Hyponormality of Toeplitz operators on the Bergman space of an annulus
DOI:
https://doi.org/10.33044/revuma.v61n2a08Abstract
A bounded operator $S$ on a Hilbert space is hyponormal if $S^{\ast}S-SS^{\ast}$ is positive. In this work we find necessary conditions for the hyponormality of the Toeplitz operator $T_{f+\overline{g}}$ on the Bergman space of the annulus $\{1/2<|z|<1\}$, where $f$ and $g$ are analytic and $f$ satisfies a smoothness condition.
Downloads
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Houcine Sadraoui, Mohamed Guediri
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal. The Journal may retract the paper after publication if clear evidence is found that the findings are unreliable as a result of misconduct or honest error.