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CONFORMAL VECTOR FIELDS ON STATISTICAL MANIFOLDS

LEILA SAMEREH AND ESMAEIL PEYGHAN

Abstract. Introducing the conformal vector fields on a statistical manifold,
we present necessary and sufficient conditions for a vector field on a statistical
manifold to be conformal. After presenting some examples, we classify the
conformal vector fields on two famous statistical manifolds. Considering three
statistical structures on the tangent bundle of a statistical manifold, we study
the conditions under which the complete and horizontal lifts of a vector field
can be conformal on these structures.

1. Introduction

Nowadays, information geometry as a combination of statistics and differential
geometry has an effective role in science. Some of its vast applications can be found
in image processing, physics, computer science and machine learning [4, 9, 13, 12,
31]. It is a realm that makes it possible to illustrate statistical objects as geometric
ones by the way of capturing their geometric properties. Rigid objects in the sense
of coordinate transformation are a favourite among differential geometers. So,
observing the statistical spaces from the doorway of differential geometry makes it
convenient to study the statistical behaviors profoundly. A fundamental detailed
survey on information geometry can be found in the monograph [5].

For an open subset Θ of Rn and a sample space Ω with parameter θ = (θ1, . . . , θn),
we call the set of probability density functions

S = {p(x; θ) :
∫

Ω
p(x; θ) = 1, p(x; θ) > 0, θ ∈ Θ ⊆ Rn}

a statistical model. For a statistical model S, the semi-definite Fisher information
matrix g(θ) = [gij(θ)] is defined as

gij(θ) :=
∫

Ω
∂i`θ∂j`θp(x; θ) dx = Ep[∂i`θ∂j`θ], (1.1)

where `θ = `(x; θ) := log p(x; θ), ∂i := ∂
∂θi , and Ep[f ] is the expectation of f(x)

with respect to p(x; θ). The space S equipped with such information matrices is
called a statistical manifold in the literature.
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Historically, Fisher was the first to introduce the relation (1.1) in 1920 [16]. It is
easy to see that if g is positive-definite and all of its components are converging to
real numbers, then (S, g) will be a Riemannian manifold, and g is called a Fisher
metric on S with components

gij(θ) =
∫

Ω
∂ip(x; θ)∂j`θ dx =

∫
Ω

1
p(x; θ)∂ip(x; θ)∂jp(x; θ) dx.

Rao was the first to study the above metric in 1945 [28]. In 1982, Amari [2] studied
a parametric family of torsion-free connections ∇(α) with respect to p(x; θ) (called
α-connections) by using the Christoffel symbols

Γ(α)
ijk = g(∇α∂i∂j , ∂k) := Ep

[(
∂i∂j`θ + 1− α

2 ∂i`θ∂j`θ

)
(∂k`θ)

]
,

where α ∈ R. Indeed, by introducing α-connections, Amari provided a differen-
tial geometrical framework for analyzing statistical problems related to multipa-
rameter families of distributions and introduced α-geometry on statistical mani-
folds. α-geometry measures second-order information loss and the second-order
efficiency of an estimator. The α-geometry of the Gaussian, Gamma, McKay bi-
variate gamma, Weibull and Freund bivariate exponential manifolds are studied
by Amari [3], Arwini and Dodson [6] and Cao, Sun and Wang [11]. An interest-
ing feature of the Gaussian and the Weibull manifolds is that they have negative
constant Gaussian curvature [6, 11]. Also, one interesting fact is that several of
the submanifolds of the Freund bivariate exponential manifold are α-flat [6]. The
statistical manifolds whose α-curvature is negative constant have the same statisti-
cal properties as Gaussian and Weibull manifolds. In particular, some parameter’s
MLE in α-flat statistical manifolds has no second order information loss (see [2, 15]
for more details). The question now arises statistically and geometrically. Indeed,
that question is whether there may be other manifolds with constant Gaussian
curvature or α-Gaussian curvature. In answer to this question, Yuan [34] proved
that the generalized Gaussian statistical manifold has constant α-Gaussian curva-
ture. Also, he introduced the p-dimensional statistical manifold (for any positive
integer p) that is α-flat.

A statistical manifold is a triple (M, g,∇), where the manifold M is equipped
with a statistical structure (g,∇) containing a Riemannian metric g and an affine
connection ∇ on M such that the covariant derivative ∇g is symmetric. The trivial
example of statistical manifolds arises when one puts ∇ := ∇(0), where ∇(0) is the
Levi-Civita connection of g. It can be checked that ∇(α) is torsion-free and that
∇(α)g is totally symmetric, so (M, g,∇(α)) is a statistical manifold. Lauritzen was
the first to study such structures in 1987 [22].

Conformality is an interesting concept in several branches of mathematics, such
as classical geometry, real and complex analysis, (semi-) Riemannian geometry
and Finsler geometry. Also, it is a valuable concept in physics, in particular in
conformal field theory and general relativity (see for instance [19, 27]). In fluid me-
chanics, aerodynamics, thermomechanics, electrostatics, elasticity, and elsewhere,
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the solutions to the Laplace equation on complicated planar domains have exten-
sive applications. An effective approach to the construction of such solutions is
based on the use of conformal mappings [24]. Conformal vector fields are vector
fields with flows preserving a given conformal class of metrics. These vector fields
as the generalizations of conformal functions between Euclidean spaces and con-
formal maps between (semi-) Riemannian manifolds, are important matters of fact
in Riemannian geometry (see for instance [8, 30]). Indeed, a smooth vector field
X on a Riemannian manifold (M, g) is said to be a conformal vector field if there
exists a smooth function ρ on M such that LXg = 2ρg. The function ρ is called
the potential function of the conformal vector field X. If f is a constant function,
X is called a homothetic vector field. A special category of homothetic vector fields
is the set of Killing vector fields, where ρ = 0 (in the presence of a Riemannian
metric g, their flow preserves g). These kinds of preserving the metric help to
categorize the spaces in the sense of diffeomorphism and symmetry. The study of
conformal vector fields on Riemannian manifolds and their tangent bundles is of
interest to many researchers (see for instance [1, 18, 25, 32]).

Recently, the study of geometric concepts of statistical manifolds has been con-
sidered by many researchers (see e.g. [7, 10, 17, 20, 21, 35, 36, 37]). For instance,
Sasakian geometry and symplectic geometry on statistical manifolds are introduced
by [17] and [37], respectively. Also, Hasegawa and Yamauchi [20, 21] introduced
the concepts of λ-conformally flat and conformally-projectively flat on statistical
manifolds. The importance of conformal vector fields in Riemannian geometry and
the concepts introduced in [20, 21] led to the idea of introducing conformal vector
fields on statistical manifolds. Since the concept of conformal vector field is inde-
pendent of the choice of linear connection, its introduction on statistical manifolds
is similar to that on Riemannian ones and will not be valuable. So, we need to
introduce a new concept that uses the statistical connection structure and gives us
the definition of conformal vector field in the Riemannian case (for this reason we
call it the conformal vector field on statistical manifolds). Therefore, the aim of
this paper is to study the conformal geometry on statistical manifolds.

The organization of the paper is as follows. In Section 2 we recall some concepts
on statistical manifolds and lift geometry on the tangent bundle of a manifold.
Section 3 is devoted to the study of Lie derivatives of tensor fields on statistical
manifolds. In Section 4 we introduce the conformal vector fields on statistical man-
ifolds and we present some examples of them. Then we focus on two famous statis-
tical manifolds (the general Gaussian distribution manifold and the 2-dimensional
statistical manifold) and we determine the conformal vector fields on these man-
ifolds. In the last section we consider three statistical structures on the tangent
bundle of a Riemannian manifold and we find necessary and sufficient conditions
under which the horizontal and complete lifts of a vector field can be conformal
on these structures. Then we implement these conditions on an example, and
also on the tangent bundle of the generalized Gaussian distribution manifold and
2-dimensional statistical manifold.
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2. Preliminaries

Let M be a smooth manifold with a Riemannian metric g and let ∇ be a linear
symmetric connection. The triple (M, g,∇) is called a statistical manifold if ∇g is
symmetric for all X,Y, Z ∈ χ(M). In other words, ∇g = C, where C is a symmetric
tensor of degree (0,3), namely, ∇g satisfies the Codazzi equations

(∇Xg)(Y,Z) = (∇Y g)(X,Z) = (∇Zg)(Y,X) = C(X,Y, Z) ∀X,Y, Z ∈ χ(M).
(2.1)

In this case, ∇ is called a statistical connection. When C = 0, we have the unique
Levi-Civita connection ∇(0). Now we define the skewness operator K of degree
(1,2) on M as follows:

KXY = ∇XY −∇(0)
X Y ∀X,Y ∈ χ(M). (2.2)

It is easy to see that K satisfies the following relations:

(i) KXY = KYX,

(ii) g(KXY,Z) = g(Y,KXZ),
(iii) C(X,Y, Z) = −2g(KXY,Z).

