ON THE MODULE INTERSECTION GRAPH OF IDEALS OF RINGS

THANGARAJ ASIR, ARUN KUMAR, AND ALVEERA MEHDI

Abstract

Let R be a commutative ring and M an R-module. The M-intersection graph of ideals of R is an undirected simple graph, denoted by $G_{M}(R)$, whose vertices are non-zero proper ideals of R and two distinct vertices are adjacent if and only if $I M \cap J M \neq 0$. In this article, we focus on how certain graph theoretic parameters of $G_{M}(R)$ depend on the properties of both R and M. Specifically, we derive a necessary and sufficient condition for R and M such that the M-intersection graph $G_{M}(R)$ is either connected or complete. Also, we classify all R-modules according to the diameter value of $G_{M}(R)$. Further, we characterize rings R for which $G_{M}(R)$ is perfect or Hamiltonian or pancyclic or planar. Moreover, we show that the graph $G_{M}(R)$ is weakly perfect and cograph.

1. Introduction

Recently, there has been considerable attention in the literature to associating graphs with rings or modules. More specifically, there are many papers on assigning graphs to modules (see, for example, [3, 11, 13]). The present paper deals with what is known as the intersection graph. The first step in this direction was taken by Csákány and Pollák [7] in 1969. In [5], the authors introduced and studied the intersection graph of a family of non-trivial ideals of a ring. These motivated the authors of [1] to define the intersection graph of submodules of a module. In the last decade, many research articles have been published on the intersection graphs of rings and modules; for instance, see [2, 4, 12, 14]. In 2018, Heydari [10] combined the concepts of intersection graph of ideals of a ring and intersection graph of submodules of a module to define the M-intersection graph of ideals of a ring R, where M is an R-module.

Formally, let R be a commutative ring with identity and let M be an R-module. The M-intersection graph of ideals of R, denoted by $G_{M}(R)$, is a simple graph whose vertices are the non-trivial ideals of R and any two distinct vertices are adjacent if $I M \cap J M \neq 0$. Note that the properties of $G_{M}(R)$ depend upon M as

[^0]well as the underlying ring R. This observation inspired the authors of the paper to investigate further properties of $G_{M}(R)$.

We first summarize the notations and concepts. For any $a \in M, \operatorname{ann}(a)=\{x \in$ $R: a x=0\}$ is the annihilator ideal of a in M. The module M is called a faithful R-module if $\operatorname{ann}(M)=0$. An R-module M is a multiplication module if for each submodule N of M there is an ideal I of R such that $I M=N$. A module is called a uniform module if the intersection of any two non-zero submodules is non-zero. Throughout the paper, the notations $I(R)^{*}, \operatorname{Max}(R), \operatorname{Min}(R), \mathbb{Z}$ and \mathbb{Z}_{n} denote, respectively, the set of all non-trivial ideals of R, the set of all maximal ideals of R, the set of all minimal ideals of R, the set of integers and the set of integers modulo n.

A graph in which each pair of distinct vertices is joined by an edge is called a complete graph. On the other extreme, a null graph is a graph containing no edges. The complete graph and null graph on n vertices are denoted by K_{n} and $\overline{K_{n}}$, respectively. A graph G is connected if there is a path between any two distinct vertices of G; otherwise G is disconnected. Let u and v be two distinct vertices of G. If the shortest $u-v$ path is of length k, then $d(u, v)=k$. Note that $d(u, v)=\infty$ if there is no path between u and v. The diameter of G, denoted by $\operatorname{diam}(G)$, is the supremum of the set $\{d(u, v): u$ and v are distinct vertices of $G\}$. The girth of G, denoted by $\operatorname{gr}(G)$, is the length of the shortest cycle in G and $\operatorname{gr}(G)=\infty$ whenever G is a tree. An Eulerian circuit in a connected graph G is a closed trail that contains every edge of G. A connected graph that contains an Eulerian circuit is called an Eulerian graph. A cycle in G that contains every vertex of G is called a Hamiltonian cycle of G. A Hamiltonian graph is a graph that contains a Hamiltonian cycle.

By a clique in G we mean a complete subgraph of G, and the number of vertices in the largest clique of G is called the clique number of G, denoted by $\omega(G)$. The chromatic number of G, denoted by $\chi(G)$, is the minimum number of colors which can be assigned to the vertices of G in such a way that every two adjacent vertices have different colors. Note that, for any graph $G, \omega(G) \leq \chi(G)$. A graph G is weakly perfect if $\omega(G)=\chi(G)$ and G is called perfect if $\omega(H)=\chi(H)$ for every induced subgraph H of G. A graph is said to be planar if it can be drawn on the plane in such a way that its edges intersect only at their endpoints. For general references on graph theory, we use Chartrand and Zhang [6].

The article is organized as follows. In Section 2, we obtain a necessary and sufficient condition for the connectedness and completeness of $G_{M}(R)$, followed by diameter classification of $G_{M}(R)$. In Section 3, we provide an equivalent condition for $G_{M}(R)$ to be a tree and also characterize all Noetherian rings R with unique minimal ideal for which $G_{M}(R)$ is perfect. Finally, in Section 4 we concentrate on the cyclic nature of $G_{M}(R)$. In particular, we obtain the girth value of $G_{M}(R)$ and discuss about Hamiltonian and pancyclic nature of $G_{M}(R)$.

We begin with the observation that there are R-modules for which $G_{M}(R)$ satisfies the extreme cases, namely null graph and complete graph. If $M=\mathbb{Z}_{p} \oplus Z_{q}$ and $R=\mathbb{Z}_{p q}$ for distinct primes p and q, then $G_{M}(R)$ is a null graph. Further,
the following result says that $G_{M}(R)$ is complete whenever M is a uniform faithful R-module.

Proposition 1.1. Let R be a commutative ring and let M be a uniform R-module. Then $G_{M}(R)=\overline{K_{\lambda}} \cup K_{\beta}$, where $\lambda=|A|$ and $\beta=\left|I(R)^{*} \backslash A\right|$, with $A=\left\{I \in I(R)^{*}\right.$: $I M=0\}$. In addition, if M is both uniform and faithful, then $G_{M}(R)$ is complete.

Proof. Let $A=\left\{I \in I(R)^{*}: I M=0\right\}$. If $I \in A$, then $I M \cap J M=0$ for all $J \in I(R)^{*}$. This implies that A is the set of isolated vertices in $G_{M}(R)$. Also for any two ideals $J, K \in I(R)^{*} \backslash A$, we have $J M$ and $K M$ as non-zero submodules of M. Since M is uniform, $J M \cap K M \neq 0$. This implies that the subgraph induced by $I(R)^{*} \backslash A$ is complete in $G_{M}(R)$. Moreover, if M is faithful, then $\operatorname{ann}(M)=0$ and so there is no ideal I in R such that $I M=0$. Thus $A=\emptyset$.

2. Connectedness

Connectedness is one of the significant graph theoretic properties. In this section, we investigate conditions for which the graph $G_{M}(R)$ is connected. The main result of this section is Theorem 2.7 in which we classify the modules according to the diameter of $G_{M}(R)$. In order to prove Theorem 2.7. we need a few propositions and lemmas.

Notice that if a module M is not faithful, then $\operatorname{ann}(M) \neq(0)$ and $\operatorname{ann}(M) \in$ $I(R)^{*}$. Also $\operatorname{ann}(M) M=(0)$ so that $\operatorname{ann}(M)$ is an isolated vertex of $G_{M}(R)$. Therefore $G_{M}(R)$ is disconnected. In case of a faithful module, Heydari [10] provides a necessary condition for the disconnected $G_{M}(R)$ which is stated below.

Proposition 2.1 (10, Theorem 1]). Let R be a commutative ring and let M be a faithful R-module. If $G_{M}(R)$ is disconnected, then M is a direct sum of two R-modules.

