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A CANONICAL DISTRIBUTION ON ISOPARAMETRIC
SUBMANIFOLDS II

CRISTIÁN U. SÁNCHEZ

Abstract. The present paper continues our previous work [Rev. Un. Mat.
Argentina 61 (2020), no. 1, 113–130], which was devoted to showing that
on every compact, connected homogeneous isoparametric submanifold M of
codimension h ≥ 2 in a Euclidean space, there exists a canonical distribution
which is bracket generating of step 2. In that work this fact was established
for the case when the system of restricted roots is reduced. Here we complete
the proof of the main result for the case in which the system of restricted roots
is (BC)q , i.e., non-reduced.

1. Introduction

We present here the second part of the paper [4] devoted to indicating some
properties of compact, connected homogeneous isoparametric submanifolds of Eu-
clidean spaces of codimension h ≥ 2. It is well known (see [5]) that all compact,
connected, isoparametric submanifolds of Euclidean spaces of codimension h ≥ 3
are homogeneous. On the other hand, in codimension h = 2 there are infinitely
many non-homogeneous examples. Here we study the case of those spaces in which
the restricted roots form the non-reduced system Φ (g0, a0) = (BC)q. This case was
not included in [4], where only reduced systems of restricted roots were considered.

The compact, connected homogeneous isoparametric submanifolds of Euclidean
spaces of codimension h ≥ 2 (considered here and in [4]) are the principal orbits of
the tangential representations of the compact, connected, irreducible, symmetric
spaces. In Table 1, in the next section, the reader can find the symmetric spaces
whose tangential principal orbits are the isoparametric submanifolds considered
here. We shall use the notation and basic facts from [4, Sections 2–5] and, hoping
that the reader has the opportunity to take a look at that work, we shall not
repeat these facts here (except for necessary notation and formulae). Recall that
the theorem to be proved is:
Theorem 1.1. On any compact, connected, homogeneous isoparametric submani-
fold (for a real simple noncompact Lie algebra g0) there exist a smooth completely
non-integrable (i.e., bracket generating) step 2 distribution D ⊂ T (Mn), canoni-
cally associated to the manifold.
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A distribution D of r-planes (n > r ≥ 2) in a connected manifold Mn is smooth
[6, p. 41] if for any p ∈ Mn there is an open set A containing p and r smooth
vector fields {X1, . . . , Xr} defined on A such that Xj (q) ∈ D (q) and D (q) =
spanR {Xj (q)}, 1 ≤ j ≤ r, for all q ∈ A. The distribution D is said to be completely
non-integrable of step 2 if for every point p ∈Mn the above vector fields defined
in A satisfy, for all q ∈ A,

spanR {Xj(q), [Xk, Xj ] (q) : 1 ≤ k, j ≤ r} = Tq(M),

i.e., the generated real vector space coincides with the tangent space. The distri-
bution D = D (Ω) mentioned in the theorem is defined in [4, Section 5]. In our
present situation the system of restricted roots is Φ (g0, a0) = (BC)q and the proof
of Theorem 1.1 is naturally divided into three parts by the nature of the restricted
roots.

This paper is organized as follows. In the next section we indicate, in Table 1,
the symmetric spaces whose tangential representations contain the isoparametric
submanifolds concerning us here. In Section 3 we recall the root system (BC)q
(compare [2, p. 475, 3.25]) and in Section 4 we present the required four lem-
mata about the relation between the roots of gC0 and their restricted counterpart
Φ (g0, a0). In Section 5 we recall required notation introduced in [4], and in Sec-
tion 6 the formulae, from [4], needed in the proof of Theorem 1.1. Finally Section 7
contains the proof of Theorem 1.1 itself.

We include also an Appendix with proofs of the lemmata in Section 3, for the
spaces in Table 1 but restricting the sizes of the root sistems (BC)q only to the
case q = 2. This is intended to be an example of the way to obtain the required
lemmata for the spaces in Table 1.

2. The spaces considered

In Table 1 we indicate the list of the symmetric spaces whose tangential principal
orbits are the isoparametric submanifolds considered in the present paper. They
are the spaces for which the corresponding systems of restricted roots are non-
reduced, that is, Φ (g0, a0) = (BC)n (for n ≥ 1). We indicate only the compact
spaces; they can, of course, be replaced by their corresponding non-compact duals.

3. The system (BC)q
As mentioned above, we consider here the case in which Φ (g0, a0) = (BC)q. So

we start recalling the system (BC)q. We use the description in [2, p. 475, 3.25], for
this non-reduced system of roots. The roots (written in terms of a set {ε1, . . . , εq})
are:

± εi ± εj , 1 ≤ i < j ≤ q,
± εi, ±2εi, 1 ≤ i ≤ q.

A system of simple roots ∆ (g0, a0) = {λ1, . . . , λq} is defined by λi = (εi − εi+1)
(1 ≤ i ≤ q − 1) and λq = εq. We write down all the positive roots in terms of the
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Table 1.

non-reduced space Φ (g0, a0)

AIII SU(p+ q)/S (U(p)× U(q)) (p > q) (BC)q
AIV SU(p+ 1)/S (U(p)× U(1)) (p > 1) (BC)1

CII Sp(p+ q)/Sp(p)× Sp(q) (p > q) (BC)q
DIII SO(2p)/U(p), p > 1, odd (BC) 1

2 (p−1)

EIII E6/ (SO(10)T ) (BC)2

FII F4/SO(9) (BC)1

simple ones. The double roots are

2εj = 2 (λj + . . .+ λq−1 + λq) , 1 ≤ j ≤ q,

and the others are
εj = (λj + . . .+ λq−1 + λq) , 1 ≤ j ≤ q,

εi − εj = (λi + . . .+ λj−1) , 1 ≤ i < j ≤ q,
εi + εj = (λi + . . .+ λj−1) + 2(λj + . . .+ λq), 1 ≤ i < j ≤ q.

(3.1)

4. Required lemmata

As in [4], for α in Φ (g, h) or Φ (g0, a0) we write |α| = α if α ∈ Φ+ (g, h) (resp.
Φ+ (g0, a0)) and |α| = (−α) if (−α) ∈ Φ+ (g, h) (resp. Φ+ (g0, a0)).

Recall that Ω is the subset of Φ+ (g0, a0) consisting of the roots of odd height,
while Γ = Φ+ (g0, a0)− Ω.

Lemma 4.1. Let us assume that Φ (g0, a0) = (BC)q. Given γ ∈ Γ ⊂ Φ+ (g0, a0)
which is not a double root, we can find η 6= δ in Ω ⊂ Φ+ (g0, a0) such that
γ = η + δ and |η − δ| is not a root of Φ+ (g0, a0).

Proof. We may assume that q ≥ 2 because in (BC)1, Γ = {2λ1}. To prove the
Lemma, we have to consider the roots in (3.1). Those in Γ (written in terms of the
simple ones) have an even number of coefficients equal to 1, while those in Ω have
an odd number of them. Then γ ∈ Γ must have at least two coefficients equal to 1.
So we may suppress the simple root of lower index (call it η) and calling δ the sum
of the remaining terms we have obviously γ = η + δ and |η − δ| is not a root of
(BC)q. This completes the proof of Lemma 4.1. �

The proofs of the following three lemmata are obtained by inspection in the
pairs

(
Φ+ (g, h) , (BC)q

)
. We include in the Appendix an example of the proof of

Lemmata 4.2, 4.3, and 4.4.
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Lemma 4.2. Given λ ∈ Γ ⊂ Φ+ (g0, a0) = (BC)q (which is not a double root),
by Lemma 4.1 there exist two roots η 6= δ in Ω ⊂ Φ+ (g0, a0), such that λ = η + δ
and |η − δ| is not a root of Φ+ (g0, a0). Then for any root γ ∈ ρ−1 (λ) ⊂ Φ+ (g, h)
there exist roots α ∈ ρ−1 (η) and β ∈ ρ−1 (δ) such that γ = α+ β.