(2.3)

The dual connection of a linear connection ∇ is defined by

Xg(Y, Z) = g(∇XY,Z) + g(Y,
∗
∇XZ) ∀X,Y, Z ∈ χ(M).

It is known that if (M, g,∇) is a statistical manifold, then (M, g,
∗
∇) is a statistical

manifold as well. Moreover, we have ∇(0) = 1
2 (∇ +

∗
∇). Using ∇ and

∗
∇, we have

the family of α-connections as follows [35]:

∇(α) = 1 + α

2 ∇+ 1− α
2

∗
∇.

Let M be an n-dimensional manifold, let TM be its tangent bundle and let π :
TM →M be the projection map. The space TTM can be split into two subspaces
at every point (p, v) as follows:

T(p,v)TM = H(p,v)TM ⊕ V(p,v)TM, (2.4)

where V(p,v)TM = kerπ∗|(p,v) and H(p,v)TM is a supplement space of V(p,v)TM .
If (xi, yi), i = 1, . . . , n, is a local coordinate of TM , then

{
∂
∂xi ,

∂
∂yi

}n
i=1 is a natural

basis of TTM at every point (p, v) with the dual {dxi, dyi}ni=1. According to the
splitting (2.4), TTM has the basis

{
δ
δxi ,

∂
∂yi

}n
i=1 with the dual {dxi, δyi}ni=1, where

δ

δxi
= ∂

∂xi
− yjΓkij

∂

∂yk
, δyi = dyi + yjΓikjdxk,

and Γkij are the Christoffel symbols of a linear connection ∇. From now on to

simplify we use ∂i, ∂ī and δi instead of ∂

∂xi
, ∂

∂yi
and δ

δxi
, respectively. The Lie
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brackets of
{

δ
δxi ,

∂
∂yi

}n
i=1 are given by

[δi, δj ] = −yrRkijr∂k̄, [δi, ∂j̄ ] = Γkij∂k̄, [∂ī, ∂j̄ ] = 0, (2.5)

where Rkijr are the components of the curvature tensor of M given by

Rkijr = ∂iΓkjr − ∂jΓkir + ΓhjrΓkhi − ΓhirΓkhj . (2.6)

It is known that the components of the curvature tensor of a statistical connection
satisfy the following relations:

Rkijr = −Rkjir, Rkijr +Rkjri +Rkrij = 0.

Let X = Xi∂i be a vector field on M . The vertical, horizontal and complete lifts
of X are defined by

Xv = Xi∂ī, Xh = Xiδi, Xc = Xi∂i + ya(∂aXi)∂ī.

The above lift operations are extended to the tensor algebra J (M) by the following
rules [33]:

(P ⊗Q)v = P v ⊗Qv,
(P ⊗Q)c = P c ⊗Qv + P v ⊗Qc,

(P ⊗Q)h = P v ⊗Qh + Ph ⊗Qv.
(2.7)

In particular, for any tensor fields P,Q ∈ J rs (M) with r = 0, 1, we have

P c(Xc
1 , . . . , X

c
s) = (P (X1, . . . , Xs))c, P c(Xv

1 , . . . , X
v
s ) = 0, (2.8)

and
Qh(Xh

1 , . . . , X
h
s ) = (Q(X1, . . . , Xs))h, Qh(Xv

1 , . . . , X
v
s ) = 0,

Qh(Xh
1 , . . . , X

h
j−1, X

v
j , X

h
j+1, . . . , X

h
s ) = (Q(X1, . . . , Xs))v.

(2.9)

3. Lie derivation and statistical connection

First, we recall some concepts and notations on the Lie derivative and the co-
variant derivative of tensors.

Let T ∈ J rs (M) and let ∇ be a linear connection on M . Then, for each X ∈
J 1

0 (M) = χ(M), the covariant derivative of T along X is defined by (see [33])

(∇XT )(θ1, . . . , θr, X1, . . . , Xs) = X(T (θ1, . . . , θr, X1, . . . , Xs))
− T (∇Xθ1, . . . , θr, X1, . . . , Xs)− · · · − T (θ1, . . . ,∇Xθr, X1, . . . , Xs)
− T (θ1, . . . , θr,∇XX1, . . . , Xs)− · · · − T (θ1, . . . , θr, X1, . . . ,∇XXs),

where θi ∈ J 0
1 (M), Xj ∈ J 1

0 (M), i = 1, . . . , r and j = 1, . . . , s. Also, the Lie
derivative of T along X is defined by

(LXT )(θ1, . . . , θr, X1, . . . , Xs) = X(T (θ1, . . . , θr, X1, . . . , Xs))
− T (LXθ1, . . . , θr, X1, . . . , Xs)− · · · − T (θ1, . . . , LXθ

r, X1, . . . , Xs)
− T (θ1, . . . , θr, LXX1, . . . , Xs)− · · · − T (θ1, . . . , θr, X1, . . . , LXXs).
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In the local expression we have

∇mT i1···irj1···js := (∇∂mT )i1···irj1···js := (∇∂mT )(dxi1 , . . . , dxir , ∂j1 , . . . , ∂js)

= ∂mT
i1···ir
j1···js + Th···irj1···jsΓ

i1
hm + · · ·+ T i1···hj1···jsΓ

ir
hm

− T i1···irh···js Γhj1m − · · · − T
i1···ir
j1···h Γhjsm

(3.1)

and
LXT

i1···ir
j1···js := (LXT )i1···irj1···js := (LXT )(dxi1 , . . . , dxir , ∂j1 , . . . , ∂js)

= Xm∂mT
i1···ir
j1···js − T

m···ir
j1···js (∂mXi1) + · · · − T i1···mj1···js (∂mXir )

+ T i1···irm···js (∂j1Xm)− · · · − T i1···irj1···m (∂jsXm).
(3.2)

Proposition 3.1. Let (M, g,∇) be a statistical manifold. Then we have the fol-
lowing formulas:

(LXg)(Y,Z) = −2g(KXY, Z) + g(∇YX,Z) + g(Y,∇ZX), (3.3)

(LXg)(Y,Z) = 2g(KXY, Z) + g(
∗
∇YX,Z) + g(Y,

∗
∇ZX). (3.4)

Proof. Since ∇ is symmetric and C(X,Y, Z) = −2g(KXY,Z), we have

(LXg)(Y,Z) = Xg(Y,Z)− g([X,Y ], Z)− g(Y, [X,Z])
= Xg(Y,Z)− g(∇XY, Z) + g(∇YX,Z)− g(Y,∇XZ) + g(Y,∇ZX)
= C(X,Y, Z) + g(∇YX,Z) + g(Y,∇ZX)
= −2g(KXY, Z) + g(∇YX,Z) + g(Y,∇ZX),

which gives us (3.3). Since
∗
∇ = ∇− 2K, we get

(LXg)(Y,Z) = Xg(Y,Z)− g([X,Y ], Z)− g(Y, [X,Z])

= Xg(Y,Z)− g(
∗
∇XY,Z) + g(

∗
∇YX,Z)− g(Y,

∗
∇XZ) + g(Y,

∗
∇ZX)

= (∇Xg)(Y,Z) + 2g(KXY,Z) + 2g(Y,KXZ)
= 2C(X,Y, Z) + 2g(KXY,Z) + 2g(Y,KXZ).