In the following theorem we observe a few interesting consequences of the above result. In what follows, for a given R-module $M, G(M)$ denotes the intersection graph of M (see [1]).
Theorem 2.2. Let R be a commutative ring and let M be a faithful multiplication R-module.
(i) If $G_{M}(R)$ is connected, then every pair of maximal ideals in R have a non-trivial intersection.
(ii) If $\left|I(R)^{*}\right| \geq 2$ and $G_{M}(R)$ is disconnected, then either $G_{M}(R)$ is a null graph or any ascending (or descending) chain of ideals has exactly two non-zero ideals.

Proof. (i) Assume that $G_{M}(R)$ is connected.
Claim 1: We claim that $G(M)$ is connected. Let N_{1} and N_{2} be two nontrivial submodules of M. Since M is a multiplication R-module, there are ideals I_{1} and I_{2} in R such that $I_{1} M=N_{1}$ and $I_{2} M=N_{2}$. Since $G_{M}(R)$ is connected, there is a path $I_{1} \rightarrow I_{3} \rightarrow I_{4} \rightarrow \cdots \rightarrow I_{\ell} \rightarrow I_{2}$ in $G_{M}(R)$. This implies that $I_{1} M \cap I_{3} M \neq 0, I_{\ell} M \cap I_{2} M \neq 0$ and $I_{j} M \cap I_{j+1} M \neq 0$ for all $j=3, \ldots, \ell-1$.

Therefore $N_{1} \rightarrow I_{3} M \rightarrow I_{4} M \rightarrow \cdots \rightarrow I_{\ell} M \rightarrow N_{2}$ is a path in $G(M)$ and so $G(M)$ is connected.

Claim 2: We claim that $I M$ is a maximal submodule of M whenever I is a maximal ideal of R. Let I be a maximal ideal of R. Suppose N is a submodule of M such that $I M \subsetneq N$. Then there exists an ideal J in R with $J M=N$. Therefore $I M \subsetneq J M$ and so $I \subsetneq J$. This implies that $J=I$ or $J=R$. Consequently $J M=I M$ or $J M=M$. Thus the claim holds true.

Assume that I and J are maximal ideals in R. Then, by Claim 2, $I M$ and $J M$ are maximal submodules in M. By Claim 1, $G(M)$ is connected. So, by [1], Corollary 2.2], we have $I M \cap J M \neq 0$. We claim that $I M \cap J M=(I \cap J) M$. Since M is a multiplication R-module, by [8, Corollary 1.7], we get $I M \cap J M=$ $(I+\operatorname{ann}(M)) \cap(J+\operatorname{ann}(M)) M$. Since M is faithful, $I M \cap J M=(I \cap J) M$. Therefore $(I \cap J) M \neq 0$ so that $I \cap J \neq 0$ as M is faithful.
(ii) Assume that $\left|I(R)^{*}\right| \geq 2, G_{M}(R)$ is disconnected and $G_{M}(R)$ is not a null graph. We prove that every ideal of R is minimal. Let I be an arbitrary ideal in R. Let C_{1} and C_{2} be two components of $G_{M}(R)$. Without loss of generality, assume that $I \in C_{1}$. Choose an ideal $J \in C_{2}$. If $I+J \neq R$, then $I \rightarrow I+J \rightarrow J$ is a path in $G_{M}(R)$, a contradiction. Thus $I+J=R$. Since I and J are not adjacent in $G_{M}(R), I M \cap J M=0$. Consequently, $I \cap J=0$. We claim that I is a minimal ideal of R. Suppose K is an ideal such that $K \subsetneq I$. Clearly $K \in C_{1}$. By the above argument, we get $K+J=R$ and $K \cap J=0$. Let $x \in I$. Since $J+K=R, x=y+z$ for some $y \in J$ and $z \in K$. Since $y=x-z \in I$ and $I \cap J=0$, we have $x-z=0$ and so $x=z \in K$. Therefore $I=K$, a contradiction. Thus I is a minimal ideal in R. Equivalently any ascending (or descending) chain of ideals has exactly two non-zero ideals.

The next result characterizes all modules for which the graph $G_{M}(R)$ is not connected. In this regard, notice that Chakrabarty et al. [5] characterized all disconnected intersection graphs of ideals of a ring.

Theorem 2.3. Let R be a commutative ring and M a multiplication R-module. Then $G_{M}(R)$ is disconnected if and only if either M is not faithful or every nontrivial ideal of R is minimal and $|\operatorname{Min}(R)| \geq 2$.

Proof. (\Leftarrow) : Clearly $G_{M}(R)$ is disconnected whenever M is not faithful because $\operatorname{ann}(M)$ is an isolated vertex of $G_{M}(R)$. So assume that M is faithful. Let $I, J \in \operatorname{Min}(R)$ with $I \neq J$ and $I(R)^{*}=\operatorname{Min}(R)$; then $I \cap J=0$. Since M is a multiplication R-module, by [8, Corollary 1.7], we have $I M \cap J M=(I+$ $\operatorname{ann}(M)) \cap(J+\operatorname{ann}(M)) M$. Since M is faithful, $I M \cap J M=(I \cap J) M=0$.

If $G_{M}(R)$ is connected, then there is a path $I \rightarrow K_{1} \rightarrow K_{2} \rightarrow \cdots \rightarrow K_{\ell} \rightarrow J$ in $G_{M}(R)$, where $K_{i} \in I(R)^{*}=\operatorname{Min}(R)$ for all $i=1, \ldots, \ell$. Since I is adjacent to K_{1}, $I M \cap K_{1} M \neq 0$ implies that $I \cap K_{1} \neq 0$. Since K_{1} is minimal, we have $I=K_{1}$. Similarly, $I=K_{1}=K_{2}=\cdots=K_{\ell}=J$, a contradiction.
(\Rightarrow) : Suppose $G_{M}(R)$ is disconnected. Assume M is faithful. Let I and J belong to different components, say $I \in C_{1}$ and $J \in C_{2}$, where C_{1} and C_{2} are two distinct components of $G_{M}(R)$. Then $I M \cap J M=0$ so that $I \cap J=0$. Clearly
$I+J=R$, for otherwise $I \rightarrow I+J \rightarrow J$ is a path in $G_{M}(R)$. If I is not a minimal ideal of R, then there exists $K \in I(R)^{*}$ such that $K \subseteq I$. Now $K M \cap I M \neq 0$ and so $K \in C_{1}$. Here $K+J=R$, for otherwise $I \rightarrow K+J \rightarrow J$ is a path, which is a contradiction as I and J are in different components. Let us take $i \in I$. Then $i=k+j$, where $k \in K$ and $j \in J$. Since $K \subseteq I$, we have $i-k=j \in I \cap J=(0)$. Therefore $i=k \in K$, implying that $I \subseteq K$, which leads to $I=K$. So I is minimal in R. Similarly we can prove that if L is a non-trivial ideal of R with $L \supseteq I$, then $L=I$.

Now we write the other version of the above result as follows.
Corollary 2.4. Let R be a commutative ring and M a multiplication R-module. Then $G_{M}(R)$ is connected if and only if M is faithful and either $|\operatorname{Min}(R)|=1$ or $I(R)^{*} \neq \operatorname{Min}(R)$.

Next, we are interested in classifying modules M according to the diameter value of its M-intersection graph. To do it, we need to find when $\operatorname{diam}\left(G_{M}(R)\right)=1$, which means $G_{M}(R)$ is complete. Recall that from Proposition 1.1 $G_{M}(R)$ is complete when M is both uniform and faithful.

Theorem 2.5. Let R be a commutative ring and M an R-module. Then $G_{M}(R)$ is complete if and only if M is faithful and R is Artinian with a unique minimal ideal.