Let us consider now the case in which λ ∈ Γ ⊂ Φ+ (g0, a0) = (BC)q is a double
root (q ≥ 1). Then we have two possibilities, which are considered separately in
the following two lemmata.

Lemma 4.3. Assume that λ ∈ Γ, λ = 2µ, and µ ∈ Ω, and let γ ∈ ρ−1 (λ). Then
there exist roots α, β ∈ ρ−1 (µ) such that α 6= β and γ = α+ β.

Lemma 4.4. Assume that λ ∈ Γ, λ = 2µ, and µ ∈ Γ. Since µ ∈ Γ is not a
double root, by Lemma 4.1 there exist two roots η 6= δ in Ω ⊂ Φ+ (g0, a0), such
that µ = η + δ and |η − δ| is not a root of Φ+ (g0, a0) = (BC)q. Then for any root
γ ∈ ρ−1(λ) there exist roots α1 6= β1 ∈ ρ−1 (η) and α2 6= β2 ∈ ρ−1(δ) such that
α1 + α2 and β1 + β2 belong to ρ−1(µ), and furthermore γ = α1 + α2 + β1 + β2.

5. Basic notation

In order to avoid repetitions on the notation and basic facts we appeal to the
patience of the reader and expect that he/she has the opportunity to take a look
at [4, Sections 2–5], where the essential notation is introduced. We shall indicate
the numbers of the formulae there in the corresponding references.

We start with the tangent space [4, Eq. (3.1)] at the basic point E of our ho-
mogeneous isoparametric submanifold M = Ad (K)E and recall the basis Ξp (λ)
of the subspaces p0,λ, where λ ∈ Φ+ (g0, a0) [4, Eq. (4.8)]:

Ξp (λ) =
{
Wϕ, Uγ , Vγ : ϕ ∈ ρ−1(λ)R, γ ∈ ρ−1 (λ)∗C

}
, (5.1)

where ρ−1 (λ)R is the set of real roots (α = ασ) with image λ by restriction (ρ :
Φ(g, h)→ Φ+ (g0, a0)) to a0 and ρ−1 (λ)∗C is the subset of the set of complex roots
(α 6= ασ) with image λ by ρ, formed with one element of each pair {α, ασ} [4, §4.1].
The vectors Wα shall be considered only for the real roots α ∈ Φ(g, h) and they are
determined by the equalities

if kα = 1, Vα = 0, Wα = Uα,

if kα = −1, Uα = 0, Wα = Vα,
(5.2)

where the integers kα are associated to the roots α ∈ Φ(g, h) and are defined in
[4, Eqs. (4.1)–(4.3)].

Each of the tangent vectors at E in Ξp (λ) generates a corresponding local field
WF
α , UFβ , V Fβ around E as in [4, Eq. (5.1)]; for instance, for Uβ , the local field UFβ

is defined by

UFβ (Ad (exp tL)E) := Ad (exp tL)Uβ , for all L ∈ S
(

0, r2

)
, t ∈ [0, 1), (5.3)

and similarly for Vβ and Wα.
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6. Known formulae

We need to recall also some of the formulae established in [4, Appendix]. For
roots λ, µ ∈ Ω ⊂ Φ+ (g0, a0), δ ∈ ρ−1 (λ), and ϕ ∈ ρ−1 (µ) we have the identities

Θ(λ,µ,δ,ϕ)U(δ+ϕ) + Λ(λ,µ) (Ta (H1)) =
[
UFδ , U

F
ϕ

]
(E)−

[
V Fδ , V

F
ϕ

]
(E),

Θ(λ,µ,δ,ϕ)V(δ+ϕ) + Λ(λ,µ) (Ta (T2)) =
[
UFδ , V

F
ϕ

]
(E) +

[
V Fδ , U

F
ϕ

]
(E),

(6.1)

H1 = 2 (kδcδσ,−ϕ (x−δσ+ϕ − xδσ−ϕ)− kϕcδ,−ϕσ (xδ−ϕσ − x−δ+ϕσ )) , (6.2)
T2 = 2i (kδcδσ,−ϕ (xδσ−ϕ + x−δσ+ϕ)− kϕcδ,−ϕσ (xδ−ϕσ + x−δ+ϕσ )) , (6.3)

where kα is defined in [4, Eqs. (4.1)–(4.3)] and the involved functions of (λ, µ, δ, ϕ)
and (λ, µ) are, respectively,

Θ(λ,µ,δ,ϕ) = (2cδ,ϕ)
(
λ(E) + µ(E)
λ(E)µ(E)

)
6= 0,

Λ(λ,µ) =
(
λ(E)− µ(E)
λ(E)µ(E)

)
.

(6.4)

We have to add the case in which (δ + ϕ) is real and both δ and ϕ are complex.
Again λ, µ ∈ Ω ⊂ Φ+ (g0, a0), δ ∈ ρ−1 (λ)∗C, and ϕ ∈ ρ−1 (µ)∗C. In this case, from
(6.1) and having (5.2) in mind we have

k(δ+ϕ) = 1,
Θ(λ,µ,δ,ϕ)W(δ+ϕ) + Λ(λ,µ) (Ta (H1)) =

[
UFδ , U

F
ϕ

]
(E)−

[
V Fδ , V

F
ϕ

]
(E),

k(δ+ϕ) = (−1),
Θ(λ,µ,δ,ϕ)W(δ+ϕ) + Λ(λ,µ) (Ta (T2)) =

[
UFδ , V

F
ϕ

]
(E) +

[
V Fδ , U

F
ϕ

]
(E).

(6.5)

It is important to notice that when we have

either H1 = 0 = T2 or Λ(λ,µ) = 0 (6.6)

then (6.5) reduces to

Θ(λ,µ,δ,ϕ)W(δ+ϕ) =
{[
UFδ , U

F
ϕ

]
(E)−

[
V Fδ , V

F
ϕ

]
(E),[

UFδ , V
F
ϕ

]
(E) +

[
V Fδ , U

F
ϕ

]
(E).

(6.7)

We need also the case in which both δ and ϕ are real. That is λ, µ ∈ Ω ⊂
Φ+ (g0, a0), δ ∈ ρ−1 (λ)R, and ϕ ∈ ρ−1 (µ)R. We must recall also that in the
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present case [4, Eq. (8.1)] yields kδkϕ = k(δ+ϕ) and formulae (6.5) become
k(δ+ϕ) = 1, kδ = kϕ = 1,
Θ(λ,µ,δ,ϕ)W(δ+ϕ) + Λ(λ,µ) (Ta (H1)) =

[
WF
δ ,W

F
ϕ

]
(E),

k(δ+ϕ) = 1, kδ = kϕ = −1,
Θ(λ,µ,δ,ϕ)W(δ+ϕ) + Λ(λ,µ) (Ta (H1)) = −

[
WF
δ ,W

F
ϕ

]
(E),

k(δ+ϕ) = (−1) , kδ = 1, kϕ = −1,
Θ(λ,µ,δ,ϕ)W(δ+ϕ) + Λ(λ,µ) (Ta (T2)) =

[
WF
δ ,W

F
ϕ

]
(E),

k(δ+ϕ) = (−1) , kδ = −1, kϕ = 1,
Θ(λ,µ,δ,ϕ)W(δ+ϕ) + Λ(λ,µ) (Ta (T2)) =

[
WF
δ ,W

F
ϕ

]
(E).

(6.8)

Here again we have that if (6.6) holds then (6.8) can be reduced to
Θ(λ,µ,δ,ϕ)W(δ+ϕ) = ±

[
WF
δ ,W

F
ϕ

]
(E). (6.9)

7. Proof of Theorem 1.1

Let us take λ ∈ Γ and recall the basis (5.1) of p0λ.