Relations (2.3) and the above equation imply (3.4). �

Proposition 3.2. Let (M, g,∇) be a statistical manifold. Then we have

(LX∇)(Y,Z) = (LX
∗
∇)(Y,Z) + 2(LXK)(Y, Z), (3.5)

(LX∇(0))(Y,Z) = (LX
∗
∇)(Y,Z) + (LXK)(Y,Z), (3.6)

(LX∇(0))(Y,Z) = 2(LX
∗
∇)(Y, Z)− (LX∇)(Y, Z) + 3(LXK)(Y,Z), (3.7)

where (LX∇)(Y, Z) = LX(∇Y Z)−∇LXY Z −∇Y LXZ.

Proof. Using (2.2) and the relations
∗
∇ = ∇ − 2K and ∇(0) = 1

2 (∇ +
∗
∇) we can

conclude (3.5)–(3.7). �

Rev. Un. Mat. Argentina, Vol. 63, No. 2 (2022)



CONFORMAL VECTOR FIELDS ON STATISTICAL MANIFOLDS 333

Here we study some properties of the Lie derivative of tensors on statistical
manifolds in the local format. Note that the local expression of the tensors C and K
introduced by (2.1) and (2.2) are C = Cijkdx

i⊗dxj⊗dxk andK = Kk
ijdx

i⊗dxj⊗∂k.
From (2.3) we conclude that the components Kk

ij of K satisfy the relations

Kk
ij = Kk

ji, Kr
ijgrk = Kr

ikgrj , Cijk = −2Kr
ijgrk. (3.8)

From the above equations we conclude that Cijk is totally symmetric, i.e., Cijk =
Cjik = Cikj .

Proposition 3.3. Let X = Xh∂h be a vector field on a statistical manifold
(M, g,∇). Then we have

LXgij = 2XrKrjk +∇jXi +∇iXj ,

where Xi = girX
r and Krjk = Kh

rjghk.

Proof. Setting X = Xi∂i, Y = ∂j and Z = ∂k in (3.3) we get

LXgjk = −2g(KXi∂i∂j , ∂k) + g(∇∂j (Xi∂i), ∂k) + g(∂j ,∇∂k(Xi∂i))
= −2XiKr

ijgrk + (∂jXi)gik +XiΓrjigrk + (∂kXi)gji +XiΓrkigjr
= −2XiKijk + (∂jXr +XiΓrji)grk + (∂kXr +XiΓrki)gjr.

Using (3.1) in the above equation implies

LXgjk = −2XiKijk + (∇jXr)grk + (∇kXr)gjr. (3.9)

But using (2.1) we get

(∇jXr)grk = ∇j(Xrgrk)−Xr∇jgrk = ∇jXk −XrCjrk. (3.10)

Similarly, we have

(∇kXr)gjr = ∇kXj −XrCkrj . (3.11)

Putting (3.10) and (3.11) in (3.9) and considering that Cjrk is totally symmetric
we obtain

LXgjk = −2XiKijk +∇jXk +∇kXj − 2XrCjrk.

Using the third equation of (3.8) in the above equation implies

LXgjk = −2XiKijk +∇jXk +∇kXj + 4XrKjrk

= 2XrKrjk +∇jXk +∇kXj . �

Proposition 3.4. Let (M,∇, g) be a statistical manifold. Then we have the fol-
lowing formula:

LXΓhij = ∇i∇jXh +Xk
∗
Rhkij + 2Xk(∂k(Kh

ij)− ∂i(Kh
jk)− 2Kt

jkK
h
it + 2Kt

ijK
h
tk),

where LXΓhij := (LX∇)hij.

Rev. Un. Mat. Argentina, Vol. 63, No. 2 (2022)



334 LEILA SAMEREH AND ESMAEIL PEYGHAN

Proof. Equation (3.5) has the local expression

LXΓhij = ∂i∂j(Xh) +Xt∂t(
∗
Γhji)− ∂t(Xh)

∗
Γtji + ∂j(Xt)

∗
Γhit + ∂i(Xt)

∗
Γhjt

+ 2∂t(Kh
ji)Xt − 2∂t(Xh)Kt

ji + 2∂j(Xt)Kh
ti + 2∂i(Xt)Kh

jt.
(3.12)

Since ∇ is a statistical connection, we get

∇i∇jXh = ∂i(∇jXh) + (∇jXt)Γhit − (∇tXh)γtij
= ∂i(∂j(Xh) + ΓhjtXt) + (∂j(Xt) + ΓtjkXk)Γhit − (∂t(Xh) + ΓhtkXk)Γtij
= ∂i∂j(Xh) + ∂i(Γhjt)Xt + Γhjt∂i(Xt) + ∂j(Xt)Γhit +XkΓtjkΓhit
− ∂t(Xh)Γtij −XkΓhtkΓtij .

Using ∇ =
∗
∇+ 2K, the above equation reduces to

∇i∇jXh = ∂i∂j(Xh) + ∂i(
∗
Γhjt)Xt +

∗
Γhjt∂i(Xt) + ∂j(Xt)

∗
Γhit +Xk

∗
Γtjk

∗
Γhit

− ∂t(Xh)
∗
Γtij −Xk

∗
Γhtk
∗
Γtij + 2∂i(Kh

jt)Xt + 2Kh
jt∂i(Xt) + 2∂j(Xt)Kh

it

+ 4XkKt
jkK

h
it − 2∂t(Xh)Kt

ij − 4XkKh
tkK

t
ij .

The expression (3.12) and the above equations imply

∇i∇jXh = LXΓhij −Xk
(
∂k(
∗
Γhji)− ∂i(

∗
Γhjk)−

∗
Γtjk

∗
Γhit +

∗
Γhtk
∗
Γtij
)

+ 2Xk
(
∂i(Kh

jk)− ∂k(Kh
ji) + 2Kt

jkK
h
it − 2Kh

tkK
t
ij

)
.

Using the local expression of
∗
R (see (2.6)) we obtain

∇i∇jXh = LXΓhij −Xk
∗
Rhkij + 2Xk(∂i(Kh

jk)− ∂k(Kh
ji) + 2Kt

jkK
h
it − 2Kh

tkK
t
ij).

�

4. Conformal vector fields on statistical manifolds

In this section we present the definition of a conformal vector field on a statistical
manifold and we study some examples.

It is known that the concept of conformal vector field is independent of the
choice of linear connection. So, its introduction on statistical manifolds is similar
to that on Riemannian ones. This motivates us to introduce a new concept that
uses the statistical connection structure and gives us the definition of conformal
vector field in the Riemannian case. Since the skewness operator K has a basic role
in statistical manifolds, we need to consider a certain condition on it. It is known
that the geometrical symmetries of spacetime (which have many applications in
general relativity) are often defined through the vanishing of the Lie derivative
of certain tensors with respect to a vector (see [26] for more details). So, we are
interested in skewness operators whose Lie derivative is zero.
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Definition 4.1. Let (g,∇) be a statistical structure on M . A vector field X is
called a conformal vector field if

LXg = 2ρg, LXK = 0,

where ρ is a function on M .

According to (3.2), the above equations have local expressions

LXgij = Xr∂rgij + ∂j(Xr)gir + ∂i(Xr)gjr, (4.1)
LXK

r
ij = X l∂lK

r
ij −Kl

ij∂l(Xr) + ∂i(X l)Kr
lj + ∂j(X l)Kr

li. (4.2)

Using the relations

(∇iXr) = ∂i(Xr) +XhΓrhi,
∇rKm

ij = ∂rK
m
ij +Kh

ijΓmhr −Km
ihΓhrj −Km

hjΓhir,

we can rewrite (4.2) as follows

LXK
r
ij = X l∇lKr

ij −Kl
ij(∇lXr) +Kr

lj(∇iX l) +Kr
li(∇jX l). (4.3)

From Definition 4.1 and equations (4.1) and (4.2) we can conclude the following:

Lemma 4.2. A vector field X = Xi∂i on a statistical manifold (M, g,∇) is con-
formal if and only if

Xr∂rgij + ∂j(Xr)gir + ∂i(Xr)gjr = 2ρgij , (4.4)
X l∂lK

r
ij −Kl

ij∂l(Xr) + ∂i(X l)Kr
lj + ∂j(X l)Kr

li = 0. (4.5)

Example 4.3. Consider the Fisher metric

g =
[ 1
σ2 0
0 2

σ2

]
on the normal distribution manifold

M =
{
f(x;µ, σ) | f(x;µ, σ) = 1√

2πσ e
−(x−µ2)

2σ2 , x, µ ∈ R, σ > 0
}
.

