The principal small intersection graph of a commutative ring

Authors

  • Soheila Khojasteh Department of Mathematics, Lahijan Branch, Islamic Azad University, Lahijan, Iran

DOI:

https://doi.org/10.33044/revuma.3486

Abstract

Let $R$ be a commutative ring with non-zero identity. The small intersection graph of $R$, denoted by $G(R)$, is a graph with the vertex set $V(G(R))$, where $V(G(R))$ is the set of all proper non-small ideals of $R$ and two distinct vertices $I$ and $J$ are adjacent if and only if $I \cap J$ is not small in $R$. In this paper, we introduce a certain subgraph $PG(R)$ of $G(R)$, called the principal small intersection graph of $R$. It is the subgraph of $G(R)$ induced by the set of all proper principal non-small ideals of $R$. We study the diameter, the girth, the clique number, the independence number and the domination number of $PG(R)$. Moreover, we present some results on the complement of the principal small intersection graph.

Downloads

Download data is not yet available.

References

S. Akbari and S. Khojasteh, Commutative rings whose cozero-divisor graphs are unicyclic or of bounded degree, Comm. Algebra 42 no. 4 (2014), 1594–1605.  DOI  MR  Zbl

S. Akbari, H. A. Tavallaee, and S. Khalashi Ghezelahmad, Intersection graph of submodules of a module, J. Algebra Appl. 11 no. 1 (2012), Paper no. 1250019, 8 pp.  DOI  MR  Zbl

D. F. Anderson and A. Badawi, The total graph of a commutative ring, J. Algebra 320 no. 7 (2008), 2706–2719.  DOI  MR  Zbl

D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 no. 2 (1999), 434–447.  DOI  MR  Zbl

S. E. Atani, S. D. Pish Hesari, and M. Khoramdel, A graph associated to proper non-small ideals of a commutative ring, Comment. Math. Univ. Carolin. 58 no. 1 (2017), 1–12.  DOI  MR  Zbl

M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley, Reading, Mass.-London-Don Mills, Ont., 1969.  MR

I. Chakrabarty, S. Ghosh, T. K. Mukherjee, and M. K. Sen, Intersection graphs of ideals of rings, Discrete Math. 309 no. 17 (2009), 5381–5392.  DOI  MR  Zbl

B. Csákány and G. Pollák, The graph of subgroups of a finite group (Russian), Czechoslovak Math. J. 19 (94) no. 2 (1969), 241–247.  DOI  MR  Zbl

F. Heydari, The $M$-intersection graph of ideals of a commutative ring, Discrete Math. Algorithms Appl. 10 no. 3 (2018), Paper no. 1850038, 11 pp.  DOI  MR  Zbl

S. Khojasteh, The intersection graph of ideals of $ℤ_m$, Discrete Math. Algorithms Appl. 11 no. 4 (2019), Paper no. 1950037, 12 pp.  DOI  MR  Zbl

S. Khojasteh, The complement of the intersection graph of ideals of a poset, J. Algebra Appl. 22 no. 11 (2023), Paper no. 2350236, 13 pp.  DOI  MR  Zbl

R. Y. Sharp, Steps in commutative algebra, London Mathematical Society Student Texts 19, Cambridge University Press, Cambridge, 1990.  MR  Zbl

R. Wisbauer, Foundations of module and ring theory, Algebra, Logic and Applications 3, Gordon and Breach Science Publishers, Philadelphia, PA, 1991.  MR  Zbl

Downloads

Published

2024-05-19

Issue

Section

Article