Remark 7.1. It is important to observe that in order to prove Theorem 1.1, it is
enough to show (for each λ ∈ Γ) that the vectors of the basis Ξp(λ) of p0λ ⊂ TE(M)
may be computed as a sum of brackets of local fields (defined around E) that belong
to the distribution D (Ω). So this is the objective here.

To that end, we divide our considerations into three cases which require some-
what different procedures, namely

(A) λ is not a double root,
(B) λ = 2µ ∈ Γ and µ ∈ Ω,
(C) λ = 2µ ∈ Γ and µ ∈ Γ.

7.1. Case (A). Let us take λ ∈ Γ (which is not a double root) and consider the
basis (5.1) of p0λ. For this λ ∈ Γ, take γ ∈

(
ρ−1 (λ)∗C

)
and consider Uγ , Vγ for our

chosen γ. By Lemma 4.1, there exist roots η and δ in Ω ⊂ Φ+ (g0, a0) such that
η 6= δ, λ = η + δ, |η − δ| is not a root of Φ+ (g0, a0). (7.1)

Furthermore, by Lemma 4.2, for the root γ ∈ ρ−1(λ) there exist roots α ∈ ρ−1 (η)
and β ∈ ρ−1 (δ) such that γ = α + β. Then we have Uγ = U(α+β), Vγ = V(α+β)
and so formulae (6.1) (replacing the actual roots) are:

Θ(η,δ,α,β)U(α+β) + Λ(η,δ)Ta (H1) =
[
UFα , U

F
β

]
(E)−

[
V Fα , V

F
β

]
(E),

Θ(η,δ,α,β)V(α+β) + Λ(η,δ)Ta (T2) =
[
UFα , V

F
β

]
(E) +

[
V Fα , U

F
β

]
(E).

(7.2)

Let us study now the terms H1 and T2 (see (6.2) and (6.3)), for the pair of roots
(α, β). They are:

H1 = 2kαcασ,−β (x−ασ+β − xασ−β)− 2kβcα,−βσ (xα−βσ − x−α+βσ ),
T2 = 2ikαcασ,−β (xασ−β + x−ασ+β)− 2ikβcα,−βσ (xα−βσ + x−α+βσ ).
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In our present situation we have

|β − ασ| and |α− βσ| are not roots of Φ(g, h). (7.3)

In fact, since η and δ satisfy (7.1) and α ∈ ρ−1 (η), β ∈ ρ−1 (δ), if |β − ασ| were
a root of Φ (g, h) then ρ (|β − ασ|) = |η − δ| would be a root of Φ+ (g0, a0), which
is not the case by (7.1). Similarly, |α− βσ| is not a root of Φ (g, h). This clearly
yields H1 = T2 = 0 and going back to (7.2) we see that Uγ = U(α+β), Vγ = V(α+β)
are sums of brackets (evaluated on E) of local fields defined around E that belong
to the distribution D (Ω).

It remains to consider the case of ϕ ∈
(
ρ−1 (λ)R

)
for our taken λ ∈ Γ ⊂

Φ+ (g0, a0). We have the vector Wϕ and again there exist two roots η and δ in
Ω ⊂ Φ+ (g0, a0) satisfying (7.1) and roots ξ ∈ ρ−1 (η), ω ∈ ρ−1 (δ) such that
ϕ = ξ + ω. Then we have the following possibilities:

(i) ξ and ω are both real roots of Φ (g, h);
(ii) ξ and ω are both complex roots of Φ (g, h). (7.4)

(In the case (ii), ϕ = ξσ + ωσ is another decomposition of ϕ).
Let us consider the case (i) in (7.4). We see, by the argument above, that (7.3)

holds in this case and it takes the form

(ξ − ω) and (ω − ξ) are not roots of Φ (g, h).

Now, we see (for the roots (ξ, ω)) that formulae (6.2) and (6.3) yield H1 = T2 = 0,
and then (6.6) holds. Then we may write Wϕ = W(ξ+ω) using formula (6.9) (for
the roots (ξ, ω)) and therefore the vector Wϕ is a bracket (evaluated at E) of local
fields defined around E that belong to the distribution D (Ω).

On the other hand, in the case (ii) of (7.4) we have that (7.3) holds for the pair
of complex roots (ξ, ω), which again yields H1 = T2 = 0. Then by formulae (6.7)
(for ϕ = ξ + ω) we have that also in this case Wϕ is a sum of brackets (evaluated
at E) of local fields that belong to the distribution D (Ω). This completes the proof
of Theorem 1.1 in Case (A).

7.2. Case (B). Let us take λ ∈ Γ a double root, λ = 2µ with µ ∈ Ω, and consider
again the basis (5.1) for p0λ. As above we have to consider the two situations
ϕ ∈ ρ−1 (λ)R and γ ∈ ρ−1 (λ)∗C.

We shall take first ϕ ∈ ρ−1(λ)R. Then we have to consider the vector Wϕ. By
Lemma 4.3 there exist roots α, β ∈ ρ−1 (µ) such that α 6= β and ϕ = α + β, and
we have then (for α and β) the alternative (7.4), that is, either α and β are both
real or they are both complex roots.

Let us assume that α and β are both real. Then since α, β ∈ ρ−1 (µ), recalling
(6.4) we have λ(µ,µ) = 0, which means that (6.6) holds and then we may again use
(6.9) (for (α, β) instead of (δ, ϕ)) to write Wϕ as a bracket (evaluated at E) of local
fields defined around E and belonging to the distribution D (Ω).

Let us assume now that α and β are both complex roots. Since α, β ∈ ρ−1 (µ)
(α 6= β) we again have, by (6.4), that Λ(µ,µ) = 0, which means that (6.6) holds in
this situation too and we may use formulae (6.7) (with (α, β) instead of (δ, ϕ)) and
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also here the vector Wϕ is a sum of brackets (evaluated at E) of local fields defined
around E and belonging to the distribution D (Ω).

Continuing in Case (B), we consider now the possibility γ ∈ ρ−1 (λ)∗C. By
Lemma 4.3, there exist roots α, β ∈ ρ−1 (µ) such that α 6= β and γ = α + β. We
have to look now at Uγ = U(α+β), Vγ = V(α+β). Recalling (6.1), since α, β ∈
ρ−1 (µ), we have again Λ(µ,µ) = 0 and once more (6.6) holds. Then (6.1) takes the
form

Θ(µ,µ,α,β)U(α+β) =
[
UFα , U

F
β

]
(E)−

[
V Fα , V

F
β

]
(E),

Θ(µ,µ,α,β)V(α+β) =
[
UFα , V

F
β

]
(E) +

[
V Fα , U

F
β

]
(E),

and therefore the vectors Uγ = U(α+β), Vγ = V(α+β) are sums of brackets (evaluated
at E) of local fields defined around E belonging to the distribution D (Ω). This
completes the proof of Theorem 1.1 in Case (B).

7.3. Case (C). Here λ ∈ Γ is a double root, λ = 2µ and µ ∈ Γ. Since µ ∈ Γ
is not a double root, by Lemma 4.1 there exist two roots η 6= δ in Ω such that
µ = η+ δ and |η − δ| is not a root of Φ+ (g0, a0). Also, by Lemma 4.4, for the root
γ ∈ ρ−1 (λ), there exist roots α1 6= β1 ∈ ρ−1 (η) and α2 6= β2 ∈ ρ−1 (δ) such that
α1 + α2 and β1 + β2 belong to ρ−1 (µ) and γ = α1 + α2 + β1 + β2. In principle
we may have that either γ ∈ ρ−1 (λ)R or γ ∈ ρ−1 (λ)∗C. In order to simplify our
notation we set

α12 = (α1 + α2) ∈ ρ−1 (µ) , β12 = (β1 + β2) ∈ ρ−1 (µ) .