The equations (3.8) imply

K1
12 = 2K2

11, K1
22 = 2K2

21. (4.6)

Let X = X1∂1 +X2∂2 be a vector field on M , where ∂1 = ∂
∂µ and ∂2 = ∂

∂σ . Using
(4.4), we get

X1∂1(gij) +X2∂2(gij) + ∂i(X1)g1j + ∂i(X2)g2j + ∂j(X1)gi1 + ∂j(X2)gi2 = 2ρgij .

Considering i, j = 1, 2, the above equation implies

− 1
σ
X2 + ∂1(X1) = ρ, − 1

σ
X2 + ∂2(X2) = ρ, ∂2(X1) = −2∂1(X2). (4.7)
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Note that the first two equations of (4.7) imply ∂1(X1) = ∂2(X2). Considering
i, j, r = 1, 2 in (4.5) we obtain the following equations:
X1∂1(K1

11) +X2∂2(K1
11) + ∂1(X1)K1

11 + 6∂1(X2)K2
11 = 0, (4.8)

X1∂1(K2
11) +X2∂2(K2

11)− ∂1(X2)K1
11 − ∂2(X2)K2

11

+ 2∂1(X1)K2
11 + 2∂1(X2)K2

21 = 0,
(4.9)

X1∂1(K1
22) +X2∂2(K1

22)− ∂2(X1)K2
22 + 2∂2(X1)K1

12 + ∂2(X2)K1
22 = 0, (4.10)

X1∂1(K2
22) +X2∂2(K2

22)− ∂1(X2)K1
22 + 2∂2(X1)K2

12 + ∂2(X2)K2
22 = 0, (4.11)

X1∂1(K1
12) +X2∂2(K1

12) + 4∂1(X2)K2
21 + ∂2(X1)K1

11 + ∂2(X2)K1
12 = 0, (4.12)

X1∂1(K2
12) +X2∂2(K2

12)− 4∂1(X2)K2
11 + ∂2(X2)K2

12 + ∂1(X2)K2
22 = 0, (4.13)

X1∂1(K1
12) +X2∂2(K1

12) + 4∂1(X2)K2
21 + ∂2(X1)K1

11 + ∂2(X2)K1
12 = 0, (4.14)

X1∂1(K2
12) +X2∂2(K2

12)− 4∂1(X2)K2
11 + ∂1(X1)K2

12 + ∂1(X2)K2
22 = 0. (4.15)

So, X is conformal if and only if it satisfies (4.6), (4.7) and (4.8)–(4.15). For
instance, if we consider

X1 = aµ, X2 = aσ, ρ = 0,
and

K1
12 = 2K2

11 = 0, K1
11 = K1

22 = K2
22 = 2K2

21 = 1
aσ
, (4.16)

where a is non-zero constant, then we obtain a conformal vector field on (R2, g,∇).
Note that the coefficients of the Levi-Civita connection ∇(0) of the Fisher metric
given by (4.3) are

Γ(0)1
12 = Γ(0)1

21 = Γ(0)2
22 = −2Γ(0)2

11 = − 1
σ
, Γ(0)1

11 = Γ(0)2
12 = Γ(0)2

21 = Γ(0)1
22 = 0;

then using (2.2) and (4.16) we deduce that the coefficients of the statistical con-
nection ∇ are as follows:

Γ1
11 = 2Γ2

12 = 2Γ2
21 = Γ1

22 = 1
aσ
, Γ1

12 = Γ1
21 = −2Γ2

11 = − 1
σ
, Γ2

22 = 1− a
aσ

.

Example 4.4. We consider the normal distribution Riemannian manifold (M, g)
introduced in Example 4.3. Let η be a 1-form on M . It is easy to see that

KXY = g(X,Y )η] + η(X)Y + η(Y )X,
where η(X) = g(X, η]) satisfies (i) and (ii) of (2.3). So, the linear connection ∇
given by

∇XY = ∇(0)
X Y + g(X,Y )η] + η(X)Y + η(Y )X

is a statistical connection on (M, g) (this connection has been introduced by Blaga
and Crasmareanu [10]). Now, let X = X1∂1 +X2∂2 be a vector field on M . Using
(4.3), we get

LXK
r
ij = X l∂l(gijη]r + ηiδ

r
j + ηjδ

r
i )− ∂m(Xr)(gijη]m + ηiδ

m
j + ηjδ

m
i )

+ ∂i(X l)(gljη]r + ηlδ
r
j + ηjδ

r
l ) + ∂j(X l)(gliη]r + ηlδ

r
i + ηiδ

r
l ),

Rev. Un. Mat. Argentina, Vol. 63, No. 2 (2022)



CONFORMAL VECTOR FIELDS ON STATISTICAL MANIFOLDS 337

where Kr
ij = gijη

]r + ηiδ
r
j + ηjδ

r
i . Considering i, j = 1, 2 and using η]i = gijηj , the

above equation induces the following:

3X1∂1(η1) + 3X2∂2(η1)− 1
2∂2(X1)η2 + 3∂1(X1)η1 + 2∂1(X2)η2 = 0,

1
2X

1∂1(η2) + 1
2X

2∂2(η2)− ∂1(X2)η1 − 1
2∂2(X2)η2 + ∂1(X1)η2 = 0,

2X1∂1(η1) + 2X2∂2(η1)− 2∂1(X1)η1 − ∂2(X1)η2 + 4∂2(X2)η1 = 0,
3X1∂1(η2) + 3X2∂2(η2)− 2∂1(X2)η1 + 2∂2(X1)η1 + 3∂2(X2)η2 = 0,
X1∂1(η2) +X2∂2(η2) + 2∂1(X2)η1 + 2∂2(X1)η1 + ∂2(X2)η2 = 0,
X1∂1(η1) +X2∂2(η1) + ∂1(X1)η1 + 2∂1(X2)η2 + 1

2∂2(X1)η2 = 0.

Using (4.7), the six equations above reduce to

X1∂1(η1) +X2∂2(η1) + ∂1(X2)η2 + ∂1(X1)η1 = 0,
X1∂1(η2) +X2∂2(η2)− 2∂1(X2)η1 + ∂1(X1)η2 = 0.

So, X is conformal if and only if it satisfies these two equations. For instance,
if we consider η = λ

kµ+cdµ + λ
kµ+cdσ, where λ, k and c are constants, then X =

(kµ+ c)∂1 + (kσ + c)∂2 is a conformal vector field on (R2, g,∇) with ρ = − c
σ .

Here we study the conformal geometry on two famous statistical manifolds.
One of them is the generalized Gaussian distribution manifold and the other is a
p-dimensional manifold (of course for p = 2). The geometric structures of these
manifolds were studied in [34].

The generalized Gaussian distribution manifold is defined as

M1 =
{
f(x;µ, σ, β) | f(x;µ, σ, β) = β

2σΓ( 1
β )
e−
|x−µ|β

σβ , x, µ ∈ R, σ, β > 0
}
,

where Γ(x) is the gamma function and µ, σ and β are called the location, scale and
shape parameters, respectively. When β = 1 or β = 2, this distribution reduces
to the Laplace distribution or the Gaussian distribution, respectively. Note that if
β is odd, the manifold is not smooth. Hence we only consider the case when β is
a known even number. In [34], Yuan proved that the Riemannian metric on the
generalized Gaussian statistical manifold M1 is as follows:

g =
[ 1
σ2 c11 0

0 1
σ2 c22

]
, (4.17)

where

c11 =
Γ(1− 1

β )β(β − 1)
Γ( 1

β )
, c22 = β.

Also, g−1, given by

g−1 =
[
σ2

c11
0

0 σ2

c22

]
,
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is the inverse of g. The Christoffel symbols of the α-connection are as follows:
Γ(α)1

11 = Γ(α)2
12 = Γ(α)2

21 = Γ(α)1
22 = 0, Γ(α)2

22 =
(
c
(1)
222 + 1− α

2 c222

)
1

σc22
,

Γ(α)1
21 = Γ(α)1

12 =
(
c
(1)
121 + 1− α

2 c121

)
1

σc11
, Γ(α)2

11 =
(
c
(1)
112 + 1− α

2 c112

)
1

σc22
,

(4.18)
where 

c121 = c112 =
Γ
( 3β−1

β

)
β3 − Γ

( 2β−1
β

)
β2

Γ
( 1
β

) ,

c222 = 2β2,

c
(1)
112 =

Γ
(
β−1
β

)
β(β − 1)− Γ

( 2β−1
β

)
β2(β − 1)

Γ
( 1
β

) ,

c
(1)
121 = −

Γ
( 2β−1

β

)
β3

Γ
( 1
β

) ,

c
(1)
222 = β(1− β).

