On the planarity, genus, and crosscap of the weakly zero-divisor graph of commutative rings

Authors

  • Nadeem ur Rehman Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India
  • Mohd Nazim Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India
  • Shabir Ahmad Mir Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India

DOI:

https://doi.org/10.33044/revuma.2837

Abstract

Let $R$ be a commutative ring and $Z(R)$ its zero-divisors set. The weakly zero-divisor graph of $R$, denoted by $W\Gamma(R)$, is an undirected graph with the nonzero zero-divisors $Z(R)^*$ as vertex set and two distinct vertices $x$ and $y$ are adjacent if and only if there exist $a \in \mathrm{Ann}(x)$ and $b \in \mathrm{Ann}(y)$ such that $ab = 0$. In this paper, we characterize finite rings $R$ for which the weakly zero-divisor graph $W\Gamma(R)$ belongs to some well-known families of graphs. Further, we classify the finite rings $R$ for which $W\Gamma(R)$ is planar, toroidal or double toroidal. Finally, we classify the finite rings $R$ for which the graph $W\Gamma(R)$ has crosscap at most two.

Downloads

Download data is not yet available.

References

S. Akbari and A. Mohammadian, On the zero-divisor graph of a commutative ring, J. Algebra 274 no. 2 (2004), 847–855.  DOI  MR  Zbl

D. D. Anderson and M. Naseer, Beck's coloring of a commutative ring, J. Algebra 159 no. 2 (1993), 500–514.  DOI  MR  Zbl

D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 no. 2 (1999), 434–447.  DOI  MR  Zbl

T. Asir and K. Mano, Classification of rings with crosscap two class of graphs, Discrete Appl. Math. 265 (2019), 13–21.  DOI  MR  Zbl

T. Asir and K. Mano, Classification of non-local rings with genus two zero-divisor graphs, Soft Comput. 24 no. 1 (2020), 237–245, correction ibid. 25, no. 4, 3355–3356 (2021).  DOI  Zbl

M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley, Reading, Mass.-London-Don Mills, Ont., 1969.  MR  Zbl

I. Beck, Coloring of commutative rings, J. Algebra 116 no. 1 (1988), 208–226.  DOI  MR  Zbl

N. Bloomfield and C. Wickham, Local rings with genus two zero divisor graph, Comm. Algebra 38 no. 8 (2010), 2965–2980.  DOI  MR  Zbl

H.-J. Chiang-Hsieh, Classification of rings with projective zero-divisor graphs, J. Algebra 319 no. 7 (2008), 2789–2802.  DOI  MR  Zbl

F. R. DeMeyer, T. McKenzie, and K. Schneider, The zero-divisor graph of a commutative semigroup, Semigroup Forum 65 no. 2 (2002), 206–214.  DOI  MR  Zbl

I. Gitler, E. Reyes, and R. H. Villarreal, Ring graphs and complete intersection toric ideals, Discrete Math. 310 no. 3 (2010), 430–441.  DOI  MR  Zbl

B. R. McDonald, Finite rings with identity, Pure and Applied Mathematics, Vol. 28, Marcel Dekker, New York, 1974.  MR  Zbl

B. Mohar and C. Thomassen, Graphs on surfaces, Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 2001.  MR  Zbl

M. J. Nikmehr, A. Azadi, and R. Nikandish, The weakly zero-divisor graph of a commutative ring, Rev. Un. Mat. Argentina 62 no. 1 (2021), 105–116.  DOI  MR  Zbl

S. P. Redmond, The zero-divisor graph of a non-commutative ring, Int. J. Commut. Rings 1 no. 4 (2002), 203–211.  Zbl

H.-J. Wang, Zero-divisor graphs of genus one, J. Algebra 304 no. 2 (2006), 666–678.  DOI  MR  Zbl

D. B. West, Introduction to graph theory, 2nd ed., New Delhi: Prentice-Hall of India, 2005.  Zbl

A. T. White, Graphs, groups and surfaces, North-Holland Mathematics Studies, No. 8, North-Holland, Amsterdam-London; American Elsevier, New York, 1973.  MR  Zbl

C. Wickham, Classification of rings with genus one zero-divisor graphs, Comm. Algebra 36 no. 2 (2008), 325–345.  DOI  MR  Zbl

Downloads

Published

2024-04-30

Issue

Section

Article