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BOUNDEDNESS OF FRACTIONAL OPERATORS ASSOCIATED
WITH SCHRÖDINGER OPERATORS ON WEIGHTED

VARIABLE LEBESGUE SPACES VIA EXTRAPOLATION

ROCÍO AYALA AND ADRIAN CABRAL

Abstract. In this work we obtain boundedness results for fractional opera-
tors associated with Schrödinger operators L = −∆ + V on weighted variable
Lebesgue spaces. These operators include fractional integrals and their re-
spective commutators. In particular, we obtain weighted inequalities of the
type Lp(·)-Lq(·) and estimates of the type Lp(·)-Lipschitz variable integral
spaces. For this purpose, we developed extrapolation results that allow us to
obtain boundedness results of the type described above in the variable setting
by starting from analogous inequalities in the classical context. Such extrap-
olation results generalize what was done by Harboure, Maćıas, and Segovia
[Amer. J. Math. 110 no. 3 (1988), 383–397], and by Bongioanni, Cabral, and
Harboure [Potential Anal. 38 no. 4 (2013), 1207–1232], for the classic case,
that is, V ≡ 0 and p(·) constant, respectively.

1. Introduction

Let us consider the second-order Schrödinger differential operator in Rn with
n ≥ 3, defined by

L = −∆ + V,

where V ≥ 0 and belongs to a reverse-Hölder class RHν for some exponent ν ≥ n/2,
i.e., there exists a constant C such that(

1
|B|

∫
B

V (x)νdx
)1/ν

≤ C

|B|

∫
B

V (x) dx,

for every ball B ⊂ Rn.
In recent years, a wide range of operators associated to L have been catching

the attention of several authors (see [1, 5, 3, 4, 18, 17, 26, 27]). One of those is the
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fractional integral, which is defined by means of negative fractional powers of L,
i.e.,

Iα = L−α/2,
for 0 < α < n.

In [17] the authors proved that Iα is bounded from the Lebesgue space Lp to
Lq, provided that 1/q = 1/p − n/α and 1 < p < n/α, as the classical fractional
integral. The corresponding weighted inequality was demonstrated in [3]. Since
the negative powers of L can be expressed in terms of the heat diffusion semigroup
generated by L, the kernel of Iα has better behavior far away from the diagonal
than the classical one. Thus, the family of weights Aρp,q (see Section 3) obtained in
the boundedness Lp(wp)-Lq(wq) is wider than the class of weights of Muckenhoupt
Ap,q associated to the classical operator.

For the limiting case p = n/α, in [1] they characterize the weights w such that
Iα is bounded from Ln/α(wn/α) into BMOL(w), an appropriate weighted version
of BMO, the John–Nirenberg space adapted to this context.

The case of the commutator [Iα, b] of Iα was treated in [27] where it was shown
that it is bounded from Lp(wp) into Lq(wq), for 1/q = 1/p − n/α, 1 < p < n/α
and w ∈ Aρp,q.

In this context, maximal operators of fractional type can also be considered. Its
definition is closely connected to the operator L through the critical radius function

ρ(x) = sup
{
r > 0 : 1

rn−2

∫
B(x,r)

V ≤ 1
}
.

In particular, the reverse-Hölder condition implies that 0 < ρ(x) < ∞ for x ∈
Rn. Furthermore, according to [26, Lemma 1.4], if V ∈ RHν , with ν > n/2, the
associated function ρ satisfies that there exist constants cρ, Nρ ≥ 1 such that

c−1
ρ ρ(x)

(
1 + |x− y|

ρ(x)

)−Nρ
≤ ρ(y) ≤ cρ ρ(x)

(
1 + |x− y|

ρ(x)

) Nρ
Nρ+1

, (1.1)

for every x, y ∈ Rn.
Shen uses this function ρ as an essential tool to obtain boundedness on Lp of

many operators associated with L, for instance the Riesz Schrödinger transform
R = ∇(−∆+V )−1/2. The point is that when R is restricted to the ρ-neighborhood
of the diagonal ∆ρ = {(x, y) : |x − y| < ρ(x)}, it behaves like the classical Riesz
transform R = ∇(−∆)−1/2, in the sense that the difference of their kernels has a
locally integrable singularity at the diagonal. Usually such restriction is called the
ρ-local part of the kernel. As for the other part, the presence of the potential V
guarantees a good decay scaled according to ρ.

