

L11 =
( 

B

|(b(x)− b2B)Tf1(x)|δdx
) 1
δ

≤
( 

B

|b(x)− b2B |δ(
ε
δ )′dx

) 1
δ( ε
δ

)′
( 

B

|Tf1|εdx
) 1
ε

. ‖b‖BMO

 
2B
|f | = ‖b‖BMO

 
2B

|f |
w
w

≤ ‖b‖BMO

∥∥∥∥ fw
∥∥∥∥
L∞

inf
z∈B

Mw.

Now we turn to L12. Choosing c2 = Tf2(cB) we have that

L12 =
( 

B

|(b(x)− b2B)Tf2(x)− Tf2(cB)b(x) + b2BTf2(cB)|δdx
) 1
δ

=
( 

B

|(b(x)− b2B)Tf2(x)− (b(x)− b2B)Tf2(cB)|δdx
) 1
δ

≤
( 

B

|b(x)− b2B ||Tf2(x)− Tf2(cB)|dx
)
.
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From this point taking into account the smoothness condition of the kernel we may
argue as follows:( 

B

|b(x)− b2B ||Tf2(x)− Tf2(cB)|dx
)

≤
 
B

|b(x)− b2B |
ˆ
Rn\2B

|K(x, y)−K(cB , y)||f(y)|dydx

≤
 
B

|b(x)− b2B |
ˆ
Rn\2B

1
|x− y|n

ω

(
|x− cB |
|x− y|

)
|f(y)|dydx

≤
 
B

|b(x)− b2B |
∞∑
j=1

ˆ
2j+1B\2jB

1
|x− y|n

ω

(
|x− cB |
|x− y|

)
|f(y)|dydx

≤
 
B

|b(x)− b2B |dx
∞∑
j=1

1
2jnl(B)nω

(
l(B)

2j l(B)

)ˆ
2j+1B\2jB

|f(y)|dy

. ‖b‖BMO

∞∑
j=1

ω(2−j)
 

2j+1B

|f(y)|dy

. ‖b‖BMO

∥∥∥∥ fw
∥∥∥∥
L∞

inf
z∈B

Mw.

We continue bounding L2. Note that

L2 .

( 
B

|T ((b− b2B)f1)(x)|δdx
) 1
δ

+
( 

B

|T ((b− b2B)f2)(x)− T ((b− b2B)f2)(cB)|δdx
) 1
δ

= L21 + L22.

For L21 by Kolmogorov’s inequality,

L21 =
( 

B

|T ((b− b2B)f1)(x)|δdx
) 1
δ

.
 

2B
|b− b2B ||f |dx

≤
∥∥∥∥ fw
∥∥∥∥
L∞

 
2B
|b− b2B |wdx . r′

∥∥∥∥ fw
∥∥∥∥
L∞
‖b‖BMO inf

z∈B
Mrw(z),

where in the last step we have used Hölder’s inequality and (2.1). For L22, we have
that, using the smoothness condition of the kernel,

L22 ≤
( 

B

|T ((b− b2B)f2)(x)− T ((b− b2B)f2)(cB)|dx
)

≤
 
B

ˆ
Rn\2B

|K(x, y)−K(cB , y)||b(y)− b2B ||f(y)|dydx

≤
 
B

ˆ
Rn\2B

ω

(
|x− cB |
|x− y|

)
1

|x− y|n
|b(y)− b2B ||f(y)|dydx
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≤
∞∑
j=1

ω(2−j) 1
(2j l(B))n

ˆ
2j+1B\2jB

|b(y)− b2B ||f(y)|dy

.

∥∥∥∥ fw
∥∥∥∥
L∞

∞∑
j=1

ω(2−j)
 

2j+1B

|b(y)− b2B |w(y)dy

≤
∥∥∥∥ fw
∥∥∥∥
L∞

∞∑
j=1

ω(2−j)
 

2j+1B

|b(y)− b2j+1B |w(y)dy

+
∥∥∥∥ fw
∥∥∥∥
L∞

∞∑
j=1

ω(2−j)|b2j+1B − bB |
 

2j+1B

w(y)dy

. r′
∥∥∥∥ fw
∥∥∥∥
L∞
‖b‖BMO ess inf

z∈B
Mrw(z),

where in the last step we have used Hölder’s inequality, (2.1) and (2.2). This ends
the proof.