We have to study again the vectors of the basis (5.1) for our λ ∈ Γ. But before
doing this, we are going take a look at Uα12 , Vα12 , Uβ12 , and Vβ12 . For the roots
involved, we have the following possibilities:

(a) α12, β12 ∈ ρ−1 (µ)∗C, α1, β1 ∈ ρ−1 (η)∗C, α2, β2 ∈ ρ−1 (δ)∗C;
(b) α12, β12 ∈ ρ−1 (µ)R, α1, β1 ∈ ρ−1 (η)R, α2, β2 ∈ ρ−1 (δ)R;
(c) α12, β12 ∈ ρ−1 (µ)R, α1, β1 ∈ ρ−1 (η)∗C, α2, β2 ∈ ρ−1 (δ)∗C.

Let us start taking γ ∈ ρ−1 (2µ)∗C; then we are in situation (a) and considering
again the basis (5.1), we have to study the vectors Uγ and Vγ . But first we take a
look at the vectors Uα12 , Vα12 , Uβ12 , and Vβ12 .

7.3.1. Situation (a). By (6.1) (with (α1, α2) instead of (δ, ϕ)) we have

Θ(η,δ,α1,α2)Uα12 + Λ(η,δ)Ta (H1) =
[
UFα1

, UFα2

]
(E)−

[
V Fα1

, V Fα2

]
(E),

Θ(η,δ,α1,α2)Vα12 + Λ(η,δ)Ta (T2) =
[
UFα1

, V Fα2

]
(E) +

[
V Fα1

, UFα2

]
(E).

(7.5)

The extra terms H1 and T2 have expressions similar to (6.2) and (6.3) (with (α1, α2)
instead of (δ, ϕ)). That is,

H1 = 2kα1cασ
1 ,−α2

(
x−ασ

1 +α2 − xασ
1−α2

)
− 2kα2cα1,−ασ

2

(
xα1−ασ

2
− x−α1+ασ

2

)
,

T2 = 2ikα1cασ
1 ,−α2

(
xασ

1−α2 + x−ασ
1 +α2

)
− 2ikα2cα1,−ασ

2

(
xα1−ασ

2
+ x−α1+ασ

2

)
.

(7.6)
For Uβ12 and Vβ12 we have similar expressions (with β instead of α).
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Since α1, β1 ∈ ρ−1 (η), α2, β2 ∈ ρ−1 (δ) (with λ = η + δ and |η − δ| not a root
of Φ+ (g0, a0)) we see, in the same way as above in (7.3), that
|α2 − ασ1 | , |α1 − ασ2 | , |β2 − βσ1 | , and |β1 − βσ2 | are not roots of Φ (g, h) , (7.7)

and, once again, this yields H1 = T2 = 0 (for (α1, α2) and (β1, β2)). So the extra
terms in (7.5) vanish.

Since the roots η, δ, α1, α2, β1, β2 are fixed, in order to simplify notation we may
set

a = Θ(η,δ,α1,α2) 6= 0, b = Θ(η,δ,β1,β2) 6= 0, (7.8)
and hence, for Uα12 , Vα12 , Uβ12 and Vβ12 , (7.5) yields

aUα12 =
[
UFα1

, UFα2

]
(E)−

[
V Fα1

, V Fα2

]
(E),

aVα12 =
[
UFα1

, V Fα2

]
(E) +

[
V Fα1

, UFα2

]
(E),

bUβ12 =
[
UFβ1

, UFβ2

]
(E)−

[
V Fβ1

, V Fβ2

]
(E),

bVβ12 =
[
UFβ1

, V Fβ2

]
(E) +

[
V Fβ1

, UFβ2

]
(E).

(7.9)

Now we have to make an important remark.
Remark 7.2. For a diffeomorphism ϕ between two open sets in a manifold, one
has the definition of ϕ-related smooth fields (see for instance [6, p. 41, 1.54]).
By the definition (5.3) used to generate the local fields UFα1

, we see that
UFα1

(Ad (exp tL) (E)) = Ad (exp tL)
(
UFα1

(E)
)

(and similarly for UFα2
, V Fα1

and V Fα2
). Then, since the brackets of ϕ-related smooth

fields are ϕ-related (see [6, p. 41, 1.55]), we may write[
UFα1

, UFα2

]
(Ad (exp tL) (E)) = Ad (exp tL)

([
UFα1

, UFα2

]
(E)
)
,[

V Fα1
, V Fα2

]
(Ad (exp tL) (E)) = Ad (exp tL)

([
V Fα1

, V Fα2

]
(E)
)
.

Then extending locally around E the vector Uα12 as in (5.3) (with δ = α12) to
the local field UFα12

, that is,

UFα12
(Ad (exp tL)E) := Ad (exp tL)Uα12 , for all L ∈ S

(
0, r2

)
, t ∈ [0, 1),

and by defining similarly, locally around E, the fields V Fα12
, UFβ12

, and V Fβ12
, we see

(by [6, p. 41, 1.55]) that we may extend the four lines in (7.9) to local equalities of
fields around E and write

aUFα12
=
[
UFα1

, UFα2

]
−
[
V Fα1

, V Fα2

]
aV Fα12

=
[
UFα1

, V Fα2

]
+
[
V Fα1

, UFα2

]
bUFβ12

=
[
UFβ1

, UFβ2

]
−
[
V Fβ1

, V Fβ2

]
bV Fβ12

=
[
UFβ1

, V Fβ2

]
+
[
V Fβ1

, UFβ2

]
,

(7.10)

where the fields on the left side and the brackets on the right side are evaluated at
the same point in a neighborhood of E.

Now we go back to our root γ ∈ ρ−1 (2µ)∗C. We take Uγ and Vγ members of the
basis (5.1). Since γ = α12 + β12 (α12, β12 ∈ ρ−1 (µ)) we have for Uγ = U(α12+β12)
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and Vγ = V(α12+β12) expressions such as (6.1) with (6.2) and (6.3) with the roots
α12 and β12. Now, for convenience, we introduce the notation

Θ̂ = Θ(µ,µ,α12,β12) 6= 0
and observe that in the equalities (6.1) we have Λ(λ,µ) (defined in (6.4)) which in
this situation is Λ(µ,µ) = 0.

Then we see that in our present situation the equalities (6.1) become
Θ̂Uγ =

[
UFα12

, UFβ12

]
(E)−

[
V Fα12

, V Fβ12

]
(E)

Θ̂Vγ =
[
UFα12

, V Fβ12

]
(E) +

[
V Fα12

, UFβ12

]
(E).

(7.11)

Now we may replace the fields inside the brackets on the right side of (7.11) by
their expressions in (7.10). By doing this for Θ̂Uγ in (7.11) we see that the bracket[
UFα12

, UFβ12

]
in the first term (using (7.10) and multiplying by ab 6= 0) is

ab
[
UFα12

, UFβ12

]
=
[
aUFα12

, bUFβ12

]
= +

[[
UFα1

, UFα2

]
,
[
UFβ1

, UFβ2

]]
−
[[
UFα1

, UFα2

]
,
[
V Fβ1

, V Fβ2

]]
−
[[
V Fα1

, V Fα2

]
,
[
UFβ1

, UFβ2

]]
+
[[
V Fα1

, V Fα2

]
,
[
V Fβ1

, V Fβ2

]]
.

(7.12)

By proceeding similarly with the second term
[
V Fα12

, V Fβ12

]
in the first line of

(7.11) we have
ab
[
V Fα12

, V Fβ12

]
=
[
aV Fα12

, bV Fβ12

]
=
[[
UFα1

, V Fα2

]
,
[
UFβ1

, V Fβ2

]]
+
[[
UFα1

, V Fα2

]
,
[
V Fβ1

, UFβ2

]]
+
[[
V Fα1

, UFα2

]
,
[
UFβ1

, V Fβ2

]]
+
[[
V Fα1

, UFα2

]
,
[
V Fβ1

, UFβ2

]]
.

