Evolution of first eigenvalues of some geometric operators under the rescaled List's extended Ricci flow

Authors

  • Shahroud Azami Department of Pure Mathematics, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
  • Abimbola Abolarinwa Department of Mathematics, University of Lagos, Akoka, Lagos State, Nigeria

DOI:

https://doi.org/10.33044/revuma.3413

Abstract

Let $(M,g(t), e^{-\phi}d\nu)$ be a compact weighted Riemannian manifold and let $(g(t),\phi(t))$ evolve by the rescaled List's extended Ricci flow. In this paper, we study the evolution equations for first eigenvalues of the geometric operators, $-\Delta_{\phi}+cS^{a}$, along the rescaled List's extended Ricci flow. Here $\Delta_{\phi}=\Delta-\nabla\phi.\nabla$ is a symmetric diffusion operator, $\phi\in C^{\infty}(M)$, $S=R-\alpha|\nabla \phi|^{2}$, $R$ is the scalar curvature with respect to the metric $g(t)$ and $a, c$ are some constants. As an application, we obtain some monotonicity results under the rescaled List's extended Ricci flow.

Downloads

Download data is not yet available.

References

A. Abolarinwa, Eigenvalues of the weighted Laplacian under the extended Ricci flow, Adv. Geom. 19 no. 1 (2019), 131–143.  DOI  MR  Zbl

A. Abolarinwa and S. Azami, First eigenvalues evolution for some geometric operators along the Yamabe flow, J. Geom. 115 no. 1 (2024), Paper No. 18, 16 pp.  DOI  MR  Zbl

S. Azami, First eigenvalues of geometric operator under the Ricci-Bourguignon flow, J. Indones. Math. Soc. 24 no. 1 (2018), 51–60.  DOI  MR  Zbl

S. Azami, Evolution of eigenvalues of geometric operator under the rescaled List's extended Ricci flow, Bull. Iranian Math. Soc. 48 no. 4 (2022), 1265–1279.  DOI  MR  Zbl

X. Cao, Eigenvalues of $(-Δ + R/2)$ on manifolds with nonnegative curvature operator, Math. Ann. 337 no. 2 (2007), 435–441.  DOI  MR  Zbl

X. Cao, First eigenvalues of geometric operators under the Ricci flow, Proc. Amer. Math. Soc. 136 no. 11 (2008), 4075–4078.  DOI  MR  Zbl

B. Chen, Q. He, and F. Zeng, Monotonicity of eigenvalues of geometric operators along the Ricci-Bourguignon flow, Pacific J. Math. 296 no. 1 (2018), 1–20.  DOI  MR  Zbl

S. Fang, H. Xu, and P. Zhu, Evolution and monotonicity of eigenvalues under the Ricci flow, Sci. China Math. 58 no. 8 (2015), 1737–1744.  DOI  MR  Zbl

S. Fang, F. Yang, and P. Zhu, Eigenvalues of geometric operators related to the Witten Laplacian under the Ricci flow, Glasg. Math. J. 59 no. 3 (2017), 743–751.  DOI  MR  Zbl

G. Huang and Z. Li, Monotonicity formulas of eigenvalues and energy functionals along the rescaled List's extended Ricci flow, Mediterr. J. Math. 15 no. 2 (2018), Paper No. 63, 20 pp.  DOI  MR  Zbl

J. Li, Evolution of eigenvalues along rescaled Ricci flow, Canad. Math. Bull. 56 no. 1 (2013), 127–135.  DOI  MR  Zbl

B. List, Evolution of an extended Ricci flow system, Comm. Anal. Geom. 16 no. 5 (2008), 1007–1048.  DOI  MR  Zbl

G. Perelman, The entropy formula for the Ricci flow and its geometric applications, 2002. arXiv:0211159 [math.DG].

F. Yang and L. Zhang, On the evolution and monotonicity of first eigenvalues under the Ricci flow, Hokkaido Math. J. 51 no. 1 (2022), 107–116.  DOI  MR  Zbl

Downloads

Published

2024-10-09

Issue

Section

Article