Minimal solutions of the rational interpolation problem
DOI:
https://doi.org/10.33044.revuma/v61n2a14Abstract
We explore connections between the approach of solving the rational interpolation problem via resolutions of ideals and syzygies, and the standard method provided by the Extended Euclidean Algorithm (EEA). As a consequence, we obtain explicit descriptions for solutions of minimal degrees in terms of the degrees of elements appearing in the EEA. This result allows us to describe the minimal degree in a $\mu$-basis of a polynomial planar parametrization in terms of a critical degree arising in the EEA.
Downloads
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Teresa Cortadellas Benítez, Carlos D'Andrea, Eulàlia Montoro
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal. The Journal may retract the paper after publication if clear evidence is found that the findings are unreliable as a result of misconduct or honest error.