(7.13)

Now by expanding the brackets in each of the four terms in (7.12) and (7.13) and
computing the difference of the expanded expressions (dividing by ab) we finally
obtain the first line of (7.11). That is,(

Θ̂
ab

)
Uγ = −2

[
UFα1

, V Fβ1

]
− 2

[
UFα2

, V Fβ1

]
− 2

[
UFα1

, V Fβ2

]
− 2

[
UFα2

, V Fβ2

]
− 2

[
V Fα1

, UFβ1

]
− 2

[
V Fα2

, UFβ1

]
− 2

[
V Fα1

, UFβ2

]
− 2

[
V Fα2

, UFβ2

]
,

where all brackets should be evaluated at E.
By computing similarly (using again (7.10)), the second identity in (7.11) turns

out to be(
Θ̂
ab

)
Vγ = 2

[
UFα1

, UFβ1

]
+ 2

[
UFα2

, UFβ1

]
+ 2

[
UFα2

, UFβ2

]
+ 2

[
UFα1

, UFβ2

]
− 2

[
V Fα1

, V Fβ2

]
− 2

[
V Fα2

, V Fβ1

]
− 2

[
V Fα2

, V Fβ2

]
− 2

[
V Fα1

, V Fβ1

]
,

where all the brackets should be evaluated at E. Then we see that
(

Θ̂
ab

)
Uγ and(

Θ̂
ab

)
Vγ are linear combinations of brackets (evaluated at E) of fields in the distri-

bution. These formulae are valid for situation (a) and γ ∈ ρ−1 (λ)∗C.
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Then we have the proof of the theorem in the situation (a).
Let us take now γ ∈ ρ−1 (2µ)R; then we have to study situations (b) and (c).

7.3.2. Situation (b). We have
(b) α12, β12 ∈ ρ−1 (µ)R, α1, β1 ∈ ρ−1 (η)R, α2, β2 ∈ ρ−1 (δ)R.

Here we start by considering α12 ∈ ρ−1 (µ)R with α1 ∈ ρ−1 (η)R and α2 ∈ ρ−1 (δ)R,
and we have that
|α2 − ασ1 | , |α1 − ασ2 | , |β2 − βσ1 | , and |β1 − βσ2 | are not roots of Φ (g, h) .

By (7.6) and (7.7) (since |α1 − α2| and |β2 − βσ1 | are not roots) we have that this
yields H1 = T2 = 0 (for (α1, α2) and (β1, β2)) and hence we may use (6.9), which
for the present roots takes the form

Θ(η,δ,α1,α2)W(α12) = ±
[
WF
α1
,WF

α2

]
(E).

This identity extends locally as we did to get (7.10) and recalling (7.8) we may
write

aWF
(α12) = ±

[
WF
α1
,WF

α2

]
, (7.14)

where both sides are evaluated at the same point around E.
Proceeding similarly for β12 ∈ ρ−1 (µ)R, β1 ∈ ρ−1 (η)R, and β2 ∈ ρ−1 (δ)R we

have
bWF

(β12) = ±
[
WF
β1
,WF

β2

]
. (7.15)

Now consider γ = (α12 + β12) ∈ ρ−1 (2µ)R, with α12 ∈ ρ−1 (µ)R and β12 ∈
ρ−1 (µ)R. Here we have as above λ(µ,µ) = 0 and (6.6) lets us use (6.9) again and
write

Θ(µ,µ,α12,β12)W((α12+β12)) = ±
[
WF
α12
,WF

β12

]
(E).

Now setting

A =
Θ(µ,µ,α12,β12)

ab
, (7.16)

by replacing (7.14) and (7.15) and expanding we see that

AW((α12+β12)) = ±
([
WF
α1
,WF

β1

]
+
[
WF
α1
,WF

β2

]
+
[
WF
α2
,WF

β1

]
+
[
WF
α2
,WF

β2

])
.

Then, for γ ∈ ρ−1 (2 (λ1 + λ2))R, in the present situation (b) the vector AWγ is
a linear combination of brackets (evaluated at E) of fields in the distribution.

7.3.3. Situation (c). We have
(c) α12, β12 ∈ ρ−1 (µ)R, α1, β1 ∈ ρ−1 (η)∗C, α2, β2 ∈ ρ−1 (δ)∗C.

We start by considering α12 ∈ ρ−1 (µ)R, with α1 ∈ ρ−1 (η)∗C and α2 ∈ ρ−1 (δ)∗C.
Here we have to apply naturally formulae (6.8) but since |α1 − α2| is not a root we
see that this yields H1 = T2 = 0 (for (α1, α2)) and hence we may use (6.7) (with
(η, δ, α1, α2) instead of (λ, µ, δ, ϕ)) which, replacing the roots, takes the form

Θ(η,δ,α1,α2)Wα12 =
{[

UFα1
, UFα2

]
(E)−

[
V Fα1

, V Fα2

]
(E)[

UFα1
, V Fα2

]
(E) +

[
V Fα1

, UFα2

]
(E).
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This identity extends locally as we did to get (7.10) and recalling (7.8) we may
write

aWF
α12

=
{[

UFα1
, UFα2

]
−
[
V Fα1

, V Fα2

][
UFα1

, V Fα2

]
+
[
V Fα1

, UFα2

]
.

(7.17)

where both sides are evaluated at the same point around E.
Proceeding similarly for β12 ∈ ρ−1 (µ)R, β1 ∈ ρ−1 (η)∗C, and β2 ∈ ρ−1 (δ)∗C we

have

bWF
β12

=
{[

UFβ1
, UFβ2

]
−
[
V Fβ1

, V Fβ2

][
UFβ1

, V Fβ2

]
+
[
V Fβ1

, UFβ2

]
.

(7.18)

Since we are now in situation (c) we have we have to consider γ = (α12 + β12) ∈
ρ−1 (2 (µ))R, with α12 ∈ ρ−1 (µ)R and β12 ∈ ρ−1 (µ)R. Then we have again Λ(µ,µ) =
0 and (6.6) lets us use (6.9) (with (µ, µ, α12, β12) instead of (λ, µ, δ, ϕ)) and write

Θ(µ,µ,α12,β12)Wγ = ±
[
WF
α12
,WF

β12

]
(E).

Proceeding as above we may replace each factor of the bracket
[
aWF

α12
, bWF

β12

]
by any one of the two lines in (7.17) and (7.18) respectively, and expanding pa-
tiently (using (7.16)) we obtain the vector AWγ as a linear combination of brackets
(evaluated at E) of fields in the distribution.

This completes the proof of Theorem 1.1.

8. Appendix

We include here as an example a proof of the lemmata in Section 4 for the spaces
in Table 2. For simplicity we consider only the root system (BC)2. Note that for
EIII this is no restriction. We hope that this will serve as an example.

Table 2.

non-reduced space Φ (g0, a0)
AIII SU(p+ 2)/S (U(p)× U(2)) (p > 2) (BC)2

CII Sp(p+ 2)/Sp(p)× Sp(2)(p > 2) (BC)2

DIII SO(2p)/U(p), p = 5, (BC)2

EIII E6/ (Spin(10).T ) (BC)2

In all cases we use the information from [2, p. 532–534]:

(BC)2 Ω = {λ1, λ2, λ1 + 2λ2} , Γ = {λ1 + λ2, 2λ2, 2λ1 + 2λ2} .