Considering α = 0, we can obtain the Christoffel symbols of the Levi-Civita con-
nection as follows:

Γ(0)1
11 = Γ(0)2

12 = Γ(0)2
21 = Γ(0)1

22 = 0, Γ(0)2
22 =

(
c
(1)
222 + 1

2c222
) 1
σc22

,

Γ(0)1
21 = Γ(0)1

12 =
(
c
(1)
121 + 1

2c121
) 1
σc11

, Γ(0)2
11 =

(
c
(1)
112 + 1

2c112
) 1
σc22

.

(4.19)

Theorem 4.5. Every conformal vector field on the generalized Gaussian distribu-
tion manifold M1 is Killing. Moreover, X = X1∂1 +X2∂2 is a Killing vector field
if and only if X1 = Aµ+B and X2 = Aσ, where A and B are constants, ∂1 = ∂

∂µ

and ∂2 = ∂
∂σ .

Proof. Using Kr
ij = Γ(α)r

ij − Γ(0)r
ij , (4.18) and (4.19) we get

K1
11 = K2

12 = K2
21 = K1

22 = 0, K2
11 = −α

2σc22
c112,

K2
22 = −α

2σc22
c222, K1

21 = K1
12 = −α

2σc11
c121.

(4.20)

Let X = X1∂1 + X2∂2 be a conformal vector field on M1. Considering i, j = 1, 2
in (4.4) we obtain
−1
σ
X2 + ∂1(X1) = ρ,

−1
σ
X2 + ∂2(X2) = ρ, ∂2(X1)c11 + ∂1(X2)c22 = 0.

The above equations imply

∂1(X1) = ∂2(X2) = ρ+ 1
σ
X2, ∂2(X1) = −c22

c11
∂1(X2). (4.21)
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Also, putting i, j, r = 1, 2 in (4.5), we obtain the following equations:

(i) 2K1
21∂1(X2)−K2

11∂2(X1) = 0,
(ii) X2∂2(K2

22) +K2
22∂2(X2) = 0,

(iii) X2∂2(K1
21) +K1

21∂2(X2) = 0,
(iv) X2∂2(K2

11)−K2
11∂2(X2) + 2K2

11∂1(X1) = 0,
(v) 2K1

12∂2(X1)−K2
22∂2(X1) = 0,

(vi) K2
22∂1(X2)−K1

12∂1(X2) +K2
11∂2(X1) = 0.

(4.22)

The equations (4.20) and (4.22) (ii) give us α
2σc22

c222
( 1
σX

2 − ∂2(X2)
)

= 0. Since
c222 6= 0, we conclude that ∂2(X2) = 1

σX
2. Setting this equation in the first

equation of (4.21) we get ρ = 0. So X reduces to a Killing vector field. Putting
the second equation of (4.21) in (4.22) (i) yields

(
2K1

21 + K2
11
c22
c11

)
∂1(X2) = 0.

Considering (4.20), this equation reduces to − 3α
σc11

c112∂1(X2) = 0. In a similar way,
(4.22) (vi) reduces to α

2σc11c22

(
2c22c112 − c11c222

)
∂1(X2) = 0. If ∂1(X2) 6= 0, then

the last two equations imply c222 = 0, which is a contradiction. Thus ∂1(X2) = 0.
Finally, considering (4.21), we get ∂2(X1) = 0 and ∂1(X1) = 1

σX
2. The differential

equation system

∂1(X1) = ∂2(X2) = 1
σ
X2, ∂1(X2) = ∂2(X1) = 0

has the solution X2 = Aσ and X1 = Aµ+B. �

Here we consider a p-dimensional statistical manifold. The importance of this
distribution family lies in that its member is a non-Gaussian multivariate distri-
bution, while the marginal distribution is Gaussian, which implies that a set of
marginal distributions does not uniquely determine the multivariate normal distri-
bution [14]. A p-dimensional statistical manifold is defined by

M2 =
{
f(x;λ) | f(x;λ) = 2

∏p
i=1

√
λi√
2π e
−
λix

2
i

2 , x ∈ Ωp, λ ∈ Rp+
}
,

where

Ωp = {x = (x1, . . . , xp) ∈ Rp |
∏p
i=1xi > 0},

Rp+ = {x = (x1, . . . , xp) ∈ Rp | xi > 0, i = 1, . . . , p}.

The distribution in M2 can be rewritten as

f(x;λ) = e
1
2

p∑
i=1

log(−θi) +
p∑
i=1

θix
2
i + p

2 log 2− log
√

2π,

where θi = − 1
2λi. This is one member of the exponential family with the natural

coordinates (θ1, . . . , θp) and the potential function ψ(θ) = − 1
2
∑p
i=1 log(−θi). It is

known that, for the exponential family, the Fisher information is just the second
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derivative of the potential function,

gij = ∂2ψ

∂θi∂θj
= −1

2
1
θiθj

δij , (4.23)

and the α-connection is the third derivative of the potential function,

Γ(α)
ijk = 1− α

2
∂3ψ

∂θi∂θj∂θk
= −1− α

2
1

θiθjθk
δijk, (4.24)

where δii = 1 for i = 1, . . . , p, δij = 0 for i 6= j, δiii = 1 for i = 1, . . . , p, and δijk = 0
for unequal i, j, k (see [34] for more details). For p = 2, the matrix expression of
the metric g given by (4.23) and its inverse matrix are as follows:

g =
[
− 1

2θ2
1

0
0 − 1

2θ2
2

]
, g−1 =

[
−2θ2

1 0
0 −2θ2

2

]
. (4.25)

From (4.24) and (4.23), we get

Γ(α)1
11 = 1− α

θ1
, Γ(α)2

22 = 1− α
θ2

, Γ(α)k
ij = 0 for unequal i, j, k. (4.26)

Theorem 4.6. Every conformal vector field on the 2-dimensional statistical man-
ifold M2 is Killing. Moreover, X = X1∂1 + X2∂2 is a Killing vector field if and
only if X1 = Aθ1 and X2 = Bθ2, where A and B are constants, ∂1 = ∂

∂θ1
and

∂2 = ∂
∂θ2

.

Proof. From (4.26) we have the Christoffel symbols of the Levi-Civita connection
as follows:

Γ(0)1
11 = − 1

θ1
, Γ(0)2

22 = − 1
θ2
, Γ(0)k

ij = 0 for unequal i, j, k. (4.27)

Using Kr
ij = Γ(α)r

ij − Γ(0)r
ij , (4.26) and (4.27) we get

K1
11 = α

θ1
, K2

22 = α

θ2
, Kk

ij = 0 for unequal i, j, k.

Now let X = X1∂1 +X2∂2 be a conformal vector field on M2. By (4.4) we obtain

∂1(X1)− X1

θ1
= ρ, ∂2(X2)− X2

θ2
= ρ,

∂2(X1)
θ2

1
+ ∂1(X2)

θ2
2

= 0. (4.28)

Setting i = j = r = 1 in (4.5) implies ∂1(X1) = X1

θ1
. Considering this equation

and the first equation of (4.28) we conclude that ρ = 0. So X is a Killing vector
field. Putting i = j = 1, r = 2 in (4.5) yields K1

11∂1(X2) = 0, which gives us
∂1(X2) = 0. This equation together with the third equation of (4.28) results in
∂2(X1) = 0. From this equation and ∂1(X1) = X1

θ1
we get X1 = Aθ1. Similarly,

the second equation of (4.28) and ∂2(X1) = 0 imply X2 = Bθ2. It is easy to see
that X = Aθ1∂1 +Bθ2∂2 satisfies all the equations of (4.4) and (4.5). �
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5. Conformal vector fields on the tangent bundle

In this section, we consider two statistical structures on the tangent bundle of a
statistical manifold and we study the conformal vector fields on these structures.