3.2. Proof of Theorem 5. Let us fix a ball B and x ∈ B. Following the same
notation as that in the proof of Theorem 4, if we choose c = c1 + Tf2(cB)b2B ,( 

B

|[b, T ]f(y)− c|δdy
) 1
δ

=
(  

B

|[b, T ]f(y)− c1 − Tf2(cB)b(y)− Tf2(cB)b2B + Tf2(cB)b(y)|δdy
) 1
δ

.
(  

B

|[b, T ]f(y)− c1 − Tf2(cB)b(y)|δdy
) 1
δ + |Tf2(cB)|

( 
B

|b(y)− b2B |δdy
) 1
δ

.
(  

B

|[b, T ]f(y)− c1 − Tf2(cB)b(y)|δdy
) 1
δ +MT f(x)‖b‖BMO.

Note that this yields

M],δ([b, T ]f)(x) . sup
x∈B

inf
c1∈R

( 
B

|[b, T ]f(y)− c1 − Tf2(cB)b(y)|δdy
) 1
δ

+MT f(x)‖b‖BMO.

Observe that if we call

g(x) := sup
x∈B

inf
c1∈R

( 
B

|[b, T ]f(y)− c1 − Tf2(cB)b(y)|δdy
) 1
δ

,

by hypothesis we have that
‖gw‖L∞ ≤ cw‖b‖BMO‖fw‖L∞

and hence by Theorem 1 we have that for all 1 < q <∞ and every w ∈ Aq
‖g‖Lq(w) ≤ c̃w‖b‖BMO‖f‖Lq(w).

Since by hypothesis as well we know that
‖MT f‖Lp(v) ≤ c̃v‖f‖Lp(v).
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We have that combining the estimates above,
‖M],δ([b, T ]f)‖Lp(v) ≤ c̃v‖b‖BMO‖f‖Lp(v).

Then the desired estimate
‖[b, T ]f‖Lp(v) ≤ c̃v‖b‖BMO‖f‖Lp(v)

follows from the Fefferman–Stein’s inequality.

4. Multilinear counterparts

In this section we present multilinear versions of the results presented above.
We begin providing a counterpart of Theorem 4.

Theorem 7. Let b ∈ BMO and T be an m-linear CZO. Then for every ball B,
if δ ∈ (0, 1/m) then

inf
c1∈R

(  
B

|[b, T ]1(~f)(y)− c1 −
(
T (~f)− T (~fχ2B)

)
b(y)|δdy

) 1
δ

. cw‖b‖BMO

∞∏
i=1
‖fiwi‖L∞ ess inf

x∈B

1
w(x) ,

where (w1, . . . , wm) ∈ A(∞,...,∞) and w =
∏m
i=1 wi. Consequently, the following

inequality holds as well

inf
c1,c2∈R

( 
B

|[b, T ]1(~f)(y)−c1−c2b(y)|δdy
) 1
δ

. cw‖b‖BMO

∞∏
i=1
‖fiwi‖L∞ ess inf

x∈B

1
w(x) .

Proof of Theorem 7. For notational convenience we may denote

TB(~f) = T (~f)− T (~fχ2B).
Let

c1(B) = −b2BTB(~f)(cB)− TB
(
(b− b2B)f1, f2, . . . , fm

)
(cB)

and
c2(B) = TB(~f)(cB).

Having that notation in mind we have that(  
B

|[b, T ]1(~f)(y)− c1(B)− c2(B)b(y)|δdy
) 1
δ

=
( 

B

|[b− b2B , T ]1(~f)(y)− c1(B)− c2(B)b(y)|δdy
) 1
δ

.
( 

B

|(b− b2B)T (~f)(y)− (b− b2B)TB(~f)(cB)|δdy
) 1
δ

+
( 

B

|T ((b− b2B)f1, . . . , fm)(y)− TB((b− b2B)f1, . . . , fm)(cB)|δdy
) 1
δ

=: I1 + I2.
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For I1, we have

I1 .
(  

B

|b− b2B |δ · |TB(~f)(y)− TB(~f)(cB)|δdy
) 1
δ

+
( 

B

|b− b2B |δ · |T (~fχ2B)(y)|δdy
) 1
δ

. ‖b‖BMO

(
sup
y∈B
|TB(~f)(y)− TB(~f)(cB)|+ ‖T (~fχ2B)‖

L
1
m
,∞(B, dx|B| )

)
. ‖b‖BMO

( ∞∑
k=1

ω(2−k)
m∏
i=1

 
2kB
|fi|+

m∏
i=1

 
2B
|fi|
)

≤ ‖b‖BMO[~w]A(∞,...,∞)

( ∞∏
i=1
‖fiwi‖L∞

)
ess inf
x∈B

1
w(x) ,

where we have used the weak endpoint estimate of T . Now we turn to estimate I2.
We argue as follows:

I2 .
( 

B

|TB((b− b2B)f1, . . . , fm)(y)− TB((b− b2B)f1, . . . , fm)(cB)|δdy
) 1
δ

+
( 

B

|T ((b− b2B)f1χ2B , . . . , fmχ2B)(y)|δdy
) 1
δ

=: I21 + I22.

