New uncertainty principles for the $(k,a)$-generalized wavelet transform
DOI:
https://doi.org/10.33044/revuma.2051Abstract
We present the basic $(k,a)$-generalized wavelet theory and prove several Heisenberg-type inequalities for this transform. After reviewing Pitt's and Beckner's inequalities for the $(k,a)$-generalized Fourier transform, we connect both inequalities to show a generalization of uncertainty principles for the $(k,a)$-generalized wavelet transform. We also present two concentration uncertainty principles, namely the Benedicks–Amrein–Berthier's uncertainty principle and local uncertainty principles. Finally, we connect these inequalities to show a generalization of the uncertainty principle of Heisenberg type and we prove the Faris–Price uncertainty principle for the $(k,a)$-generalized wavelet transform.
Downloads
References
M. Bahri, F. A. Shah and A. Y. Tantary, Uncertainty principles for the continuous shearlet transforms in arbitrary space dimensions, Integral Transforms Spec. Funct. 31 (2020), no. 7, 538–555. MR 4114836.
S. Ben Saïd, T. Kobayashi and B. Ørsted, Laguerre semigroup and Dunkl operators, Compos. Math. 148 (2012), no. 4, 1265–1336. MR 2956043.
S. Ben Saïd, A product formula and a convolution structure for a $k$-Hankel transform on $R$, J. Math. Anal. Appl. 463 (2018), no. 2, 1132–1146. MR 3785501.
S. Ben Saïd and L. Deleaval, Translation operator and maximal function for the ($k$,1)-generalized Fourier transform, J. Funct. Anal. 279 (2020), no. 8, 108706, 32 pp. MR 4129081.
L. Cohen, Generalized phase-space distribution functions, J. Math. Phys. 7 (1966), 781–786. MR 0194105.
L. Cohen, Time-frequency distributions—A review, Proc. IEEE 77 (1989), no. 7, 941–981. https://doi.org/10.1109/5.30749.
D. Constales, H. De Bie and P. Lian, Explicit formulas for the Dunkl dihedral kernel and the $(kappa,a)$-generalized Fourier kernel, J. Math. Anal. Appl. 460 (2018), no. 2, 900–926. MR 3759078.
S. Dahlke, Multiresolution analysis and wavelets on locally compact abelian groups, in Wavelets, Images, and Surface Fitting (Chamonix-Mont-Blanc, 1993), 141–156, A K Peters, Wellesley, MA, 1994. MR 1302244.
I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. MR 1162107.
H. De Bie, B. Ørsted, P. Somberg and V. Souček, Dunkl operators and a family of realizations of $germ{osp}(1|2)$, Trans. Amer. Math. Soc. 364 (2012), no. 7, 3875–3902. MR 2901238.
C. F. Dunkl, Differential-difference operators associated to reflection groups, Trans. Amer. Math. Soc. 311 (1989), no. 1, 167–183. MR 0951883.
C. F. Dunkl, Hankel transforms associated to finite reflection groups, in Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications (Tampa, FL, 1991), 123–138, Contemp. Math., 138, Amer. Math. Soc., Providence, RI, 1992. MR 1199124.
G. B. Folland and A. Sitaram, The uncertainty principle: a mathematical survey, J. Fourier Anal. Appl. 3 (1997), no. 3, 207–238. MR 1448337.
S. Ghazouani and F. Bouzeffour, Heisenberg uncertainty principle for a fractional power of the Dunkl transform on the real line, J. Comput. Appl. Math. 294 (2016), 151–176. MR 3406976.
S. Ghobber and P. Jaming, Uncertainty principles for integral operators, Studia Math. 220 (2014), no. 3, 197–220. MR 3173045.
D. V. Gorbachev, V. I. Ivanov and S. Yu. Tikhonov, Pitt's inequalities and uncertainty principle for generalized Fourier transform, Int. Math. Res. Not. IMRN 2016, no. 23, 7179–7200. MR 3632078.
A. Grossmann and J. Morlet, Decomposition of Hardy functions into square integrable wavelets of constant shape, SIAM J. Math. Anal. 15 (1984), no. 4, 723–736. MR 0747432.
N. B. Hamadi and S. Omri, Uncertainty principles for the continuous wavelet transform in the Hankel setting, Appl. Anal. 97 (2018), no. 4, 513–527. MR 3772122.
V. Havin and B. Jöricke, The Uncertainty Principle in Harmonic Analysis, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 28, Springer-Verlag, Berlin, 1994. MR 1303780.
R. Howe, The oscillator semigroup, in The Mathematical Heritage of Hermann Weyl (Durham, NC, 1987), 61–132, Proc. Sympos. Pure Math., 48, Amer. Math. Soc., Providence, RI, 1988. MR 0974332.
T. R. Johansen, Weighted inequalities and uncertainty principles for the $(k,a)$-generalized Fourier transform, Internat. J. Math. 27 (2016), no. 3, 1650019, 44 pp. MR 3474059.
T. Kawazoe and H. Mejjaoli, Uncertainty principles for the Dunkl transform, Hiroshima Math. J. 40 (2010), no. 2, 241–268. MR 2680659.