Proof. (\Leftarrow) : Suppose R is Artinian and M is faithful. Let I be the unique minimal ideal of R. Choose arbitrary J, K in $I(R)^{*}$. Since R is Artinian and I is the unique minimal ideal of $R, I \subseteq J$ and $I \subseteq K$. Therefore $J M \cap K M \neq 0$ and so J and K are adjacent in $G_{M}(R)$. Thus $G_{M}(R)$ is complete.
(\Rightarrow) : Assume $G_{M}(R)$ is complete. Then by Corollary $2.4 M$ must be faithful. Since $J M \cap K M \neq 0$ for all $J, K \in I(R)^{*}$, we get $J \cap K \neq 0$ for all $J, K \in I(R)^{*}$. This implies that $\bigcap_{I \in I(R)^{*}} I \neq 0$ and it is the minimal ideal of R, which is unique. It remains to prove that R is Artinian. Suppose that, on the contrary, R is not Artinian. Let I be the unique minimal ideal of R. Then there exists a chain of ideals $J_{1} \supseteq J_{2} \supseteq \cdots J_{n} \supseteq \cdots$ in R which does not contain the minimal ideal I. So $I \nsubseteq J_{n}$ for all $n \in \mathbb{Z}^{+}$. Therefore $J_{n} \cap I=0$ for every n. That is, I is not adjacent to any ideal J_{n} in the chain and $G_{M}(R)$ is not complete.

The following points are worth to mention in the context of Theorem 2.5 .
Remark 2.6. (a) The condition for the ring to be Artinian in Theorem 2.5 is very much required. For instance, if $R=\mathbb{Z}_{4} \times \mathbb{Z}$, then R has a unique minimal ideal $I=\langle 2\rangle \times\{0\}$. But the ideals of the form $\{0\} \times n \mathbb{Z}$ do not contain I. In such cases $I \cap J$ is zero when $J=\{0\} \times n \mathbb{Z}$.
(b) An example for the situation where $I \cap J \neq 0$ but $I M \cap J M=0$: Consider $R=\mathbb{Z}, M=\mathbb{Z}_{6}, I=2 \mathbb{Z}$ and $J=3 \mathbb{Z}$; although $2 \mathbb{Z} \cap 3 \mathbb{Z} \neq 0$, we have $I M \cap J M=0$, so that $G_{M}(R)$ is not complete.

We are now in a position to state the main theorem of this section, which classifies all R-modules M according to the diameter of $G_{M}(R)$.

Theorem 2.7. Let R be a commutative ring and let M be a multiplication R-module. Then the following statements hold:
(i) $\operatorname{diam}\left(G_{M}(R)\right)=\infty$ if and only if M is not faithful or every nontrivial ideal of R is minimal and $|\operatorname{Min}(R)| \geq 2$.
(ii) $\operatorname{diam}\left(G_{M}(R)\right)=1$ if and only if M is faithful and R is Artinian with unique minimal ideal.
(iii) $\operatorname{diam}\left(G_{M}(R)\right)=2$, for all the remaining cases.

Proof. (i) follows from Theorem 2.3 and (ii) follows from Theorem 2.5
(iii) Assume $G_{M}(R)$ is connected and $\operatorname{diam}\left(G_{M}(R)\right) \neq 1$. Select I and J which are not adjacent vertices in $G_{M}(R)$. If $I+J \neq R$, then we have a path $I \rightarrow$ $I+J \rightarrow J$ in $G_{M}(R)$ so that $\operatorname{diam}\left(G_{M}(R)\right)=2$. Assume that $I+J=R$. Since $I M \cap J M=0$, we get $M=R M=(I+J) M=I M \oplus J M$. By Theorem 2.2(i), any two maximal ideals have non-zero intersection. Therefore, either I or J is not maximal; say I is not maximal. Now, there exists an ideal K such that $I \subset K \subset R$. Clearly $I M \cap K M \neq 0$. We claim that $J M \cap K M \neq 0$. Since $R=I+J$, for $r \in K$, $r=r^{\prime}+r^{\prime \prime}$, where $r^{\prime} \in I$ and $r^{\prime \prime} \in J$. So $r^{\prime \prime}=r-r^{\prime} \in K$. Therefore $r^{\prime \prime} \in J \cap K$. Thus $r^{\prime \prime} m \in J M \cap K M$ for $m \in M$ and so $J M \cap K M \neq 0$. Hence $I \rightarrow K \rightarrow J$ is a path in $G_{M}(R)$ so that $\operatorname{diam}\left(G_{M}(R)\right)=2$.

The next result gives the structure of the particular graph, namely $G_{\mathbb{Z}_{n}}(\mathbb{Z})$.
Theorem 2.8. The graph $G_{\mathbb{Z}_{n}}(\mathbb{Z})=\overline{K_{\infty}} \cup H$, where $\overline{K_{\infty}}$ denotes the infinite collection of isolated vertices and H is an infinite connected graph.
Proof. Clearly $I(\mathbb{Z})^{*}=\{m \mathbb{Z}: m \in \mathbb{Z} \backslash\{0,1\}\}$. Let us take $I_{m}=m \mathbb{Z}$. If $(m, n)=n$, then $I_{m} \mathbb{Z}_{n}=(0)$ and so I_{m} is an isolated vertex. Therefore there are infinite isolated vertices in $G_{\mathbb{Z}_{n}}(\mathbb{Z})$. If $(m, n)<n$, then $I_{m} \mathbb{Z}_{n} \neq 0$. Consider $A=\left\{I_{m} \in\right.$ $\left.I(\mathbb{Z})^{*}:(m, n)<n\right\}$. Let $I_{k}, I_{\ell} \in A$ with $I_{k} \mathbb{Z}_{n} \cap I_{\ell} \mathbb{Z}_{n}=0$. Then choose $I_{t} \in A$ such that $(t, n)=1$. This implies that $I_{t} \mathbb{Z}_{n}=\mathbb{Z}_{n}$ so that $I_{k} \rightarrow I_{t} \rightarrow I_{\ell}$ is a path in $G_{\mathbb{Z}_{n}}(\mathbb{Z})$. Therefore the subgraph induced by A is connected.

3. Perfectness

The theory of perfect graphs relates the concept of graph colorings to the concept of cliques. The study of perfect graphs is very significant because a number of important algorithms only work on perfect graphs and perfect graphs can be used in a wide variety of applications, ranging from scheduling to order theory to communication theory. Note that it is sufficient to prove that a graph G is perfect if and only if it does not contain an odd cycle of length greater than or equal to 5 .

In this section, we investigate whether $G_{M}(R)$ is perfect or not. We start with the following remark on the clique number of $G_{M}(R)$.
Lemma 3.1. Let R be a commutative ring and let M be a faithful R-module.
(a) If $\omega\left(G_{M}(R)\right)=1$, then either R has a unique proper ideal or M is the direct sum of two modules. The converse holds in case M is the direct sum of two simple modules.
(b) If $1<\omega\left(G_{M}(R)\right)<\infty$, then every chain of ideals in R is finite.

Proof.
(a) If $\omega\left(G_{M}(R)\right)=1$ and $\left|I(R)^{*}\right| \geq 2$, then $G_{M}(R)$ is not connected, and by Theorem 2.1 M is the direct sum of two modules. Conversely, suppose M is the direct sum of two simple modules. Then $I M \cap J M=0$ for any $I, J \in I(R)^{*}$ and so $\omega\left(G_{M}(R)\right)=1$.
(b) If a chain of ideals is infinite, then the subgraph induced by the ideals in the particular chain forms a infinite clique in $G_{M}(R)$, which is not possible, implying that every chain of ideals is finite.