The only root in Γ which is not double is λ = (λ1 + λ2); then taking η = λ1 and
δ = λ2 we have that λ = η + δ and |η − δ| is not a root of Φ+ (g0, a0), so the first
part of Lemma 4.2 is clear.
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8.1. The space AIII . To simplify notation we set r = p+ 3; then SU (p+ 2) =
SU (r − 1) and its Lie algebra is Ar, so the simple roots are {α1, . . . , αr}. The set
of restricted roots is (BC)2, so we have simple roots π = {λ1, λ2}. Since p > 2, we
have r > 5. The restriction rule is

αh 7−→ λh, αr−h+1 7−→ λh, 1 ≤ h ≤ 2,
αk 7−→ 0, 3 ≤ k ≤ r − 2,

and the multiplicities are

m(λ1) = 2, m(λ2) = 2(r − 3), m(2λ2) = 1.

The roots going to λ1 are {α1, αr} and those with image λ2 are

α2 + · · ·+ αk, 3 ≤ k ≤ r − 2;
αk + · · ·+ αr−1, 3 ≤ k ≤ r − 1.

The root in Γ which is not double is λ = (λ1 + λ2) and this is image of the roots

α1 + α2 + · · ·+ αk, 3 ≤ k ≤ r − 2;
αk + · · ·+ αr−1 + αr, 3 ≤ k ≤ r − 1,

so it is clear that for any root γ ∈ ρ−1 ((λ1 + λ2)) ⊂ Φ+ (g, h) we can find α ∈
ρ−1 (λ1) and β ∈ ρ−1 (λ2) such that γ = α+ β; in fact,

α1 + α2 + · · ·+ αk = (α1) + (α2 + · · ·+ αk) , 3 ≤ k ≤ r − 2;
αk + · · ·+ αr−1 + αr = (αk + · · ·+ αr−1) + (αr) , 3 ≤ k ≤ r − 1. (8.1)

Then we have Lemma 4.2 for AIII.

The only root in Ω whose double is in Γ is λ2. Then since r > 5 we have that∣∣ρ−1 (λ2)
∣∣ = 2 (r − 3) > 4 and there is only one root in γ ∈ ρ−1 (2λ2); in fact it

is γ = (α2 + · · ·+ αr−1), so we can chose two different roots α, β ∈ ρ−1 (λ2) such
that γ = α+ β. In fact we may take

α = α2 + · · ·+ αk, β = αk+1 + · · ·+ αr−1, 2 < k < r − 1.

Then we have Lemma 4.3 for AIII.

Now consider the double root λ = 2 (λ1 + λ2), so γ = 2µ, with µ = (λ1 + λ2).
We have to find η 6= δ in Ω such that µ = (λ1 + λ2) = η + δ and |η − δ| is not a
root of (BC)q. Obviously we have to take η = λ1 and δ = λ2.

There is only one root in ρ−1 (λ), namely γ = (α1 + · · ·+ αr). Now we have to
find ϕ1 6= β1 ∈ ρ−1 (λ1) and ϕ2 6= β2 = ρ−1 (λ2) such that ϕ1 + ϕ2 and β1 + β2
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belongs to ρ−1 (µ) = ρ−1 (λ1 + λ2) and γ = α1 + α2 + β1 + β2. We take

ϕ1 = α1,

β1 = αr,

ϕ1 6= β1 ∈ ρ−1 (λ1) ,
ϕ2 = (α2 + · · ·+ αk) , 3 ≤ k ≤ r − 2,
β2 = (αk+1 + · · ·+ αr−1) , 3 ≤ k ≤ r − 1,
ϕ2 6= β2 ∈ ρ−1 (λ2) .

We have, by (8.1),

ϕ1 + ϕ2 = (α1) + (α2 + · · ·+ αk) ∈ ρ−1 (λ1 + λ2) ,
β1 + β2 = (αr) + (αk+1 + · · ·+ αr−1) ∈ ρ−1 (λ1 + λ2) ,

and furthermore
γ = (α1 + · · ·+ αr)

= (α1) + (α2 + · · ·+ αk) + (αk+1 + · · ·+ αr−1) + (αr)
= ϕ1 + ϕ2 + β1 + β2.

Then we have Lemma 4.4 for AIII.

8.2. The space CII (p > 2). For p > 2 the restricted roots form (BC)2. Let us
set r = p+ 2. The algebra of Sp (r) is Cr. Since p > 2 we have here r > 4.

Again the system of simple roots π = {α1, . . . , αr} and the roots of Cr are

(1) ei − ej =
∑
i≤k<j

αk, 1 ≤ i < j ≤ r,

(2) ei + ej =
∑
i≤k<j

αk + 2
∑
j≤k<r

αk + αr, 1 ≤ i < j ≤ r,

(3) 2ei = 2
∑
i≤k<r

αk + αr, 1 ≤ i ≤ r.

(8.2)

We observe that for those roots of type (2) in (8.2) we have the particular case
j = r which are the roots

ei + er =
∑
i≤k<r

αk + αr, 1 ≤ i < r.

The restriction rule is

α2j 7−→ λj , if 1 ≤ j ≤ 2,
αk 7−→ 0, if either k is odd or k > 4.

The multiplicities are

m(λ1) = 4, m(λ2) = 4(r − 4), m(2λ2) = 3.
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The roots in ρ−1 (λ1) are the four roots

α2 = (e2 − e3) , α1 + α2 = (e1 − e3) ,
α2 + α3 = (e2 − e4) , α1 + α2 + α3 = (e1 − e4) .

We have in ρ−1 (λ2) the roots
e4 − eh+1 = α4 + · · ·+ αh,

e3 − eh+1 = α3 + α4 + · · ·+ αh,

e4 + eh+1 = α4 + · · ·+ αh + 2 (αh+1 + · · ·+ αr−1) + αr,

e3 + eh+1 = α3 + α4 + · · ·+ αh + 2 (αh+1 + · · ·+ αr−1) + αr,

4 ≤ h ≤ r − 1,

(if h = r−1 the factor of 2 is not present). The multiplicity of λq ism(λq) = 4(r−4).
The only root in Γ which is not double is λ = (λ1 + λ2) and it is image of the

roots that contain α2 and α4 as terms with coefficient 1. They are

(1) ei − ej =
∑
i≤k<j

αk, i = 1, 2; 3 ≤ j ≤ r,

(2) ei + ej =
∑
i≤k<j

αk + 2
∑
j≤k<r

αk + αr, i = 1, 2; 3 ≤ j ≤ r − 1,

(2′′) ei + er =
∑
i≤k<r

αk + αr, i = 1, 2,

which we simplify to
(e1 − eh), (e2 − eh), 3 ≤ h ≤ r,
(e1 + eh), (e2 + eh), 3 ≤ h ≤ r − 1,
(e1 + er), (e2 + er), m(λ1 + λ2) = 4(r − 3).

We may write them as

(e1 − eh) = (α1 + α2) + (e3 − eh) = (e1 − e3) + (e3 − eh), 3 ≤ h ≤ r,
(e2 − eh) = (α2 + α3) + (e4 − eh) = (e2 − e4) + (e4 − eh), 3 ≤ h ≤ r,
(e1 + eh) = (α1 + α2) + (e3 + eh) = (e1 − e3) + (e3 + eh), 3 ≤ h ≤ r − 1,
(e2 + eh) = (α2 + α3) + (e4 + eh) = (e2 − e4) + (e4 + eh), 3 ≤ h ≤ r − 1,
(e1 + er) = (α1 + α2) + (e3 + eh) = (e1 − e3) + (e3 + eh),
(e2 + er) = (α2) + (e3 + eh) = (e2 − e3) + (e3 + eh).

Then for any root γ ∈ ρ−1 ((λ1 + λ2)) there exist roots ϕ ∈ ρ−1 (λ1) and β ∈
ρ−1 (λ2) such that γ = α+ β.

Then we have Lemma 4.2 for CII.