T. Kobayashi and G. Mano, The inversion formula and holomorphic extension of the minimal representation of the conformal group, in Harmonic Analysis, Group Representations, Automorphic Forms and Invariant Theory, 151–208, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 12, World Sci. Publ., Hackensack, NJ, 2007. MR 2401813.
T. Kobayashi and G. Mano, The Schrödinger model for the minimal representation of the indefinite orthogonal group ${rm O}(p,q)$, Mem. Amer. Math. Soc. 213 (2011), no. 1000. MR 2858535.
T. H. Koornwinder, The continuous wavelet transform, in Wavelets: An Elementary Treatment of Theory and Applications, 27–48, Ser. Approx. Decompos., 1, World Sci. Publ., River Edge, NJ, 1993. MR 1238554.
R. Ma, Heisenberg inequalities for Jacobi transforms, J. Math. Anal. Appl. 332 (2007), no. 1, 155–163. MR 2319650.
Y. Meyer, Wavelets and Operators, Cambridge Studies in Advanced Mathematics, 37, Cambridge University Press, Cambridge, 1992. MR 1228209.
H. Mejjaoli and N. Sraieb, Uncertainty principles for the continuous Dunkl Gabor transform and the Dunkl continuous wavelet transform, Mediterr. J. Math. 5 (2008), no. 4, 443–466. MR 2465571.
H. Mejjaoli, Uncertainty principles for the generalized Fourier transform associated to a Dunkl-type operator, Appl. Anal. 95 (2016), no. 9, 1930–1956. MR 3515087.
H. Mejjaoli, Harmonic analysis associated with the generalized differential-difference operator on the real line and quantitative uncertainty principles for its Hartley transform, Appl. Anal. 96 (2017), no. 7, 1146–1169. MR 3627612.
H. Mejjaoli and K. Trimèche, Time-frequency concentration, Heisenberg type uncertainty principles and localization operators for the continuous Dunkl wavelet transform on $R^d$, Mediterr. J. Math. 14 (2017), no. 4, Paper No. 146, 33 pp. MR 3661015.
H. Mejjaoli, Wavelet-multipliers analysis in the framework of the $k$-Laguerre theory, Linear Multilinear Algebra 67 (2019), no. 1, 70–93. MR 3885881.
H. Mejjaoli, Spectral theorems associated with the $(k,a)$-generalized wavelet multipliers, J. Pseudo-Differ. Oper. Appl. 9 (2018), no. 4, 735–762. MR 3863689.
H. Mejjaoli, $(k,a)$-generalized wavelet transform and applications, J. Pseudo-Differ. Oper. Appl. 11 (2020), no. 1, 55–92. MR 4064408.
H. Mejjaoli and K. Trimèche, $k$-Hankel two-wavelet theory and localization operators, Integral Transforms Spec. Funct. 31 (2020), no. 8, 620–644. MR 4128514.
K. Mokni and K. Trimèche, Wavelet transform on compact Gelʹfand pairs and its discretization, J. Math. Anal. Appl. 238 (1999), no. 1, 234–258. MR 1711448.
J. F. Price and A. Sitaram, Local uncertainty inequalities for locally compact groups, Trans. Amer. Math. Soc. 308 (1988), no. 1, 105–114. MR 0946433.
R. Radha and K. Sarvesh, Hardy’s theorem for the continuous wavelet transform, J. Pseudo-Differ. Oper. Appl. 11 (2020), no. 2, 869–877. MR 4098124.
M. Rösler, Positivity of Dunkl's intertwining operator, Duke Math. J. 98 (1999), no. 3, 445–463. MR 1695797.
N. B. Salem and A. R. Nasr, Heisenberg-type inequalities for the Weinstein operator, Integral Transforms Spec. Funct. 26 (2015), no. 9, 700–718. MR 3354049.
F. A. Shah and A. Y. Tantary, Polar wavelet transform and the associated uncertainty principles, Internat. J. Theoret. Phys. 57 (2018), no. 6, 1774–1786. MR 3798085.
F. A. Shah and A. Y. Tantary, Non-isotropic angular Stockwell transform and the associated uncertainty principles, Appl. Anal. 100 (2021), no. 4, 835–859. MR 4215728.
C. E. Shannon, A mathematical theory of communication, ACM SIGMOBILE Mob. Comput. Commun. Rev. 5 (2001), no. 1, 3–55. https://doi.org/10.1145/584091.584093
C. E. Shannon and W. Weaver, The Mathematical Theory of Communication, University of Illinois Press, Urbana, IL, 1949. MR 0032134.
K. Trimèche, Generalized Wavelets and Hypergroups, Gordon and Breach Science Publishers, Amsterdam, 1997. MR 1489523.
S. B. Yakubovich, Uncertainty principles for the Kontorovich–Lebedev transform, Math. Model. Anal. 13 (2008), no. 2, 289–302. MR 2418228.
E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, reprint of the fourth (1927) edition, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. MR 1424469.
E. Wilczok, New uncertainty principles for the continuous Gabor transform and the continuous wavelet transform, Doc. Math. 5 (2000), 201–226. MR 1758876.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Hatem Mejjaoli
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal. The Journal may retract the paper after publication if clear evidence is found that the findings are unreliable as a result of misconduct or honest error.