The next result provides several equivalent relations for which the chromatic number of $G_{M}(R)$ is two. The following result is a generalized version of [1, Theorem 3.4]. In what follows, the star graph is a tree consisting of one vertex adjacent to all the others and the length of a module M is the length of the longest chain of submodules of M.
Theorem 3.2. Let M be a faithful multiplication R-module and let $\left|I(R)^{*}\right| \geq 2$. Then the following conditions are equivalent:
(i) $G_{M}(R)$ is a star graph.
(ii) $G_{M}(R)$ is a tree.
(iii) $G_{M}(R)$ is connected and $\chi\left(G_{M}(R)\right) \leq 2$.
(iv) R is a local ring and the length of \bar{M} is less than or equal to 3. In this case, $G(M) \cong G_{M}(R)$.
Proof. (i) \Longrightarrow (ii): It is obvious.
(ii) \Longrightarrow (iii): If $G_{M}(R)$ is a tree, then at most two colors are sufficient to color the graph. Further, a tree is a connected acyclic graph.
(iii) \Longrightarrow (iv): Let $G_{M}(R)$ be connected and let $\chi\left(G_{M}(R)\right) \leq 2$. Let I_{1} and I_{2} be two maximal ideals of R. Then, by Theorem $2.2, I_{1} \cap I_{2} \neq \emptyset$ and so $I_{1} M \cap I_{2} M \neq \emptyset$. Consequently $I_{1} M \cap\left(I_{1} \cap I_{2}\right) M \neq \emptyset$. This implies that I_{1} is adjacent to $I_{1} \cap I_{2}$. Similarly, $I_{1} \cap I_{2}$ is adjacent to I_{2}. Therefore $I_{1} \rightarrow I_{1} \cap I_{2} \rightarrow I_{2} \rightarrow I_{1}$ so that $G_{M}(R)$ contains a cycle of length 3 , contradicting the fact that $\chi\left(G_{M}(R)\right) \leq 2$. Therefore R is local.

Let I be the unique maximal ideal of R and let J be an arbitrary ideal of R. Since every ideal is contained in I, we have $J \subset I$. If J contains an ideal K, then $K \rightarrow J \rightarrow I \rightarrow K$ is a cycle of length 3 , a contradiction. Thus J is a minimal ideal of R and equivalently the length of the module is at most 3 . Moreover, since M is a faithful multiplication module with finite length, we have $R \cong M$ and so $G(M) \cong G_{M}(R)$.
(iv) \Longrightarrow (i): Suppose R is a local ring and the length of M is less than or equal to 3. Let $\operatorname{Max}(R)=\{I\}$ and $\operatorname{Min}(R)=\left\{I_{1}, \ldots, I_{k}\right\}$. Since the length of M is at most 3, we have $I(R)^{*}=\operatorname{Max}(R) \cup \operatorname{Min}(R)$. Clearly, $I M \cap I_{i} M \neq 0$ for all $i=1, \ldots, k$. Since R is faithful, $I_{i} M \cap I_{j} M=0$ for all $1 \leq i \neq j \leq k$. Therefore $G_{M}(R)$ is a star graph with internal vertex I and k leaves.

Next, we obtain a necessary and sufficient condition for the perfectness of $G_{M}(R)$ when R is a direct product of Noetherian rings, each of which has a unique minimal ideal.

Theorem 3.3. Let $R \cong R_{1} \times R_{2} \times \cdots \times R_{n}$, where each $R_{i}, 1 \leq i \leq n$, is a Noetherian ring with unique minimal ideal, and let M be a faithful R-module. Then $G_{M}(R)$ is perfect if and only if $n \leq 4$.

Proof. (\Rightarrow) : Suppose $n \geq 5$. Let $I_{j}=(0) \times \cdots \times(0) \times R_{j} \times R_{j+1} \times(0) \times \cdots \times(0)$ for $j=1,2,3,4$ and $I_{5}=R_{1} \times(0) \times(0) \times(0) \times R_{5} \times(0) \times \cdots \times(0)$. Then the subgraph induced by the set $\left\{I_{1}, I_{2}, I_{3}, I_{4}, I_{5}\right\}$ in $G_{M}(R)$ is a cycle of length 5 and so $G_{M}(R)$ is not perfect.
(\Leftarrow) : Assume $n \leq 4$. Note that any ideal I_{k} of R is of the form $I_{k_{1}} \times \cdots \times I_{k_{n}}$, where $I_{k_{i}}$ is an ideal of R_{i} for all $i=1, \ldots, n$. If two vertices I_{k} and I_{ℓ} are non-adjacent in $G_{M}(R)$, then $I_{k} M \cap I_{\ell} M=0$. The fact that M is faithful leads to $I_{k} \cap I_{\ell}=0$. Note that R_{i} is Noetherian with a unique minimal ideal for all $i=1, \ldots, n$. Therefore if I_{k} is not adjacent to I_{ℓ} in $G_{M}(R)$, then either $I_{k_{j}}=(0)$ or $I_{\ell_{j}}=(0)$ for each $j=1, \ldots, n$.

We claim that every odd cycle of length more than 4 in $G_{M}(R)$ must have diagonals. In order to prove the claim, suppose $I_{1} \rightarrow I_{2} \rightarrow I_{3} \rightarrow \cdots \rightarrow I_{m} \rightarrow I_{1}$ is a cycle of odd length $m \geq 5$ in $G_{M}(R)$. First, let us consider the best possible choice, $n=4$. If any three ideals from $\left\{I_{1_{1}}, I_{1_{2}}, I_{1_{3}}, I_{1_{4}}\right\}$ are the zero ideal, say $I_{1_{1}}=I_{1_{2}}=I_{1_{3}}=(0)$, then $I_{2_{4}} \neq(0)$ and $I_{m_{4}} \neq(0)$. So I_{2} and I_{m} form a diagonal edge. If exactly one ideal from $\left\{I_{1_{1}}, I_{1_{2}}, I_{1_{3}}, I_{1_{4}}\right\}$ is a zero ideal, say $I_{1_{1}}=(0)$, then $I_{3_{2}}=I_{3_{3}}=I_{3_{4}}=(0)$ and $I_{4_{2}}=I_{4_{3}}=I_{4_{4}}=(0)$. This implies that $I_{3_{1}} \neq(0)$ and $I_{4_{1}} \neq(0)$. Since $I_{3} \rightarrow I_{2}$ and $I_{4} \rightarrow I_{5}$, we have $I_{2_{1}} \neq(0)$ and $I_{5_{1}} \neq(0)$. Therefore I_{2} and I_{5} form a diagonal edge. Thus every ideal of I_{1}, I_{2}, I_{3} and I_{4} can be decomposed into two zero ideals and two non-zero ideals. Let $I_{1_{1}}=I_{1_{2}}=(0)$ and $I_{1_{3}}, I_{1_{4}} \neq(0)$. Then $I_{3_{3}}=I_{3_{4}}=(0)$ and $I_{4_{3}}=I_{4_{4}}=(0)$. This implies that $I_{3_{1}}, I_{3_{2}} \neq(0)$ and $I_{4_{1}}, I_{4_{2}} \neq(0)$. Since $I_{3} \rightarrow I_{2}$, either $I_{2_{1}} \neq(0)$ or $I_{2_{2}} \neq(0)$. So I_{2} and I_{4} form a diagonal edge. Therefore, the claim holds true for $n=4$. Similar arguments as above lead us to the cases $n=3$ and $n=2$.

So let $n=1$. If the length of M is less than 4 , then by Theorem $3.2, G_{M}(R)$ is a tree and so it is perfect. Therefore the length of M is at least 4. Since M is faithful, the subgraph induced by any chain of ideals of R is complete in $G_{M}(R)$. Thus $G_{M}(R)$ is perfect.

As we have seen, the M-intersection graphs of modules are not perfect in general. So we investigate whether they are weakly perfect, and the answer is yes.