Let (M, g,∇) be a statistical manifold with the skewness operator K. Using
(2.7) and (2.9), the horizontal lift metric gh with respect to ∇ is described by the
formulas

gh(Xh, Y h) = gh(Xv, Y v) = 0, gh(Xh, Y v) = g(X,Y ) (5.1)

for all X,Y ∈ χ(M). Again, using (2.7) and (2.9), the horizontal lift of K is defined
by

Kh
XhY

h = (KXY )h, Kh
XvY

v = 0, Kh
XhY

v = Kh
XvY

h = (KXY )v. (5.2)

In [23] Matsuzoe and Inoguchi proved that if (M, g,∇) is a statistical manifold, then
(TM, gh,Kh) is a statistical manifold. Here we study the conditions under which
Xh can be conformal on (TM, gh,Kh). According to Definition 4.1, a vector field
X̃ ∈ χ(TM) is called a conformal vector field on a statistical manifold (TM, g̃, ∇̃)
if there exists a function ρ̃(x, y) on TM such that L

X̃
g̃ = 2ρ̃g̃ and L

X̃
K̃ = 0, where

K̃ is the skewness operator associated to ∇̃. If ρ̃ is a function that depends only
on xh, then X̃ is called an inessential vector field.

Theorem 5.1. Let (M, g,∇) be a statistical manifold with the skewness operator
K and let Xh be the horizontal lift of a vector field on M . If Xh is conformal with
respect to (TM, gh,Kh), then Xh is an inessential vector field. Moreover, Xh is
an inessential vector field if and only if

Xr(Rrikj +Rrjki) = 0, (5.3)

Xr∇rgij + (∇iXr)grj = 2ρ̃(x)gij , (5.4)

−Kr
ij(∇rXm) +Km

ri (∇jXr) = 0, (5.5)

Xr(RhrikKm
hj +RhrjkK

m
hi) = 0, (5.6)

Xr∇rKm
ij + (∇iXr)Km

rj = 0, (5.7)

where Rrikj := Rhrikghj.

Proof. We can rewrite the metric gh and Kh defined by (5.1) and (5.2) as follows:

gh(δi, δj) = gh(∂ī, ∂j̄) = 0, gh(δi, ∂j̄) = gh(∂ī, δj) = gij , (5.8)

Kh
δiδj = Kh

ijδh, Kh
∂ī
∂j̄ = 0, Kh

δi∂j̄ = Kh
∂ī
δj = Kh

ij∂h̄. (5.9)

Using (2.5) and (5.8) we get (LXhgh)(∂ī, ∂j̄) = 0. In a similar way, we obtain

(LXhgh)(δi, δj) = Xryk(Rrikj +Rrjki), (5.10)
(LXhgh)(δi, ∂j̄) = Xr∂rgij + (∂iXr)grj −XrΓhrjghi = Xr∇rgij + (∇iXr)grj .

(5.11)
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The relations (2.5) and (5.9) imply

(LXhKh)(∂ī, ∂j̄) = 0,
(LXhKh)(δi, δj) = (LXK)mij δm +Xryk(RhrikKm

hj +RhrjkK
m
hi)∂m̄,

(LXhKh)(δi, ∂j̄) = {Xr∂r(Km
ij ) + ∂i(Xr)Km

rj +Xr(Kh
ijΓmrh −Km

ihΓhrj)}∂m̄,
= {Xr∇rKm

ij + (∇iXr)Km
rj}∂m̄.

The above equations and (4.3) imply that LXhKh = 0 if and only if (5.5)–(5.7)
hold. Using (5.11) we obtain

(LXhgh)(δi, ∂j̄) = Xr∇rgij + (∇iXr)grj = 2ρ̃gij .

Applying ∂k̄ to this relation gives

0 = 2 ∂ρ̃
∂yk

gij = 2(∂k̄ρ̃)gij .

Multiplying the last equation with gij we get

0 = 2n∂k̄ρ̃,

which implies that ρ̃ is a function with respect to xh. So using (5.10) and (5.11) it
results that LhXgh = 2ρ̃gh if and only if (5.3) and (5.4) hold. �

Example 5.2. Consider the normal distribution manifold (M, g) given by Exam-
ple 4.3. It is easy to see that the Christoffel symbols of the Levi-Civita connection
∇(0) of (M, g) are as follows:

Γ(0)1
11 = Γ(0)1

22 = Γ(0)2
12 = Γ(0)2

21 = 0, Γ(0)1
21 = Γ(0)1

12 = Γ(0)2
22 = −1

σ
, Γ(0)2

11 = 1
2σ .

Now we consider the tensor K with the following components:

K1
12 = 2K2

11 = 0, K1
11 = K1

22 = K2
22 = 2K2

21 = 1
2aσ .

It is easy to check that the above components satisfy (3.8). So

∇XY = ∇(0)
X Y +KXY ∀X,Y ∈ Γ(TM)

is a statistical connection on (M, g) with the following Christoffel symbols:

Γ1
11 = 1

2aσ , Γ2
11 = 1

2σ , Γ1
22 = 1

2aσ ,

Γ2
22 = −2a+ 1

2aσ , Γ1
12 = Γ1

21 = −1
σ
, Γ2

12 = Γ2
21 = 1

4aσ .

Using (2.6), we can show that all of the curvature components are zero except for
the following ones:

R2
121 = −R2

211 = 8a2 − 4a− 1
16a2σ2 , R1

122 = −R1
212 = −8a2 − 4a+ 1

8a2σ2 ,

R2
122 = −R2

212 = 3
4aσ2 .
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From the above equations we deduce that

R1212 = −R2112 = 8a2 − 4a− 1
8a2σ4 , R1221 = −R2121 = −8a2 − 4a+ 1

8a2σ4 ,

R1222 = −R2122 = 3
2aσ4 .

(5.12)

It is worth remarking that (M, g,∇) is a non-flat statistical manifold, because
R1222 6= 0. Applying i = j = 2 in (5.3) and using the above equations we get

X1y1
(

8a2 − 4a− 1
8a2σ4

)
+X1y2

(
3

2aσ4

)
= 0,

where y1 = dµ and y2 = dσ. Differentiating the above equation with respect to y2

implies X1 = 0. Setting i = 1 and j = 2 in (5.3) and using X1 = 0 and (5.12) lead
to

X2y1
(

8a2 − 4a− 1
8a2σ4

)
+X2y2

(
3

2aσ4

)
= 0.

Differentiating the above equation with respect to y2 implies X2 = 0. So X = 0 is
the only conformal vector field on the statistical manifold (M, g,∇) such that Xh

can be a conformal vector field on (TM, gh,Kh) (with ρ̃ = 0). Indeed, Xh = 0 is
the only Killing vector field on (TM, gh,Kh).

Remark 5.3. As we can see in (5.12), R1222 6= 0. This shows that the relation
Rijkl = −Rijlk does not hold for a non-Levi-Civita statistical connection on a
Riemannian manifold.

Lemma 5.4. Consider the generalized Gaussian distribution manifold (M1, g,∇(α)).
M1 is flat if and only if α = 1 or α = 1

β−1 .

Proof. In [34], Yuan proved that

R
(α)
1212 =

(α− 1)β(β − 1)[2− β + (1− α)(β − 1)]Γ
(
β−1
β

)
σ4Γ

( 1
β

) .

Since β 6= 0, 1, from the above equation we conclude that R(α)
1212 = 0 if and only if

α = 1 or 2− β + (1− α)(β − 1) = 0. �

Theorem 5.5. Consider the generalized Gaussian distribution manifold (M1, g,
∇(α)). There does not exist any non-zero vector field on M1 such that Xh is a
conformal vector field with respect to (TM1, g

h,Kh).