Now we prove Lemma 4.3.
Assume that λ ∈ Γ, λ = 2µ, and µ ∈ Ω, and let γ ∈ ρ−1 (λ). Then there exist

roots α, β ∈ ρ−1 (µ) such that α 6= β and γ = α+ β.
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The roots in ρ−1 (2λ2) are the three roots

ξ1 = e3 + e4 = α3 + 2
∑

4≤k<r
αk + αr,

ξ2 = 2e4 = 2
∑

4≤k<r
αk + αr,

ξ3 = 2e3 = 2
∑

3≤k<r
αk + αr,

(8.3)

so we have m (2λ2) = 3. Let us take now ξ1 ∈ ρ−1 (2λ2) in (8.3). We have to show
that there exist roots η1, β1 ∈ ρ−1 (λ2) such that η1 6= β1 and ξ1 = η1 + β1. We
define, for

ξ1 = e3 + e4 = α3 + 2
∑

4≤k<r
αk + αr,

the roots
η1 = e3 − er−1 = α3 +

∑
4≤s≤r−1

αs,

β1 = e4 + er−1 =
∑

4≤s≤r−1
αs + αr.

Clearly η1 6= β1 and
η1 + β1 = (e2j−1 − er−1) + (e2j + er−1) = e2j−1 + e2j = ξ1.

Now, for
ξ2 = 2e4 = 2

∑
4≤k<r

αk + αr,

we may take

η2 = e4 − er−1 =
∑

2j≤s≤r−1
αs,

β2 = e4 + er−1 =
∑

2j≤s≤r−1
αs + αr;

then again η2 6= β2 and
η2 + β2 = (e2j − er−1) + (e2j + er−1) = 2e2j = ξ2.

Now, for
ξ3 = 2e3 = 2

∑
3≤k<r

αk + αr,

we take
η3 = e3 − er−1 =

∑
(2j−1)≤s≤r−1

αs,

β2 = e3 + er−1 =
∑

(2j−1)≤s≤r−1

αs + αr,
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and, once again, η3 6= β3 and
η3 + β3 = (e2j−1 − er−1) + (e2j−1 + er−1) = 2e2j−1 = ξ3.

Furthermore, it is clear by the definitions of ηs and βs (for 1 ≤ s ≤ 3) that we
also have

ρ(ηs) = λ2 = ρ(βs).
Then we have Lemma 4.3 for CII.
Now we prove Lemma 4.4.
We take λ = 2 (λ1 + λ2) (λ ∈ Γ, λ = 2µ, and µ ∈ Γ with µ = (λ1 + λ2)). The

roots in ρ−1 (2 (λ1 + λ2)) are the three roots

ξ1 = e1 + e2 = α1 + 2
∑

2≤k<r
αk + αr,

ξ2 = 2e2 = 2
∑

2≤k<r
αk + αr,

ξ3 = 2e1 = 2
∑

1≤k<r
αk + αr,

m (2 (λ1 + λ2)) = 3.
We set now for ξ1 = e1 + e2:

ω1 = e2 − e4, β1 = e1 − e4,

ω2 = e4 + er, β2 = e4 − er,
ω1 6= β1 ∈ ρ−1(λ1), ω2 6= β2 ∈ ρ−1(λ2).

Then we have
ω1 + ω2 = e2 + er ∈ ρ−1 (λ1 + λ2) ,
β1 + β2 = e1 − er ∈ ρ−1 (λ1 + λ2) ,

and furthermore
ω1 + β1 + ω2 + β2 = (e2 + er) + (e1 − er) = e1 + e2 = ξ1.

Considering now ξ2 = 2e2 we set
ω1 = (α2) = e2 − e3, β1 = (α2 + α3) = e2 − e4,

ω2 = e3 + er, β2 = e4 − er,
ω1 6= β1 ∈ ρ−1(λ1), ω2 6= β2 ∈ ρ−1(λ2).

Then we have
ω1 + ω2 = e2 + er ∈ ρ−1(λ1 + λ2),
β1 + β2 = e2 − er ∈ ρ−1(λ1 + λ2),

and finally
ω1 + ω2 + β1 + β2 = (e2 + er) + (e2 − er) = 2e2 = ξ2.
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Now for ξ3 = 2e1 we define
ω1 = (α1 + α2) = e1 − e3, ω2 = e3 + er,

β1 = (α1 + α2 + α3) = e1 − e4, β2 = e4 − er,
ω1 6= β1 ∈ ρ−1(λ1), ω2 6= β2 ∈ ρ−1(λ2).

Then we have
ω1 + ω2 = e1 + er ∈ ρ−1(λ1 + λ2),
β1 + β2 = e1 − er ∈ ρ−1(λ1 + λ2),

and finally
ω1 + ω2 + β1 + β2 = (e1 + er) + (e1 − er) = 2e1 = ξ3.

Then we have Lemma 4.4 for CII.

8.3. The space DIII (p = 5). The system of roots for SO (10) is D5. In the
present case the restriction rule is

α2 7−→ λ1, (α4, α5) 7−→ λ2, (α1, α3) 7−→ 0,
and the multiplicities are

m (λj) = 4, j = 1, 2; m (2λ2) = 1.
We need to indicate the roots of D5 in the notation from Bourbaki. If {ej} is

the canonical basis of R5 the roots are
±ej ± ek, 1 ≤ j < k ≤ p.

The number of positive roots is 20 and the basis is
α1 = e1 − e2, α2 = e2 − e3, α3 = e3 − e4,

α4 = e4 − e5, α5 = e4 + e5.

The positive roots for D5 are

(1) ei − ej =
∑
i≤u<j

αu, 1 ≤ i < j ≤ 5;

(2) ei − e5 =
∑
i≤u<5

αu, 1 ≤ i < 5;

(3) ei + e5 =
∑
i≤u<4

αu + α5, 1 ≤ i < 4;

(4) ei + ej =
∑
i≤u<j

αu + 2
∑
j≤u<4

αu + α4 + α5, 1 ≤ i < j < 4.

The roots that go to λ1 and λ2 are respectively the four roots

ρ−1 (λ1) =
{
α2 = (e2 − e3) α1 + α2 = (e1 − e3)
α2 + α3 = (e2 − e4) α1 + α2 + α3 = (e1 − e4)

}
ρ−1 (λ2) =

{
α4 = (e4 − e5) α5 = (e4 + e5)
α3 + α4 = (e3 − e5) α3 + α5 = (e3 + e5)

}
.
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Now we consider the roots in ρ−1 (λ1 + λ2). These are the roots containing
α2 and α4 with coefficient 1 or α2 and α5 also with coefficient 1, so they are

e2 − e5 = α2 + α3 + α4

e1 − e5 = α1 + α2 + α3 + α4

e2 + e5 = α2 + α3 + α5

e1 + e5 = α1 + α2 + α3 + α5.

They may be writen as

e2 − e5 = α2 + α3 + α4 = (e2 − e3) + (e3 − e5)
e1 − e5 = α1 + α2 + α3 + α4 = (e1 − e4) + (e4 − e5)
e2 + e5 = α2 + α3 + α5 = (e2 − e4) + (e4 + e5)
e1 + e5 = α1 + α2 + α3 + α5 = (e1 − e4) + (e4 + e5) .

Then for any root γ ∈ ρ−1((λ1 + λ2)) ⊂ Φ+ (g, h) there exist roots ϕ ∈ ρ−1(λ1)
and β ∈ ρ−1(λ2) such that γ = ϕ+ β.

Then we have Lemma 4.2 for DIII.

Now we consider the root in ρ−1 (2λ2). There is only one:

γ = e3 + e4 = α3 + α4 + α5 ∈ ρ−1(2λ2).

To prove Lemma 4.3 for DIII we take γ and have to find α, β ∈ ρ−1 (λ2) such that
α 6= β and γ = α+ β. Then we may take

α = α5, β = α3 + α4.

Then we have Lemma 4.3 for DIII.