Theorem 3.4. The graph $G_{M}(R)$ is weakly perfect for any R-module M.
Proof. If $\omega\left(G_{M}(R)\right)$ is infinite, then so is $\chi\left(G_{M}(R)\right)$. Let $\omega\left(G_{M}(R)\right)=n$, a finite positive integer and let $S=\left\{I_{1}, \ldots, I_{n}\right\}$ be a clique of $G_{M}(R)$. Let $A=\{I \in$ $\left.I(R)^{*}: I M=0\right\}$ and $A^{\prime}=I(R)^{*} \backslash A$. Clearly the set A is independent in $G_{M}(R)$ and $S \subseteq A^{\prime}$. If $S=A^{\prime}$, then obviously $\chi\left(G_{M}(R)\right)=\omega\left(G_{M}(R)\right)$. Suppose $S \varsubsetneqq A^{\prime}$. Then for every $J \in A^{\prime} \backslash S$, the vertices $I_{1}, \ldots, I_{n}, J+I_{1}, \ldots, J+I_{n}$ form a clique of size $2 n$, which is not possible. Therefore $J+I_{1}, \ldots, J+I_{n}$ are the same as I_{1}, \ldots, I_{n} in different order. In addition, suppose there exists $J, K \in A^{\prime} \backslash S$ such that J and K are adjacent in $G_{M}(R)$. Then $J, J+I_{1}, \ldots, J+I_{n}, K$ form a clique of size $n+2$ in $G_{M}(R)$, a contradiction. Therefore the open neighborhood of each
vertex in $A^{\prime} \backslash S$ is in S. Since $\omega\left(G_{M}(R)\right)=n=|S|$, every vertex in $A^{\prime} \backslash S$ is not adjacent to more than $n-1$ vertices of S. Thus $\chi\left(G_{M}(R)\right)=n=\omega\left(G_{M}(R)\right)$.

The next result determines the value of $\omega\left(G_{M}(R)\right)$ and $\chi\left(G_{M}(R)\right)$ when M is the direct sum of finite simple modules.

Theorem 3.5. If M is a multiplication R-module such that $M=M_{1} \oplus \cdots \oplus M_{n}$ where each $M_{i}, 1 \leq i \leq n$, is simple, then

$$
\omega\left(G_{M}(R)\right)=\max _{1 \leq i \leq n}\left|\left\{I \in I(R)^{*}: I M \supseteq M_{i}\right\}\right| .
$$

Proof. Let $V_{0}=\left\{I \in I(R)^{*}: I M=(0)\right\}$ and $V_{n+1}=\left\{I \in I(R)^{*}: I M=M\right\}$. Let

$$
\begin{aligned}
A_{1}=\{ & M_{1}, M_{1} \oplus M_{2}, M_{1} \oplus M_{3}, \ldots, M_{1} \oplus M_{n}, M_{1} \oplus M_{2} \oplus M_{3}, \ldots \\
& M_{1} \oplus M_{2} \oplus M_{n}, M_{1} \oplus M_{3} \oplus M_{4}, \ldots, M_{1} \oplus M_{3} \oplus M_{n}, \ldots \\
& M_{1} \oplus M_{n-1} \oplus M_{n}, \ldots, M_{1} \oplus M_{2} \oplus \cdots \oplus M_{n-1}, \\
& \left.M_{1} \oplus M_{3} \oplus \cdots \oplus M_{n}, \ldots, M_{1} \oplus M_{2} \oplus \cdots \oplus M_{n-2} \oplus M_{n}\right\} \\
A_{2}=\{ & M_{2}, M_{2} \oplus M_{3}, \ldots, M_{2} \oplus M_{n}, M_{2} \oplus M_{3} \oplus M_{4}, \ldots, M_{2} \oplus M_{3} \oplus M_{n}, \ldots, \\
& \left.M_{2} \oplus M_{3} \oplus \cdots \oplus M_{n}\right\} \\
& \ldots \\
A_{n-1}= & \left\{M_{n-1}, M_{n-1} \oplus M_{n}\right\}, \text { and } \\
A_{n}= & \left\{M_{n}\right\} .
\end{aligned}
$$

Define $V_{1}=\left\{I \in I(R)^{*}: I M \in A_{1}\right\}$ and $V_{i}=\left\{I \in I(R)^{*}: I M \in A_{i}\right\}$ for $i=$ $2, \ldots, n$. Clearly $I(R)^{*}=\bigcup_{k=0}^{n+1} V_{k}$ and V_{k} 's are mutually disjoint. Note that every vertex of V_{0} is isolated in $G_{M}(R)$ and the subgraph induced by V_{k} for $k=$ $1, \ldots, n+1$ is complete in $G_{M}(R)$. For $1 \leq i \leq n$, let $I \in V_{i}$ and $J \in V_{n+1}$. Then $I M \cap J M \supseteq M_{i} \neq\{0\}$. Therefore every vertex in V_{n+1} is adjacent to all the vertices of V_{i}. Further, let $K \in V_{j}$ for some $1 \leq i \neq j \leq n$. Since M is a multiplication module, there exists an ideal L in R such that $L M=M_{i}$. Since M_{i} is simple, L is not adjacent to K in $G_{M}(R)$. Therefore, in $G_{M}(R)$, every vertex of $I(R)^{*} \backslash\left(V_{n+1} \cup V_{i}\right)$ is not adjacent to at least one vertex in $V_{n+1} \cup V_{i}$. Thus $V_{n+1} \cup V_{i}$ is a maximal clique in $G_{M}(R)$ for all $i=1, \ldots, n$. Hence $\omega\left(G_{M}(R)\right)=\left|V_{n+1}\right|+$ $\max _{1 \leq i \leq n}\left|V_{i}\right| ;$ equivalently, $\omega\left(G_{M}(R)\right)=\max _{1 \leq i \leq n}\left|\left\{I \in I(R)^{*}: I M \supseteq M_{i}\right\}\right|$.

Let us close this section by applying the above result for finding the clique and coloring number of specific M-intersection graphs.

Example 3.6. Consider $M=\mathbb{Z}_{10}=\langle 2\rangle \oplus\langle 5\rangle$ and $R=\mathbb{Z}_{30}$. Then $I(R)^{*}=$ $\{\langle 2\rangle,\langle 3\rangle,\langle 5\rangle,\langle 6\rangle,\langle 10\rangle,\langle 15\rangle\}$. Let $I_{1}=\langle 2\rangle, I_{2}=\langle 3\rangle, I_{3}=\langle 5\rangle, I_{4}=\langle 6\rangle, I_{5}=\langle 10\rangle$, $I_{6}=\langle 15\rangle$. Now $I_{1} M=\langle 2\rangle, I_{2} M=M, I_{3} M=\langle 5\rangle, I_{4} M=\langle 2\rangle, I_{5} M=\{0\}$, $I_{6} M=\langle 5\rangle$. So $V_{0}=\left\{I_{5}\right\}, V_{1}=\left\{I_{1}, I_{4}\right\}, V_{2}=\left\{I_{3}, I_{6}\right\}$ and $V_{3}=\left\{I_{2}\right\}$. Therefore by Theorem 3.5, we have $\omega\left(G_{M}(R)\right)=3$. Also, by Figure 1, the chromatic number of the corresponding M-intersection graph is also 3 .

Figure 1. $G_{\mathbb{Z}_{10}}\left(\mathbb{Z}_{30}\right)$
Example 3.7. Suppose $M=\mathbb{Z}_{6}$ and $R=\mathbb{Z}$. Then $I(R)^{*}=\{n \mathbb{Z}: n \in \mathbb{Z}, n \neq 0,1\}$, $V_{0}=\{6 k \mathbb{Z}: 0 \neq k \in \mathbb{Z}\}, V_{1}=\{3 k \mathbb{Z}: k \in \mathbb{Z},(2, k)=1\}, V_{2}=\{2 k \mathbb{Z}: k \in$ $\mathbb{Z},(3, k)=1\}$ and $V_{3}=\{k \mathbb{Z}: k \in \mathbb{Z},(6, k)=1\}$. Clearly the cardinalities of V_{0}, V_{1}, V_{2} and V_{3} are infinite and so $\omega\left(G_{M}(R)\right)=\chi\left(G_{M}(R)\right)=\infty$.