Proof. Let X = X1∂1 +X2∂2 be a vector field on M1 such that Xh is a conformal
vector field with respect to (TM1, g

h,Kh). We consider two cases:

Case 1: α 6= 1, 1
β−1 . In this case, we have R(α)

1212 6= 0 (see Lemma 5.4). Setting
i = j = 2 in (5.3) implies X1y1R

(α)
1212 = 0, where y1 = dµ. Since R

(α)
1212 6= 0,

we deduce that X1y1 = 0, which gives us X1 = 0. Similarly, putting i = 1,
j = 2 in (5.3) yields X2y1R

(α)
2112 = 0. This equation gives us X2y1 = 0, because

R
(α)
2112 = −R(α)

1212 6= 0. So we get X2 = 0. Therefore, we conclude that X = 0.
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Case 2: α = 1 or α = 1
β−1 . Setting i = j = 2 in (5.4) and using (4.17) we have

−2c22

σ
X2 + c22(∂2X

2)− 1
σ
X2
(
c
(1)
222 + 1− α

2 c222

)
= 2ρ̃(µ, σ)c22. (5.13)

Setting i = j = m = 1 in (5.5) we have

−Kr
11(∇rX1) +K1

r1(∇1X
r) = 0.

Using (4.20) in the above equation gives us
1
c22

(∇2X
1)− 1

c11
(∇1X

2) = 0. (5.14)

But from (3.1) and (4.18) we obtain the following:

∇2X
1 = ∂2X

1 + X1

σc11

(
c
(1)
121 + 1− α

2 c121

)
, (5.15)

∇1X
2 = ∂1X

2 + X1

σc22

(
c
(1)
112 + 1− α

2 c112

)
. (5.16)

Putting (5.15) and (5.16) in (5.14) we get

∂2X
1

c22
− ∂1X

2

c11
+ X1

σc11c22
(c(1)

121 − c
(1)
112) = 0. (5.17)

Setting i = j = m = 1 in (5.7) and using (4.20) we get

X1∇1K
1
11 +X2∇2K

1
11 + (∇1X

2)K1
21 = 0. (5.18)

Using (3.1), (4.18) and (4.20) we get

∇1K
1
11 = −2K1

21Γ(α)2
11 +K2

11Γ(α)1
21 , ∇2K

1
11 = 0, ∇1X

2 = ∂1X
2 +X1Γ(α)2

11 .
(5.19)

Setting (5.19) in (5.18) gives us

(∂1X
2)K1

21 +X1K2
11Γ(α)1

21 −X1K1
21Γ(α)2

11 = 0.

From (4.18), (4.20) and the above equation we deduce that (note that c121 6= 0):

∂1X
2

c11
+ X1

σc11c22
(c(1)

121 − c
(1)
112) = 0. (5.20)

Subtracting (5.17) and (5.20) implies

∂2X
1 = 2c22

c11
∂1X

2. (5.21)

Setting i = j = m = 2 in (5.7) and using (4.20) we obtain

X1∇1K
2
22 +X2∇2K

2
22 + (∇2X

2)K2
22 = 0.

Using (3.1) and (4.20) the above equation reduces to

X2∂2K
2
22 + (∂2X

2)K2
22 = 0.
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Setting (4.20) in the above equation yields

∂2X
2 = X2

σ
. (5.22)

Putting (5.22) in (5.13) we get

X2 = − 2c22

c22 + c
(1)
222 + 1−α

2 c222
ρ̃σ. (5.23)

Setting the above equation in (5.20) implies

X1 = 2c222(
c22 + c

(1)
222 + 1−α

2 c222
)(
c
(1)
121 − c

(1)
112
) (∂1ρ̃)σ2. (5.24)

Using (5.23) and (5.22) we deduce that ∂2ρ̃ = 0, i.e., ρ̃ depends only on µ. So,
setting (5.23) and (5.24) in (5.21) we get

(∂1ρ̃)
(

1
c
(1)
121 − c

(1)
112

+ 1
c11

)
= 0,

which implies that ∂1ρ̃ = 0 or c11 + c
(1)
121 − c

(1)
112 = 0. As β 6= 0, we get c11 + c

(1)
121 −

c
(1)
112 6= 0. Therefore, ∂1ρ̃ = 0, i.e., ρ̃ is constant. Considering this fact in (5.24) we

get X1 = 0. Setting i = j = 1 in (5.4) we get

X2 = − 2c11

2c11 + c
(1)
121 + 1−α

2 c121
ρ̃σ. (5.25)

The equations (5.23) and (5.25) imply Γ(1 − 1
β )(α − 1)(β − 1) = 0. Since β 6= 1,

the last equation gives α = 1. Setting i = 1, j = m = 2 in (5.5) and using (4.18)
and (4.20) we have K1

12(Γ(1)2
22 − Γ(1)1

12 )X2 = 0, which implies that K1
12 = 0 or

Γ(1)2
22 = Γ(1)1

12 or X2 = 0. If K1
12 = 0, then we get β = 1, which is a contradiction.

From Γ(1)2
22 = Γ(1)1

12 we get the contradiction 1 = 0. So the possible case is X2 = 0.
Therefore, we conclude that X1 = X2 = 0, i.e., X = 0. �

Theorem 5.6. Consider the 2-dimensional statistical manifold (M2, g,∇(α)) with
the skewness operator K. If Xh is a conformal vector field with respect to (TM2, g

h,

∇(α)h), then Xh reduces to a homothetic vector field. Moreover, Xh is a homothetic
vector field if and only if X1 = Aθ1 and X2 = Aθ2, where X1, X2 are components
of X.

Proof. Let Xh be the horizontal lift of a vector field X = X1∂1 + X2∂2, where
∂1 = ∂

∂θ1
and ∂2 = ∂

∂θ2
. Considering i, j = 1, 2 in (5.4) and using (4.25) and (4.27)

we get
X1

θ1
− 1

2(∂1X
1) + 1− α

2θ1
X1 = −ρ̃, X2

θ2
− 1

2(∂2X
2) + 1− α

2θ2
X2 = −ρ̃. (5.26)

Setting i = j = m = 1, 2 in (5.5) implies that ∂1(X1) = 1
θ1
X1, ∂2(X2) = 1

θ2
X2

and ∂1(X2) = ∂2(X1) = 0. From these equations we conclude that X1 = Aθ1 and
X2 = Bθ2. But from (5.26) we derive that A = B and ρ̃ = (α2 − 1)A. �
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Let (M, g,∇) be a statistical manifold with the skewness operator K. Using the
splitting (2.4), we can define the Riemannian metric gS on TM :
gS(Xh, Y h) = g(X,Y ), gS(Xh, Y v) = 0, gS(Xv, Y v) = g(X,Y ), (5.27)

which is called the diagonal lift or Sasaki lift of g [29]. In [23], Matsuzoe and
Inoguchi proved that if (M, g,∇) is a statistical manifold, then (TM, gS ,Kh) is a
statistical manifold, where Kh is introduced by (5.2).

Theorem 5.7. Let (M, g,∇) be a statistical manifold with the skewness operator
K and let Xh be the horizontal lift of a vector field on M . If Xh is conformal with
respect to (TM, gS ,Kh), then Xh is an inessential vector field. Moreover, Xh is an
inessential vector field if and only if (5.5), (5.6), (5.7) and the following equations
hold:

Xr∇rgij = 2ρ̃gij , (5.28)

XrRrikj = 0, (5.29)

Xr∇rgij + (∇iXr)grj + (∇jXr)gri = 2ρ̃(x)gij . (5.30)

Proof. We can rewrite the metric gS defined by (5.27) as follows:
gS(δi, δj) = gS(∂ī, ∂j̄) = gij , gS(δi, ∂j̄) = gS(∂ī, δj) = 0. (5.31)

Using (2.5) and (5.31) we deduce that LXhgS = 2ρ̃gS if and only if (5.28), (5.29)
and (5.30) hold. According to Theorem 5.1, LhXKh = 0 if and only if (5.5), (5.6)
and (5.7) hold. Also, applying ∂k̄ to relation (5.28) implies ∂k̄ρ̃ = 0, i.e., ρ̃ depends
only on xh. �

Theorem 5.8. Consider the generalized Gaussian distribution manifold (M1, g,
∇(α)). There does not exist any non-zero vector field on M1 such that Xh is a
conformal vector field with respect to (TM1, g

S ,Kh).

Proof. Setting i = j = 1 in (5.28) we obtain

X2 = − c11

c11 + c
(1)
121 + 1−α

2 c121
ρ̃σ.

