Primitive decompositions of Dolbeault harmonic forms on compact almost-Kähler manifolds
DOI:
https://doi.org/10.33044/revuma.3557Abstract
Let $(X,J,g,\omega)$ be a compact $2n$-dimensional almost-Kähler manifold. We prove primitive decompositions of $\partial$-, $\bar\partial$-harmonic forms on $X$ in bidegree $(1,1)$ and $(n-1,n-1)$ (such bidegrees appear to be optimal). We provide examples showing that in bidegree $(1,1)$ the $\partial$- and $\bar\partial$-decompositions differ.
Downloads
References
D. Angella, N. Istrati, A. Otiman, and N. Tardini, Variational problems in conformal geometry, J. Geom. Anal. 31 no. 3 (2021), 3230–3251. DOI MR Zbl
P. de Bartolomeis and A. Tomassini, On formality of some symplectic manifolds, Internat. Math. Res. Notices no. 24 (2001), 1287–1314. DOI MR Zbl
A. Cattaneo, A. Nannicini, and A. Tomassini, Kodaira dimension of almost Kähler manifolds and curvature of the canonical connection, Ann. Mat. Pura Appl. (4) 199 no. 5 (2020), 1815–1842. DOI MR Zbl
A. Cattaneo, A. Nannicini, and A. Tomassini, On Kodaira dimension of almost complex $4$-dimensional solvmanifolds without complex structures, Internat. J. Math. 32 no. 10 (2021), Paper No. 2150075, 41 pp. DOI MR Zbl
J. Cirici and S. O. Wilson, Topological and geometric aspects of almost Kähler manifolds via harmonic theory, Selecta Math. (N.S.) 26 no. 3 (2020), Paper No. 35, 27 pp. DOI MR Zbl
J. Cirici and S. O. Wilson, Dolbeault cohomology for almost complex manifolds, Adv. Math. 391 (2021), Paper No. 107970, 52 pp. DOI MR Zbl
R. Coelho, G. Placini, and J. Stelzig, Maximally non-integrable almost complex structures: an $h$-principle and cohomological properties, Selecta Math. (N.S.) 28 no. 5 (2022), Paper No. 83, 25 pp. DOI MR Zbl
P. Gauduchon, La $1$-forme de torsion d'une variété hermitienne compacte, Math. Ann. 267 no. 4 (1984), 495–518. DOI MR Zbl
F. Hirzebruch, Some problems on differentiable and complex manifolds, Ann. of Math. (2) 60 (1954), 213–236. DOI MR Zbl
T. Holt, Bott-Chern and ∂̅ harmonic forms on almost Hermitian 4-manifolds, Math. Z. 302 no. 1 (2022), 47–72. DOI MR Zbl
T. Holt and W. Zhang, Harmonic forms on the Kodaira-Thurston manifold, Adv. Math. 400 (2022), Paper No. 108277, 30 pp. DOI MR Zbl
R. Piovani and N. Tardini, Bott-Chern harmonic forms and primitive decompositions on compact almost Kähler manifolds, Ann. Mat. Pura Appl. (4) 202 no. 6 (2023), 2749–2765. DOI MR Zbl
R. Piovani and A. Tomassini, Bott-Chern Laplacian on almost Hermitian manifolds, Math. Z. 301 no. 3 (2022), 2685–2707. DOI MR Zbl
N. Tardini and A. Tomassini, Differential operators on almost-Hermitian manifolds and harmonic forms, Complex Manifolds 7 no. 1 (2020), 106–128. DOI MR Zbl
N. Tardini and A. Tomassini, Almost-complex invariants of families of six-dimensional solvmanifolds, Complex Manifolds 9 no. 1 (2022), 238–260. DOI MR Zbl
N. Tardini and A. Tomassini, ∂̅-harmonic forms on 4-dimensional almost-Hermitian manifolds, Math. Res. Lett. 30 no. 5 (2023), 1617–1637. DOI MR Zbl
L.-S. Tseng and S.-T. Yau, Cohomology and Hodge theory on symplectic manifolds: I, J. Differential Geom. 91 no. 3 (2012), 383–416. MR Zbl Available at http://projecteuclid.org/euclid.jdg/1349292670.
A. Weil, Introduction à l'étude des variétés kählériennes, Publications de l'Institut de Mathématique de l'Université de Nancago, VI. Actualités Sci. Ind., no. 1267, Hermann, Paris, 1958. MR Zbl
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Andrea Cattaneo, Nicoletta Tardini, Adriano Tomassini
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal. The Journal may retract the paper after publication if clear evidence is found that the findings are unreliable as a result of misconduct or honest error.