4. Cyclic subgraph and planarity

In this section, we discuss about some cyclic substructure and planarity of $G_{M}(R)$. Let us start with the girth value of $G_{M}(R)$. In [10, Theorem 4], Heydari determined the girth of $G_{M}(R)$ in case of a multiplication R-module M. We now generalize it.
Theorem 4.1. Let M be an R-module. If $G_{M}(R)$ contains a cycle, then $\operatorname{gr}\left(G_{M}(R)\right)=3$. That is, $\operatorname{gr}\left(G_{M}(R)\right) \in\{3, \infty\}$.

Proof. Let $B=\left\{I \in I(R)^{*}: I M=0\right\}$ and $B^{\prime}=I(R)^{*} \backslash B$. Clearly every vertex in B is isolated in $G_{M}(R)$. Suppose $\operatorname{gr}\left(G_{M}(R)\right) \geq 4$. Then there are ideals $I_{1}, I_{2}, I_{3}, I_{4} \in B^{\prime}$ such that $I_{1} \rightarrow I_{2} \rightarrow I_{3} \rightarrow I_{4}$ is a path in $G_{M}(R)$. Suppose there are ideals I_{k} and $I_{\ell}, 1 \leq k \neq \ell \leq 4$, such that I_{k} and I_{ℓ} are not comparable. Then $I_{k} \rightarrow I_{k}+I_{\ell} \rightarrow I_{k}+I_{m} \rightarrow I_{k}$, where $m \in\{1,2,3,4\} \backslash\{k, \ell\}$, is a cycle of length 3 , a contradiction. Therefore the ideals I_{1}, I_{2}, I_{3} and I_{4} are comparable. Then we can compile into two cases. If $I_{1} \subseteq I_{2}, I_{3} \subseteq I_{2}$ and $I_{3} \subseteq I_{4}$, then $I_{3} \subseteq I_{2} \cap I_{4}$. So $\left(I_{2} \cap I_{4}\right) M \neq 0$, which implies that $I_{2} \rightarrow I_{3} \rightarrow I_{4} \rightarrow I_{2}$ is a cycle of length 3. If $I_{2} \subseteq I_{1}$ and $I_{2} \subseteq I_{3}$, then $I_{2} \subseteq I_{1} \cap I_{3}$ and so $I_{1} \rightarrow I_{2} \rightarrow I_{3} \rightarrow I_{1}$ is a cycle of length 3. Hence $\operatorname{gr}\left(G_{M}(R)\right)=3$.

Now, the proof of Theorem 4.1 together with the application of Theorem 3.2 leads to the following result. Observe that the proof of Theorem 4.1 says that the path on 4 vertices is not an induced subgraph of $G_{M}(R)$ whenever $G_{M}(R)$ contains a cycle. Further, Theorem 3.2 says that $G_{M}(R)$ is a star graph whenever $G_{M}(R)$
does not contain any cycle. Recall that a graph G is called cograph if P_{4}, the path on 4 vertices, is not an induced subgraph of G.
Theorem 4.2. The graph $G_{M}(R)$ is a cograph for any faithful R-module M.
The next result helps us to find the length of the largest induced cycle and induced path in $G_{M}(R)$. The length of the longest induced path in G is called the induced detour number of G, denoted by $\operatorname{idn}(G)$, and the maximum length of an induced cycle in G is called the induced circumference of G, denoted by $\operatorname{icir}(\mathrm{G})$; see [9].

Theorem 4.3. Let R be the direct product of n local rings and let M be a faithful R-module. Then $G_{M}(R)$ contains a cycle C_{k} for every $k \in\{3,4, \ldots, n\}$. Further, $\operatorname{idn}\left(G_{M}(R)\right)=n-1$ and $\operatorname{icir}\left(G_{M}(R)\right)=n$.
Proof. Let $R=R_{1} \times R_{2} \times \cdots \times R_{n}$, where each $R_{i}, 1 \leq i \leq n$, is local. Let $I_{j}=(0) \times \cdots \times(0) \times R_{j} \times R_{j+1} \times(0) \times \cdots \times(0)$ for $j=1, \ldots, n-1$ and $I_{n}=$ $R_{1} \times(0) \times \cdots \times(0) \times R_{n}$. For a fixed $k, 3 \leq k \leq n$, take $J_{k}=R_{1} \times(0) \times \cdots \times(0) \times R_{k} \times$ $(0) \times \cdots \times(0)$. Now the subgraph induced by the vertices $\left\{I_{1}, \ldots, I_{k-1}, J_{k}\right\}$ forms a cycle of length k in $C_{M}(R)$. So C_{n} is an induced subgraph of $G_{M}(R)$. Further, a similar proof technique as in Theorem 3.3 leads us to say that every cycle of length more than n in $G_{M}(R)$ must have a diagonal. Thus $\operatorname{icir}\left(G_{M}(R)\right)=n$. Also, in this case, it is equivalent to saying that $\operatorname{idn}\left(G_{M}(R)\right)=n-1$.

Other important concepts related with the cyclic structure of a graph are those of being Eulerian or Hamiltonian. First of all note that if $R \neq I+J$ for any $I, J \in I(R)^{*}$, then we can have a cycle $I_{1} \rightarrow I_{1}+I_{2} \rightarrow I_{2}+I_{3} \rightarrow \cdots \rightarrow I_{n-1}+I_{n} \rightarrow$ $I_{n}+I_{1} \rightarrow I_{1}$ of length $n+1$ in $G_{M}(R)$, where $I_{1}, \ldots, I_{n} \in I(R)^{*}$. In this regard, we add a couple of observations.

Remark 4.4. Let M be a faithful R-module and $\left|I(R)^{*}\right| \geq 3$.
(a) If R is an Artinian local ring or M is uniform, then $G_{M}(R)$ is complete and so it is Hamiltonian.
(b) If M is not a faithful R-module, then $\operatorname{ann}(M)$ is an isolated vertex in $G_{M}(R)$, so that $G_{M}(R)$ is not Hamiltonian.
Proposition 4.5. Let M be a uniform R-module. Then $G_{M}(R)$ is Eulerian if and only if $\left|\left\{I \in I(R)^{*}: I M \neq\{0\}\right\}\right|$ is odd.
Proof. If $I \in I(R)^{*}$ is such that $I M=\{0\}$, then I is isolated and so no edge is incident with I. Since M is uniform, the subgraph induced by $\left\{I \in I(R)^{*}: I M \neq\right.$ $\{0\}\}$ in $G_{M}(R)$ is complete. Now, the result follows from the fact that the complete graph of n vertices is Eulerian if and only if n is odd.

Next we characterize all commutative Noetherian rings according to the Hamiltonian nature of $G_{M}(R)$ under the assumption that M is faithful and R is the direct product of rings which has a unique minimal ideal. At this point notice that if M is not faithful, then by Theorem [2.3, $G_{M}(R)$ is disconnected. Also, if R is decomposed into more than two rings, then $I(R)^{*} \neq \operatorname{Min}(R)$.

Theorem 4.6. Let R be a Noetherian ring with $\left|I(R)^{*}\right| \geq 3$ and let M be a faithful R-module. Let $R \cong R_{1} \times R_{2} \times \cdots \times R_{n}$, where each $R_{i}, 1 \leq i \leq n$, is a local ring with a unique minimal ideal. Then $G_{M}(R)$ is Hamiltonian if and only if $R \neq R_{1} \times R_{2}$ where either R_{1} or R_{2} is a field.

