On Baer modules
DOI:
https://doi.org/10.33044/revuma.1741Abstract
A commutative ring $R$ is said to be a Baer ring if for each $a\in R$, $\operatorname{ann}(a)$ is generated by an idempotent element $b\in R$. In this paper, we extend the notion of a Baer ring to modules in terms of weak idempotent elements defined in a previous work by Jayaram and Tekir. Let $R$ be a commutative ring with a nonzero identity and let $M$ be a unital $R$-module. $M$ is said to be a Baer module if for each $m\in M$ there exists a weak idempotent element $e\in R$ such that $\operatorname{ann}_{R}(m)M=eM$. Various examples and properties of Baer modules are given. Also, we characterize a certain class of modules/submodules such as von Neumann regular modules/prime submodules in terms of Baer modules.
Downloads
References
D. D. Anderson, T. Arabaci, Ü. Tekir and S. Koç, On $S$-multiplication modules, Comm. Algebra 48 (2020), no. 8, 3398–3407. MR 4115356.
D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra 1 (2009), no. 1, 3–56. MR 2462381.
F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Graduate Texts in Mathematics, Vol. 13, Springer-Verlag, New York, 1974. MR 0417223.
M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, MA, 1969. MR 0242802.
A. Barnard, Multiplication modules, J. Algebra 71 (1981), no. 1, 174–178. MR 0627431.
G. F. Birkenmeier, J. Y. Kim and J. K. Park, Principally quasi-Baer rings, Comm. Algebra 29 (2001), no. 2, 639–660. MR 1841988.
Z. A. El-Bast and P. F. Smith, Multiplication modules, Comm. Algebra 16 (1988), no. 4, 755–779. MR 0932633.
M. W. Evans, On commutative P. P. rings, Pacific J. Math. 41 (1972), 687–697. MR 0314827.
E. Hashemi and A. Moussavi, Polynomial extensions of quasi-Baer rings, Acta Math. Hungar. 107 (2005), no. 3, 207–224. MR 2148584.
J. A. Huckaba, Commutative rings with zero divisors, Monographs and Textbooks in Pure and Applied Mathematics, 117, Marcel Dekker, New York, 1988. MR 0938741.
C. Jayaram, Baer ideals in commutative semiprime rings, Indian J. Pure Appl. Math. 15 (1984), no. 8, 855–864. MR 0757963.
C. Jayaram and Tekir, von Neumann regular modules, Comm. Algebra 46 (2018), no. 5, 2205–2217. MR 3799203.
C. Jayaram, Tekir and S. Koç, Quasi regular modules and trivial extension, Hacet. J. Math. Stat. 50 (2021), no. 1, 120–134. MR 4227913.
J. Kist, Minimal prime ideals in commutative semigroups, Proc. London Math. Soc. (3) 13 (1963), 31–50. MR 0143837.
S. Koç, On strongly $pi$-regular modules, Sakarya Univ. J. Sci. 24 (2020), no. 4, 675–684.
T.-K. Lee and Y. Zhou, Reduced modules, in Rings, Modules, Algebras, and Abelian Groups, 365–377, Lecture Notes in Pure and Appl. Math., 236, Dekker, New York, 2004. MR 2050725.
R. Levy and J. Shapiro, The zero-divisor graph of von Neumann regular rings, Comm. Algebra 30 (2002), no. 2, 745–750. MR 1883021.
M. Nagata, Local Rings, Interscience Tracts in Pure and Applied Mathematics, 13, Interscience Publishers, New York, 1962. MR 0155856.
P. F. Smith, Complete homomorphisms between module lattices, Int. Electron. J. Algebra 16 (2014), 16–31. MR 3239068.
J. Von Neumann, On regular rings. Proc. Natl. Acad. Sci. USA 22 (1936), no. 12, 707–713.
S. Yassemi, The dual notion of prime submodules, Arch. Math. (Brno) 37 (2001), no. 4, 273–278. MR 1879449.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Chillumuntala Jayaram, Ünsal Tekir, Suat Koç
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal. The Journal may retract the paper after publication if clear evidence is found that the findings are unreliable as a result of misconduct or honest error.