Inequivalent representations of the dual space
DOI:
https://doi.org/10.33044/revuma.3065Abstract
We show that there exist inequivalent representations of the dual space of $\mathbb{C}[0,1]$ and of $L_p[\mathbb{R}^n]$ for $p \in [1,\infty)$. We also show how these inequivalent representations reveal new and important results for both the operator and the geometric structure of these spaces. For example, if $\mathcal{A}$ is a proper closed subspace of $\mathbb{C}[0,1]$, there always exists a closed subspace $\mathcal{A}^\bot$ (with the same definition as for $L_2[0,1]$) such that $\mathcal{A} \cap\mathcal{A}^\bot = \{0\}$ and $\mathcal{A} \oplus \mathcal{A}^\bot =\mathbb{C}[0,1]$. Thus, the geometry of $\mathbb{C}[0,1]$ can be viewed from a completely new perspective. At the operator level, we prove that every bounded linear operator $A$ on $\mathbb{C}[0,1]$ has a uniquely defined adjoint $A^*$ defined on $\mathbb{C}[0,1]$, and both can be extended to bounded linear operators on $L_2[0,1]$. This leads to a polar decomposition and a spectral theorem for operators on the space. The same results also apply to $L_p[\mathbb{R}^n]$. Another unexpected result is a proof of the Baire one approximation property (every closed densely defined linear operator on $\mathbb{C}[0,1]$ is the limit of a sequence of bounded linear operators). A fundamental implication of this paper is that the use of inequivalent representations of the dual space is a powerful new tool for functional analysis.
Downloads
References
S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. 3 (1922), 133–181. MR 3949898.
S. Banach, Théorie des opérations linéaires, Monografje Matematyczne, 1, Warsaw, 1932. https://eudml.org/doc/271931.
N. Dunford and J. T. Schwartz, Linear Operators. Part I, reprint of the 1958 original, Wiley Classics Library, John Wiley & Sons, New York, 1988. MR 1009162.
T. L. Gill, Banach spaces for the Schwartz distributions, Real Anal. Exchange 43 (2018), no. 1, 1–36. MR 3816428.
T. L. Gill and W. W. Zachary, Functional Analysis and the Feynman Operator Calculus, Springer, Cham, 2016. MR 3468941.
R. A. Gordon, The Integrals of Lebesgue, Denjoy, Perron, and Henstock, Graduate Studies in Mathematics, 4, American Mathematical Society, Providence, RI, 1994. MR 1288751.
H. Hahn, Über Folgen linearer Operationen, Monatsh. Math. Phys. 32 (1922), no. 1, 3–88. MR 1549169.
E. Helly, Über lineare Funktionaloperationen, Wien. Ber. 121 (1912), 265–297.
E. Helly, Über Systeme linearer Gleichungen mit unendlich vielen Unbekannten, Monatsh. Math. Phys. 31 (1921), no. 1, 60–91. MR 1549097.
E. Helly, Über Mengen konvexer Körper mit gemeinschaftlichen Punkten, Deutsche Math.-Ver. 32 (1923), 175–176. https://eudml.org/doc/145659.
E. Helly, Über Systeme von abgeschlossenen Mengen mit gemeinschaftlichen Punkten, Monatsh. Math. Phys. 37 (1930), no. 1, 281–302. MR 1549795.
T. Kato, Perturbation Theory for Linear Operators, second edition, Grundlehren der Mathematischen Wissenschaften, Band 132, Springer-Verlag, Berlin, 1976. MR 0407617.
P. D. Lax, Symmetrizable linear transformations, Comm. Pure Appl. Math. 7 (1954), 633–647. MR 0068116.
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. MR 0710486.
F. Riesz, Sur certains systèmes d'équations fonctionnelles et l'approximation des fonctions continues, C. R. Acad. Sci. Paris 150 (1910), 674–677.
F. Riesz, Sur certains systèmes singuliers d'équations intégrales, Ann. Sci. École Norm. Sup. (3) 28 (1911), 33–62. MR 1509135.
F. Riesz, Les systèmes d'équations linéaires à une infinité d'inconnues, Gauthier-Villars, Paris, 1913.
F. Riesz, Über lineare Funktionalgleichungen, Acta Math. 41 (1916), no. 1, 71–98. MR 1555146.
V. A. Vinokurov, Ju. Petunīn, and A. N. Pličko, Measurability and regularizability of mappings that are inverses of continuous linear operators (in Russian), Mat. Zametki 26 (1979), no. 4, 583–591, 654. MR 0552720. Translated in Math. Notes 26 (1979), 781–785.
N. Wiener, Note on a paper of M. Banach, Fund. Math. 4 (1923), 136–143.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Tepper L. Gill, Douglas Mupassiri, Erdal Gül
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal. The Journal may retract the paper after publication if clear evidence is found that the findings are unreliable as a result of misconduct or honest error.