Proof. (\Rightarrow) : Assume that $G_{M}(R)$ is Hamiltonian. Let I_{i} denote an arbitrary ideal of R_{i} for all $i=1, \ldots, n$. Choose $A_{j}=\left\{(0) \times \cdots \times(0) \times I_{j} \times I_{j+1} \times \cdots \times I_{n}: I_{j} \neq(0)\right\}$. Clearly $I(R)^{*}=\bigcup_{j=1}^{n} A_{j}$. Since each R_{i} is Noetherian with a unique minimal ideal, we have two vertices $J=J_{1} \times \cdots \times J_{n}$ and $K=K_{1} \times \cdots \times K_{n}$ adjacent in $G_{M}(R)$ if and only if $J_{i} \neq(0)$ and $K_{i} \neq(0)$ for some $i \in\{1, \ldots, n\}$. Therefore the subgraph induced by the set A_{j} is complete in $G_{M}(R)$.

Suppose $n \geq 3$. Now, for every $j \in\{1, \ldots, n-2\}$, fix the vertices $u_{j}=(0) \times$ $\cdots \times(0) \times K_{j} \times K_{j+1} \times K_{n-2} \times(0) \times K_{n} \in A_{j}$ and $v_{j}=(0) \times \cdots \times(0) \times K_{j} \times$ $K_{j+1} \times \cdots \times K_{n-1} \times K_{n} \in A_{j}$ with $K_{n-1} \neq(0)$. Note that $u_{j} \neq v_{j}$ for all $j=1, \ldots, n-2$ and the subgraph induced by the set $\left\{u_{1}, \ldots, u_{n-2}, v_{1}, \ldots, v_{n-2}\right\}$ in $G_{M}(R)$ is complete. Now, in $G_{M}(R)$, start a path P from the vertex $u_{1} \in A_{1}$ and travel along all the vertices of A_{1} and end up in $v_{1} \in A_{1}$. Since v_{1} is adjacent to $u_{2} \in A_{2}$, continue the path P to u_{2}, then travel all the vertices of A_{2} and end up in $v_{2} \in A_{2}$. Continuing this process $n-2$ steps, we get the path P containing all the vertices of $\bigcup_{j=1}^{n-2} A_{j}$ which end up in v_{n-2}. Notice that the vertex v_{n-2} is adjacent to all the vertices of A_{n-1} in $G_{M}(R)$. So now extend the path P to any vertex of A_{n-1} and then travel along all the vertices of A_{n-1} and arrive at the vertex $(0) \times \cdots \times(0) \times K_{n-1} \times R_{n} \in A_{n-1}$. Since the vertex $(0) \times \cdots \times(0) \times K_{n-1} \times R_{n}$ is adjacent to all the vertices of A_{n}, by repeating the process to the vertices of A_{n}, we get P as a Hamiltonian path which ends at the vertex $(0) \times \cdots \times(0) \times R_{n} \in A_{n}$. Now the edge between $(0) \times \cdots \times(0) \times K_{n-1} \times R_{n}$ and $(0) \times \cdots \times(0) \times R_{n}$ leads to a Hamiltonian cycle in $G_{M}(R)$.

Suppose $n=2$. There are three possibilities: (1) both R_{1} and R_{2} are not fields, (2) one of R_{1} or R_{2} is a field and the other is not a field, or (3) both R_{1} and R_{2} are fields.

Case 1: Assume both R_{1} and R_{2} are not fields. Let $K_{1} \in I\left(R_{1}\right)^{*}$ and $K_{2} \in$ $I\left(R_{2}\right)^{*}$. Here start a path Q from $K_{1} \times R_{2} \in A_{1}$, travel along all the vertices of A_{1} and end at $K_{1} \times K_{2} \in A_{1}$. Then move the path Q to the vertex $(0) \times R_{2} \in A_{2}$ and move on to all the vertices of A_{2} and finally end at $(0) \times K_{2} \in A_{1}$. Now the path Q together with the edge between $(0) \times K_{2}$ and $K_{1} \times R_{2}$ forms a Hamiltonian cycle in $G_{M}(R)$.

Case 2: Assume that R_{1} is a field and R_{2} is not a field. If $K_{2_{1}}, K_{2_{2}} \in I\left(R_{2}\right)^{*}$ with $K_{2_{1}} \neq K_{2_{2}}$, then start a path Q from $R_{1} \times K_{2_{1}} \in A_{1}$, travel along all the vertices of A_{1} and end at $R_{1} \times K_{2_{2}} \in A_{1}$. Then move into A_{2} through the vertex $(0) \times K_{2_{1}} \in$ A_{2} and travel all the vertices of A_{2} and end at up $(0) \times R_{2} \in A_{1}$. Now the path Q together with the edge between $(0) \times R_{2}$ and $R_{1} \times K_{2_{1}}$ serves as a Hamiltonian cycle in $G_{M}(R)$. If $I\left(R_{2}\right)^{*}=\left\{K_{2}\right\}$, then $I(R)^{*}=\left\{R_{1} \times(0), R_{1} \times K_{2},(0) \times K_{2},(0) \times R_{2}\right\}$. Therefore the vertex $R_{1} \times(0)$ is an end vertex in $G_{M}(R)$ so that $G_{M}(R)$ does not contain a cycle. Thus, in this case, $\left|I\left(R_{2}\right)^{*}\right| \neq 1$.

Case 3: If R_{1} and R_{2} are fields, then $\left|I(R)^{*}\right|=2$, a contradiction.

Suppose $n=1$. Since $\left|I(R)^{*}\right| \geq 3$, we have that $G_{M}(R)$ is complete and so is Hamiltonian.
(\Leftarrow) : This part is obvious.
Next we look into the pancyclic nature of $G_{M}(R)$. Recall that a graph G of order $m \geq 3$ is pancyclic if G contains cycles of all lengths from 3 to m. Let $n \geq 3$ and let us denote C as the Hamiltonian cycle identified in the above theorem. Now remove the vertices one by one from C. Let us start with the vertices A_{n}. First remove the internal vertices of A_{n} and at the last remove the vertex $(0) \times \cdots \times(0) \times R_{n} \in$ A_{n}. Since the subgraph induced by A_{n} is complete in $G_{M}(R)$, we get a cycle every time when we remove a vertex from A_{n}. Since the subgraph induced by $\left\{u_{1}, \ldots, u_{n-2}, v_{1}, \ldots, v_{n-2}\right\}$ is complete in $G_{M}(R)$, we can pass on from one A_{j} to another A_{k} for $1 \leq j \neq k \leq n-2$. Similarly we can remove the vertices one by one for all A_{j} 's from $j=n-2$ to $j=1$ and still we get a cycle in every step of vertex removal. Thus we get cycles of all lengths as subgraphs of $G_{M}(R)$. It is not hard to verify the same for the cases $n=2$ and $n=1$. Hence $G_{M}(R)$ is Hamiltonian if and only if $G_{M}(R)$ is pancyclic. So the following statement holds true.
Theorem 4.7. Let R be an Artinian ring, $\left|I(R)^{*}\right| \geq 3$ and let M be a faithful R-module. Then $G_{M}(R)$ is pancyclic if and only if $R \neq \mathbb{F} \times S$, where \mathbb{F} is a field and S is a local ring with unique proper ideal.

We close the paper with the planarity properties of $G_{M}(R)$. The first result in this regard completely characterizes the planar M-intersection graph in the case of R having exactly one minimal ideal.

