Two constructions of bialgebroids and their relations

Authors

  • Yudai Otsuto Independent researcher, Japan

DOI:

https://doi.org/10.33044/revuma.2296

Abstract

We generalize the construction of face algebras by Hayashi and obtain a left bialgebroid $\mathfrak{A}(w)$. There are some relations between the left bialgebroid $\mathfrak{A}(w)$ and the generalized Shibukawa–Takeuchi left bialgebroid $A_{\sigma}$.

Downloads

Download data is not yet available.

References

R. J. Baxter, Partition function of the eight-vertex lattice model, Ann. Physics 70 (1972), 193–228.  DOI  MR  Zbl

S. Bennoun and H. Pfeiffer, Weak bialgebras of fractions, J. Algebra 385 (2013), 145–163.  DOI  MR  Zbl

G. Böhm, F. Nill, and K. Szlachányi, Weak Hopf algebras. I. Integral theory and $C^*$-structure, J. Algebra 221 no. 2 (1999), 385–438.  DOI  MR  Zbl

G. Böhm and K. Szlachányi, Hopf algebroids with bijective antipodes: axioms, integrals, and duals, J. Algebra 274 no. 2 (2004), 708–750.  DOI  MR  Zbl

V. G. Drinfel'd, On some unsolved problems in quantum group theory, in Quantum groups (Leningrad, 1990), Lecture Notes in Math. 1510, Springer, Berlin, 1992, pp. 1–8.  DOI  MR  Zbl

P. Etingof, T. Schedler, and A. Soloviev, Set-theoretical solutions to the quantum Yang-Baxter equation, Duke Math. J. 100 no. 2 (1999), 169–209.  DOI  MR  Zbl

P. Etingof and A. Varchenko, Solutions of the quantum dynamical Yang-Baxter equation and dynamical quantum groups, Comm. Math. Phys. 196 no. 3 (1998), 591–640.  DOI  MR  Zbl

L. D. Faddeev, N. Y. Reshetikhin, and L. A. Takhtajan, Quantization of Lie groups and Lie algebras, in Algebraic analysis, Vol. I, Academic Press, Boston, MA, 1988, pp. 129–139.  DOI  MR  Zbl

J.-L. Gervais and A. Neveu, Novel triangle relation and absence of tachyons in Liouville string field theory, Nuclear Phys. B 238 no. 1 (1984), 125–141.  DOI  MR

T. Hayashi, Quantum group symmetry of partition functions of IRF models and its application to Jones' index theory, Comm. Math. Phys. 157 no. 2 (1993), 331–345.  MR  Zbl Available at http://projecteuclid.org/euclid.cmp/1104253942.

T. Hayashi, Quantum groups and quantum semigroups, J. Algebra 204 no. 1 (1998), 225–254.  DOI  MR  Zbl

D. K. Matsumoto and K. Shimizu, Quiver-theoretical approach to dynamical Yang-Baxter maps, J. Algebra 507 (2018), 47–80.  DOI  MR  Zbl

J. B. McGuire, Study of exactly soluble one-dimensional $N$-body problems, J. Math. Phys. 5 (1964), 622–636.  DOI  MR  Zbl

F. Nill, Axioms for weak bialgebras, 1998. arXiv:math/9805104 [math.QA].

Y. Otsuto, Two constructions of Hopf algebroids based on the FRT construction and their relations, Ph.D. thesis, Hokkaido University, 2022.  DOI

Y. Otsuto and Y. Shibukawa, FRT construction of Hopf algebroids, Toyama Math. J. 42 (2021), 51–72.  MR  Zbl

P. Schauenburg, Duals and doubles of quantum groupoids ($×_R$-Hopf algebras), in New trends in Hopf algebra theory (La Falda, 1999), Contemp. Math. 267, Amer. Math. Soc., Providence, RI, 2000, pp. 273–299.  DOI  MR  Zbl

P. Schauenburg, Weak Hopf algebras and quantum groupoids, in Noncommutative geometry and quantum groups (Warsaw, 2001), Banach Center Publ. 61, Polish Acad. Sci. Inst. Math., Warsaw, 2003, pp. 171–188.  DOI  MR  Zbl

Y. Shibukawa, Dynamical Yang-Baxter maps, Int. Math. Res. Not. no. 36 (2005), 2199–2221.  DOI  MR  Zbl

Y. Shibukawa, Dynamical Yang-Baxter maps with an invariance condition, Publ. Res. Inst. Math. Sci. 43 no. 4 (2007), 1157–1182.  DOI  MR  Zbl

Y. Shibukawa, Hopf algebroids and rigid tensor categories associated with dynamical Yang-Baxter maps, J. Algebra 449 (2016), 408–445.  DOI  MR  Zbl

Y. Shibukawa and M. Takeuchi, FRT construction for dynamical Yang-Baxter maps, J. Algebra 323 no. 6 (2010), 1698–1728.  DOI  MR  Zbl

M. Takeuchi, Groups of algebras over AĀ, J. Math. Soc. Japan 29 no. 3 (1977), 459–492.  DOI  MR  Zbl

A. Veselov, Yang-Baxter maps: dynamical point of view, in Combinatorial aspect of integrable systems, MSJ Mem. 17, Math. Soc. Japan, Tokyo, 2007, pp. 145–167.  DOI  MR  Zbl

C. N. Yang, Some exact results for the many-body problem in one dimension with repulsive delta-function interaction, Phys. Rev. Lett. 19 (1967), 1312–1315.  DOI  MR  Zbl

Downloads

Published

2024-06-25

Issue

Section

Article