Now we consider the roots in ρ−1 (2 (λ1 + λ2)). There is only one:

ρ−1 (2 (λ1 + λ2)) = {α1 + 2(α2 + α3) + α4 + α5} .

Here 2 (λ1 + λ2) ∈ Γ and µ = (λ1 + λ2) ∈ Γ. Since µ is not a double root, by
Lemma 4.1 we have two roots λ1 6= λ2 in Ω, such that µ = (λ1 + λ2) and |λ1 − λ2|
is not a root of (BC)q. Then for any root γ ∈ ρ−1 (2 (λ1 + λ2)) (only one here)
there exist roots ϕ1 6= β1 ∈ ρ−1 (λ1) and ϕ2 6= β2 ∈ ρ−1 (λ2) such that ϕ1 +ϕ2 and
β1 +β2 belong to ρ−1 ((λ1 + λ2)), and furthermore γ = ϕ1 +ϕ2 +β1 +β2. We take

ϕ1 = α1 + α2 + α3 = (e1 − e4) β1 = α2 + α3 = (e2 − e4)
ϕ1 6= β1 ∈ ρ−1(λ1)
ϕ2 = α4 = (e4 − e5) β2 = α5 = (e4 + e5)
ϕ2 6= β2 ∈ ρ−1(λ2).
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We clearly have

ϕ1 + ϕ2 = (e1 − e4) + (e4 − e5)
= α1 + α2 + α3 + α4 = (e1 − e5) ∈ ρ−1(λ1 + λ2),

β1 + β2 = (e2 − e4) + (e4 + e5)
= α2 + α3 + α5 = (e2 + e5) ∈ ρ−1(λ1 + λ2),

and furthermore

ϕ1 + ϕ2 + β1 + β2 = (α1 + α2 + α3 + α4) + (α2 + α3 + α5)
= α1 + 2 (α2 + α3) + α4 + α5.

Then we have Lemma 4.4 for DIII.

8.4. The space EIII . We need the restriction rule from [2, p. 534]. We keep the
previous notation for (BC)2 but this means a change in names of the simple roots
from the indicated in the diagram in [2, p. 534].

α2
α6 α5 α4 α3 α1

= α2
α6 • • • α1

7−→ (λ1, λ2)

α2 7−→ λ1, α6, α1 7−→ λ2, α3, α4, α5 7−→ 0,
and the multiplicities are

m(λ1) = 6, m(λ2) = 8, m(2λ2) = 1.

The roots in ρ−1(λ1) and ρ−1(λ2) are:

1
0 0 0 0 0 7−→ λ1,

1
0 0 1 0 0 7−→ λ1

1
0 1 1 0 0 7−→ λ1,

1
0 0 1 1 0 7−→ λ1

1
0 1 1 1 0 7−→ λ1,

1
0 1 2 1 0 7−→ λ1

0
1 0 0 0 0 7−→ λ2,

0
0 0 0 0 1 7−→ λ2

0
1 1 0 0 0 7−→ λ2,

0
0 0 0 1 1 7−→ λ2

0
1 1 1 0 0 7−→ λ2,

0
0 0 1 1 1 7−→ λ2

0
1 1 1 1 0 7−→ λ2,

0
0 1 1 1 1 7−→ λ2
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The roots in ρ−1 (λ1 + λ2) are:
1

1 1 1 0 0 7−→ λ1 + λ2,
1

0 0 1 1 1 7−→ λ1 + λ2

1
1 1 1 1 0 7−→ λ1 + λ2,

1
0 1 1 1 1 7−→ λ1 + λ2

1
1 1 2 1 0 7−→ λ1 + λ2,

1
0 1 2 1 1 7−→ λ1 + λ2

1
1 2 2 1 0 7−→ λ1 + λ2,

1
0 1 2 2 1 7−→ λ1 + λ2

There is only one root in ρ−1 (2λ2) and also one in ρ−1 (2λ2 + 2λ1). They are:
0

1 1 1 1 1 7−→ 2λ2

2
1 2 3 2 1 7−→ 2λ2 + 2λ1.

In order to prove Lemma 4.2 let us take now (λ1 + λ2). We have to show
that for any root γ ∈ ρ−1(λ1 + λ2) ⊂ Φ+(g, h) there exist roots α ∈ ρ−1(λ1) and
β ∈ ρ−1(λ2) such that γ = α + β. We can write each root going to λ1 + λ2 as a
sum of one going to λ2 plus one going to λ1.

(1) (λ1 + λ2) 1
1 1 1 0 0 = 0

1 1 1 0 0 + 1
0 0 0 0 0

(2) (λ1 + λ2) 1
0 0 1 1 1 = 0

0 0 1 1 1 + 1
0 0 0 0 0

(3) (λ1 + λ2) 1
1 1 1 1 0 = 0

1 1 1 1 0 + 1
0 0 0 0 0

(4) (λ1 + λ2) 1
0 1 1 1 1 = 0

0 1 1 1 1 + 1
0 0 0 0 0

(5) (λ1 + λ2) 1
1 1 2 1 0 = 0

1 0 0 0 0 + 1
0 1 2 1 0

(6) (λ1 + λ2) 1
0 1 2 1 1 = 0

0 0 0 0 1 + 1
0 1 2 1 0

(7) (λ1 + λ2) 1
1 2 2 1 0 = 0

1 1 0 0 0 + 1
0 1 2 1 0

(8) (λ1 + λ2) 1
0 1 2 2 1 = 0

0 0 0 1 1 + 1
0 1 2 1 0

Therefore we have shown that, for all roots γ ∈ Φ+(g, h) such that ρ(γ) =
(λ1 + λ2) ∈ Γ, there exist two roots α and β ∈ Φ+ (g, h) such that ρ (α) and
ρ (β) ∈ Ω and γ = α+ β.

Then we have Lemma 4.2 for EIII.
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Let us take now the proof of Lemma 4.3.
We consider the double root 2λ2 (λ2 ∈ Ω) and let γ ∈ ρ−1(2λ2). We must show

that there exist roots ϕ, β ∈ ρ−1(µ) such that α 6= β and γ = α + β. Since there
is only one root in ρ−1(2λ2), this can be done by

0
1 1 1 1 1 = 0

1 0 0 0 0 + 0
0 1 1 1 1 .

Then we have Lemma 4.3 for EIII.
Finally we have to prove that Lemma 4.4 holds for EIII and then we take

2λ2 + 2λ1. There is only one root in ρ−1(2(λ1 + λ2)):
2

1 2 3 2 1 7−→ 2λ2 + 2λ1.

Here λ = 2µ = 2(λ1 + λ2) and µ = (λ1 + λ2), λ1 6= λ2 in Ω, |λ1 − λ2| is not a
root of (BC)2. We have to show that for any root γ ∈ ρ−1 (2 (λ1 + λ2)) there exist
roots ϕ1 6= β1 ∈ ρ−1 (λ1) and ϕ2 6= β2 ∈ ρ−1 (λ2) such that ϕ1 + ϕ2 and β1 + β2
belong to ρ−1(µ) = ρ−1 (λ1 + λ2), and furthermore γ = ϕ1 + ϕ2 + β1 + β2. There
is one root in ρ−1(2λ2 + 2λ1) indicated above. We take

ϕ1 = 1
0 0 0 0 0 7−→ λ1, β1 = 1

0 1 2 1 0 7−→ λ1

ϕ1 6= β1 ∈ ρ−1(λ1)

ϕ2 = 0
1 1 1 0 0 7−→ λ2, β2 = 0

0 0 0 1 1 7−→ λ2

ϕ2 6= β2 ∈ ρ−1(λ2)

2
1 2 3 2 1 = 1

0 0 0 0 0 + 1
0 1 2 1 0

+ 0
1 1 1 0 0 + 0

0 0 0 1 1 .

Then we have Lemma 4.4 for EIII.
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