The estimate of I22 can be handled similarly as before, that is, we use Kolmogorov’s
inequality and then the weak type endpoint estimate

I22 .
( 

2B
|b− b2B ||f1|

) m∏
i=2

 
2B
|fi|

≤ [~w]A(∞,...,∞)

( m∏
i=1
‖fiwi‖L∞

)
ess inf
x∈B

1
w(x) ·

1
w−1

1 (2B)

ˆ
2B
|b− b2B |w−1

1

. ‖b‖BMO[~w]A(∞,...,∞)

( m∏
i=1
‖fiwi‖L∞

)
ess inf
x∈B

1
w(x) ,

where the last inequality holds since w−1
1 ∈ A∞.

It remains to consider I21. Similarly as before, we have

I21 .
∞∑
k=1

ω(2−k)
 

2kB
|b− b2B ||f1|

m∏
i=2

 
2kB
|fi|

≤
∞∑
k=1

ω(2−k)
 

2kB
|b− b2kB ||f1|

m∏
i=2

 
2kB
|fi|

+
∞∑
k=1

ω(2−k)|b2B − b2kB |
m∏
i=1

 
2kB
|fi|
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. ‖b‖BMO[~w]A(∞,...,∞)

( m∏
i=1
‖fiwi‖L∞

)
ess inf
x∈B

1
w(x) ,

where we have used that

|b2B − b2kB | . k‖b‖BMO.

This requires that the kernel satisfies the log-Dini condition. This completes the
proof. �

Having the Theorem above at our disposal we can obtain the following result.

Theorem 8. Let T be an m-linear operator such that for every b ∈ BMO and
every ~w ∈ A(∞,...,∞),

inf
c1∈R

( 
B

|[b, T ]1(~f)(y)− c1 −
(
T (~f)− T (~fχ2B)

)
(y)b(y)|δdy

) 1
δ

. cw‖b‖BMO

∞∏
i=1
‖fiwi‖L∞ ess inf

x∈B

1
w(x)

and such that Lerner’s grand maximal operator

MT (~f)(x) = sup
x∈B

ess sup
z∈B

T (~fχ(2B)c)(z)

satisfies

‖MT (~f)v‖Lp ≤ c~v
m∏
i=1
‖fivi‖Lpi

for some ~p with pi > 1, i = 1, . . . ,m, and some ~v ∈ A~p. Then

‖[b, T ]1(~f)v‖Lp ≤ c~v,T ‖b‖BMO

m∏
i=1
‖fivi‖Lpi .

Proof. The argument is analogous to the one given for the linear case. Let us define

g(x) = sup
B3x

inf
c1∈R

( 
B

|[b, T ]1(~f)(y)− c1 −
(
T (~f)− T (~fχ2B)

)
(y)b(y)|δdy

) 1
δ ;

then, arguing as in the linear case, we have that

M],δ([b, T ]1(~f))(x) ≤ sup
B3x

( 
B

|[b, T ]1(~f)(y)− c(B)|δdy
) 1
δ

. g(x) + sup
B3x

( 
B

|b(y)− b2B |δdy
) 1
δ |TB(~f)(cB)|

. g(x) + ‖b‖BMOMT (~f)(x).

To deal with g we argue as in the linear setting. MT is bounded by hypothesis.
Hence we are done. �
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Note that in the case of T being a Calderón–Zygmund operator, in the bilinear
case, a careful calculus to boundMT was presented in [24]. Such an estimate, that
we recall in the following line, can be extended to the multilinear case directly.
Therefore, we have

MT (~f)(x) .M(~f)(x) +Ms(T (~f))(x)

for every 0 < s < 1
m . Of course, since Ms is increasing with s, the inequality holds

for all s > 0. In particular, we can choose s = 1
m , which in turn allows us to show

that

‖M1/m(T (~f))w‖Lp = ‖M(T (~f)1/m)‖mLmp(wp) . ‖T (~f)w‖Lp .
m∏
i=1
‖fiwi‖Lp ,

where we have used the fact that if (w1, . . . , wm) ∈ A~p then wp ∈ Amp (when p <
∞). This ends the argument and completes an alternative proof of the boundedness
of [b, T ]i in the multilinear setting.
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