Lemma 4.8. Let M be a faithful R-module. If R contains a unique minimal ideal, then $G_{M}(R)$ is planar if and only if $\left|I(R)^{*}\right| \leq 4$.
Proof. (\Rightarrow) : Assume that $G_{M}(R)$ is a planar graph. Since R has a unique minimal ideal, say I, we have that I must be contained in every proper ideal of R. Suppose $\left|I(R)^{*}\right|>4$. Let $I, J_{1}, J_{2}, J_{3}, J_{4} \in I(R)^{*}$. Note that $J_{k} \cap J_{\ell} \supseteq I$ for all $1 \leq k \neq \ell \leq 4$ so that $\left(J_{k} M \cap J_{l} M\right) \supseteq I M \neq 0$. Therefore $I, J_{1}, J_{2}, J_{3}, J_{4}$ form a complete subgraph of $G_{M}(R)$ and so K_{5} is a subgraph of $G_{M}(R)$, a contradiction. Thus $\left|I(R)^{*}\right| \leq 4$.
(\Leftarrow) : This part follows from the fact that every graph of order less than or equal to four is planar.

Note that, in the above result, $I M$ (or $J_{1} M, J_{2} M, J_{3} M, J_{4} M$) may be zero if M is not faithful.

Next we are going to characterize all rings for which the graph $G_{M}(R)$ is planar, where R is the direct product of local rings. Before that, we prove a lemma.

Lemma 4.9. Let R be the direct product of n local rings and let M be a faithful R-module. Then $K_{2^{n}}$ is a subgraph of $G_{M}(R)$.

Proof. Let $R=R_{1} \times \cdots \times R_{n}$, where each R_{i} is local with maximal ideal \mathfrak{m}_{i} for $i=1, \ldots, n$. Let $A=\left\{I_{1} \times \cdots \times I_{n}: I_{i}=R_{i}\right.$ or \mathfrak{m}_{i} for $\left.i=1, \ldots, n\right\} \backslash\left\{R_{1} \times \cdots \times R_{n}\right\}$. Then $A \subset I(R)^{*}$ and $|A|=2^{n}-1$. Note that the subgraph induced by A is complete
and the vertex $(0) \times R_{2} \times \cdots \times R_{n}$ is adjacent to all the vertices of A in $G_{M}(R)$. Thus $K_{2^{n}}$ is a subgraph of $G_{M}(R)$.

To end this section, recall that every Artinian ring can be decomposed into local rings. So the following result is valid for all Artinian rings.

Theorem 4.10. Let $R=R_{1} \times \cdots \times R_{n}$, where each $R_{i}, 1 \leq i \leq n$, is local and let M be a faithful R-module. Then $G_{M}(R)$ is planar if and only if either $n=2$ with R_{1} being a field and R_{2} having at most one proper ideal, or $n=1$ with R_{1} having at most 4 proper ideals.

Proof. (\Rightarrow) : Assume that $G_{M}(R)$ is planar. If $n \geq 3$, then by Lemma 4.9, K_{8} is a subgraph of $G_{M}(R)$, a contradiction.

Suppose $n=2$. There are three possibilities:
Case 1: Assume both R_{1} and R_{2} are not fields. Let $K_{1} \in I\left(R_{1}\right)^{*}$ and $K_{2} \in$ $I\left(R_{2}\right)^{*}$. Then the subgraph induced by the vertex subset $\left\{K_{1} \times(0), K_{1} \times K_{2}, K_{1} \times\right.$ $\left.R_{2}, R_{1} \times(0), R_{1} \times K_{2}\right\}$ is K_{5}, a contradiction.

Case 2: Assume that R_{1} is a field and R_{2} is not a field. If $K_{2_{1}}, K_{2_{2}} \in I\left(R_{2}\right)^{*}$ with $K_{2_{1}} \neq K_{2_{2}}$, then the subgraph induced by the set $\left\{R_{1} \times K_{2_{1}}, R_{1} \times K_{2_{2}},(0) \times\right.$ $\left.K_{2_{1}},(0) \times K_{2_{2}},(0) \times R_{2}\right\}$ is K_{5}, a contradiction. If $\left|I\left(R_{2}\right)^{*}\right|=1$, then $\left|I(R)^{*}\right| \leq 4$. So $G_{M}(R)$ is planar.

Case 3: If R_{1} and R_{2} are fields, then $\left|I(R)^{*}\right|=2$ so that $G_{M}(R)$ is planar.
Suppose $n=1$. If $\left|I(R)^{*}\right| \geq 5$, then K_{5} is a subgraph of $G_{M}(R)$, a contradiction. Thus $\left|I(R)^{*}\right| \leq 4$.
(\Leftarrow) : This part is trivial.

Acknowledgements

We are indebted to the anonymous referee for his/her careful review and suggestions that have been helpful for providing a better version of the present work.

References

[1] S. Akbari, H. A. Tavallaee and S. K. Ghezelahmad, Intersection graph of submodules of a module, J. Algebra Appl. 11 (2012), no. 1, 1250019, 8 pp. MR 2900889.
[2] D. F. Anderson and A. Badawi, The generalized total graph of a commutative ring, J. Algebra Appl. 12 (2013), no. 5, 1250212, 18 pp. MR 3055569.
[3] H. Ansari-Toroghy, S. Habibi and M. Hezarjaribi, On the graph of modules over commutative rings II, Filomat 32 (2018), no. 10, 3657-3665. MR 3901512
[4] T. Asir and T. Tamizh Chelvam, The intersection graph of gamma sets in the total graph of a commutative ring-II, J. Algebra Appl. 12 (2013), no. 4, 1250199, 14 pp. MR 3037273
[5] I. Chakrabarty, S. Ghosh, T. K. Mukherjee and M. K. Sen, Intersection graphs of ideals of rings, Discrete Math. 309 (2009), no. 17, 5381-5392. MR 2548554
[6] G. Chartrand and P. Zhang, Introduction to Graph Theory, Tata McGraw-Hill, India, 2006.
[7] B. Csákány and G. Pollák, The graph of subgroups of a finite group, Czechoslovak Math. J. 19(94) (1969), 241-247. MR 0249328.
[8] Z. A. El-Bast and P. F. Smith, Multiplication modules, Comm. Algebra 16 (1988), no. 4, 755-779. MR 0932633
[9] Graph Theory-Favorite Conjectures and Open Problems. 2, edited by R. Gera, T. W. Haynes and S. T. Hedetniemi, Problem Books in Mathematics, Springer, Cham, 2018. MR3890100
[10] F. Heydari, The M-intersection graph of ideals of a commutative ring, Discrete Math. Algorithms Appl. 10 (2018), no. 3, 1850038, 11 pp. MR 3809554.
[11] P. Malakooti Rad, Planar torsion graph of modules, Filomat 30 (2016), no. 2, 367-372. MR 3497916
[12] J. Matczuk, M. Nowakowska and E. R. Puczyłowski, Intersection graphs of modules and rings, J. Algebra Appl. 17 (2018), no. 7, 1850131, 20 pp. MR 3813704
[13] S. B. Pejman, Sh. Payrovi and S. Babaei, The intersection graph of annihilator submodules of a module, Opuscula Math. 39 (2019), no. 4, 577-588. MR 3964763
[14] T. Tamizh Chelvam and T. Asir, The intersection graph of gamma sets in the total graph of a commutative ring-I, J. Algebra Appl. 12 (2013), no. 4, 1250198, 18 pp. MR 3037272
T. Asir ${ }^{\boxtimes}$

Department of Mathematics-DDE, Madurai Kamaraj University, Madurai - 625021, India asirjacob75@gmail.com
A. Kumar

Department of Mathematics, Aligarh Muslim University, Aligarh - 202002, India arnkumr87@gmail.com
A. Mehdi

Department of Mathematics, Aligarh Muslim University, Aligarh - 202002, India alveeramehdi@gmail.com

Received: March 5, 2020
Accepted: October 13, 2020

[^0]: 2020 Mathematics Subject Classification. 16P20, 05C25, 05C17.
 Key words and phrases. Uniform R-module; Perfect graph; Hamiltonian graph; Planar graph.
 The research of T. Asir was in part supported by a grant from the Science and Engineering Research Board (SERB-MATRICS Grant Ref. MTR/2017/000830).