Similarly, applying i = j = 2 in (5.28) implies

X2 = − c22

c22 + c
(1)
222 + 1−α

2 c222
ρ̃σ. (5.32)

Since β 6= 1, the two equations above imply α = 2. Setting i = 1, j = 2 in (5.28)
and considering α = 2 we get

X1
(
c11 + c

(1)
121 −

1
2c121

)
= 0,

which gives us X1 = 0 (since β 6= 1, the coefficient of X1 in the above equation is
non-zero). Putting i = j = 1 in (5.30) gives us X2 = −ρ̃σ. If X2 6= 0, using this
equation and (5.32) we deduce that β = 1

2 , which is a contradiction (because β is
an even number). So X2 = 0, and consequently X = 0. �

Rev. Un. Mat. Argentina, Vol. 63, No. 2 (2022)



CONFORMAL VECTOR FIELDS ON STATISTICAL MANIFOLDS 347

Theorem 5.9. Consider the 2-dimensional statistical manifold (M2, g,∇(α)) with
the skewness operator K. If Xh is a conformal vector field with respect to (TM2, g

S ,
Kh), then Xh reduces to a Killing vector field. Moreover, Xh is a Killing vector
field if and only if X = A(θ1 + θ2), where A is a constant function.

Proof. Setting i = j = 1 in (5.28) and using (4.25) and (4.26) we get
α− 2
θ1

X1 = ρ̃. (5.33)

Similarly, applying i = j = 1 in (5.28) implies
α− 2
θ2

X2 = ρ̃.

The two equations above give

X2 = θ2

θ1
X1. (5.34)

Considering i = j = 1 in (5.30) gives us

X1

θ1
− ∂1(X1) = −ρ̃. (5.35)

Considering (5.7) for i = j = m = 1 implies

∂1X
1 = X1

θ1
. (5.36)

Similarly, we get

∂2X
2 = X2

θ2
. (5.37)

Using (5.35) and (5.36) we get ρ̃ = 0. So Xh reduces to a Killing vector field.
Considering ρ̃ = 0 in (5.33) implies that α = 2 or X1 = 0. If X1 = 0, then from
(5.34) we get X2 = 0, and consequently X = 0. So, we must have α = 2. Setting
i = j = 1, m = 2 in (5.5) we deduce that ∂1X

2 = 0. This equation together with
(5.37) yields X2 = Aθ2, where A is a constant. In a similar way, considering (5.5)
for i = m = 1, j = 2 implies ∂2X

1 = 0. So from (5.36) we get X1 = Bθ1, where B
is a constant. On the other hand, from (5.34) we deduce that A = B. Therefore,
we get X = A(θ1 + θ2). �

Let (M, g,∇) be a statistical manifold with the skewness operator K. Using
(2.7) and (2.8), the complete lift metric gc with respect to ∇ is described by the
formulas

gc(Xc, Y c) = (g(X,Y ))c, gc(Xc, Y v) = (g(X,Y ))v, gc(Xv, Y v) = 0

for all X,Y ∈ χ(M). Also, using (2.7) and (2.8), the complete lift of K is defined
by

Kc
XcY

c = (KXY )c, Kc
XcY

v = (KXY )v, Kc
XvY

v = 0.
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It is easy to see that gc and Kc have the following expressions with respect to
{∂i, ∂ī}:

gc(∂i, ∂j) = yr∂rgij , gc(∂i, ∂j̄) = gij , gc(∂ī, ∂j̄) = 0, (5.38)
Kc
∂i∂j = Kk

ij∂k + (yr∂rKk
ij)∂k̄, Kc

∂i∂j̄ = Kk
ij∂k̄, Kc

∂ī
∂j̄ = 0. (5.39)

Remark 5.10. It is easy to see that gc has the following expression with respect
to {δi, ∂ī}:

gc(δi, δj) = yr∇rgij , gc(∂i, ∂j̄) = gij , gc(∂ī, ∂j̄) = 0.
If ∇ is a statistical connection which is not the Levi-Civita connection, then gc is
different from gh. But if ∇ is the Levi-Civita connection, then we have ∇rgij = 0
and so gc coincides with gh.
Lemma 5.11 ([23]). Let (M, g,∇) be a statistical manifold with the skewness K.
Then (TM, gc,Kc) is a statistical manifold.

Here we study LXcgc and LXcK
c. Using (4.1) and (5.38) we get

(LXcgc)(∂i, ∂j) = yr
{

(∂rXk)∂kgij +Xk∂r∂kgij + gik∂r∂jX
k

+∂jXk∂rgik + gjk∂r∂iX
k + ∂iX

k∂rgjk
}

= (LXg)c(∂i, ∂j),
(5.40)

(LXcgc)(∂i, ∂j̄) = Xk∂kgij + gkj∂iX
k + gki∂jX

k = (LXg)c(∂i, ∂j̄), (5.41)
(LXcgc)(∂ī, ∂j̄) = 0 = (LXg)c(∂ī, ∂j̄). (5.42)

Also, using (4.2) and (5.39) we obtain
(LXcKc)(∂i, ∂j) = yr

{
Xk∂k∂rK

m
ij −Kk

ij∂k∂rX
m + ∂rX

k∂kK
m
ij

− ∂kXm∂rK
k
ij + ∂iX

k∂rK
m
kj −Km

kj∂i∂rX
k

+ ∂jX
k∂rK

m
ki −Km

ki∂j∂rX
k
}
∂m̄

= (LXK)c(∂i, ∂j),

(5.43)

(LXcKc)(∂i, ∂j̄) =
{
Xk∂kK

m
ij − ∂kXmKk

ij + ∂iX
kKm

kj + ∂jX
kKm

ik

}
∂m̄

= (LXK)c(∂i, ∂j̄),
(5.44)

(LXcKc)(∂ī, ∂j̄) = 0 = (LXK)c(∂ī, ∂j̄). (5.45)
From (5.40)–(5.45) we conclude the following:
Lemma 5.12. Let (M, g,K) be a statistical manifold. If gc and Kc are respectively
the complete lifts of g and K, then we have

LXcg
c = (LXg)c, LXcK

c = (LXK)c.
Now let Xc be a conformal vector field on (TM, gc,Kc). Then there exists a

function ρ̃ on TM such that LXcgc = 2ρ̃gc and LXcK
c = 0. From (5.41) we get

Xk∂kgij + gkj∂iX
k + gki∂jX

k = 2ρ̃(x, y)gij .
Differentiating the above equation with respect to yr implies ∂r̄ρ̃(x, y)gij = 0. So
∂r̄ρ̃(x, y) = 0, i.e., ρ̃ is a function only with respect to (x). According to this fact
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and relations (5.40)–(5.45) we conclude that Xc is a conformal vector field if and
only if

(∂rXk)∂kgij +Xk∂r∂kgij + gik∂r∂jX
k + ∂jX

k∂rgik

+ gjk∂r∂iX
k + ∂iX

k∂rgjk = 2ρ̃(x)∂rgij ,
(5.46)

Xk∂kgij + gkj∂iX
k + gki∂jX

k = 2ρ̃(x)gij , (5.47)
Xk∂kK

m
ij − ∂kXmKk

ij + ∂iX
kKm

kj + ∂jX
kKm

ik = 0. (5.48)

Differentiating (5.47) with respect to xr we get

(∂rXk)∂kgij +Xk∂r∂kgij + gik∂r∂jX
k + ∂jX

k∂rgik

+ gjk∂r∂iX
k + ∂iX

k∂rgjk = 2(∂rρ̃)gij + 2ρ̃(x)∂rgij .
(5.49)

The relations (5.46) and (5.49) imply (∂rρ̃)gij = 0. So ∂rρ̃ = 0, i.e., ρ̃ is a constant
function. Indeed, conformal vector fields reduce to homothetic (Killing) vector
fields. Also, (5.46)–(5.48) reduce to the following:

Xk∂kgij + gkj∂iX
k + gki∂jX

k = 2cgij ,
Xk∂kK

m
ij − ∂kXmKk

ij + ∂iX
kKm

kj + ∂jX
kKm

ik = 0,

where c is a constant. But these last two conditions are equivalent to the homothetic
(Killing) property of X. Thus we conclude the following:

Theorem 5.13. Let (M, g,∇) be a statistical manifold. There does not exist
any non-homothetic (non-Killing) conformal complete vector field on (TM, gc,Kc).
Moreover, Xc is a homothetic (Killing) vector field on (TM, gc,Kc) if and only if
X is a homothetic (Killing) vector field on (M, g,∇).
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