This function is used to describe functional spaces and weights naturally asso-
ciated with L that are generalizations of the case V ≡ 0.

One of the main objectives of this work is to establish, by means of extrap-
olation techniques, boundedness results for fractional operators associated with
Schrödinger operators on weighted variable Lebesgue spaces.
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BOUNDEDNESS OF FRACTIONAL OPERATORS 37

In reference to the theory of extrapolation, in [19], Rubio de Francia proved that
the classes Ap satisfy an interesting property of extrapolation. More specifically, if
for some p0 ≥ 1, an operator preserves Lp0(w) for any w ∈ Ap0 , then necessarily
preserves the Lp(w) space for every 1 < p < ∞ and every w ∈ Ap. Later, in [20]
Harboure, Maćıas and Segovia, proved that the Ap,q classes have a similar extrapo-
lation property. Moreover, they also proved that this property is not only exclusive
for the boundedness between weighted Lebesgue spaces, but also it is possible to
extrapolate based on a continuity behavior of the type Ls(w)−BMO(w) for some
1 < s <∞.

Recently in [7], the authors demonstrate extrapolation results that allow us to
obtain continuity properties of certain operators of the type Lp(wp) − Lq(wq) or
Lp(wp)−Lδ̃(w) starting with hypothesis of continuity of the type Ls(ws)−Lδ(w)
for some related parameters. Here, Lδ(w), 0 < δ < 1, denotes the weighted integral
Lipschitz space, i.e., the set of locally integrable function f such that

‖wχB‖∞
|B|1+ δ

n

∫
B

|f(x)− fB | dx ≤ C

holds for every ball B ⊂ Rn.
Our first objective is to extend some of the results seen in [7] to Lδ(w), an

appropriate weighted integral Lipschitz space adapted to the Schrödinger context.
We are also interested in establishing extrapolation results of the type described

above in the variable exponent spaces context. In this line we developed extrap-
olation results starting from hypothesis which involves inequalities of the type
Ls(ws) − Lδ(w), and obtaining weighted estimates of the type Lp(·) − Lq(·) or
Lp(·) −Lδ(·), where the last space is a variable version of the space Lδ(w).

The structure of this paper is the following. In Section 2 we give some prelimi-
naries and state our main theorems. In Section 3 we state and prove the auxiliary
results which are important tools in order to prove the theorems stated in Sec-
tion 2. Later, in Section 4 we deal with the proofs of the main results. Finally,
in Section 5, we give some applications to the variable exponent spaces context by
mean of extrapolation techniques.

Throughout this paper, unless otherwise indicated, we will use C and c to denote
constants, which are not necessarily the same at each occurrence. We will say that
A . B when there exists a constant c > 0 such that A ≤ cB and we will write
A ' B whenever A . B and B . A.

2. Preliminaries and main results

From now on, we call a critical radius function to any positive function ρ that
satisfies (1.1). Clearly, if ρ is such a function, so it is βρ for any β > 0.

Let’s denote by Bρ the family of subcritical balls of Rn, i.e., the set of balls
B(x, r) with x ∈ Rn and r ≤ ρ(x).

Taking into account what has been done in [3] (see also [6] and [27]) for the case
of a Schrödinger operator, we will consider classes of weights given in terms of a
critical radius function.
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38 ROCÍO AYALA AND ADRIAN CABRAL

By a weight w we mean a locally integrable function such that 0 < w(x) < ∞
a.e. We say that the weight w belongs to the Aρp class , for 1 < p < ∞, if there
exist constants θ ≥ 0 and C > 0 such that the inequality(

1
|B|

∫
B

w dy

)1/p( 1
|B|

∫
B

w−
1
p−1 dy

)1/p′

≤ C
(

1 + r

ρ(x)

)θ
(2.1)

holds for every ball B = B(x, r) ⊂ Rn. For the case p = 1, we will say that w
belongs to the class Aρ1 if there are constants θ ≥ 0 and C > 0 such that the
inequality

1
|B|

∫
B

w dy ≤ C
(

inf
x∈B

w(x)
)(

1 + r

ρ(x)

)θ
holds for every ball B = B(x, r) ⊂ Rn.

On the other hand, we will say that a weight w belongs to the class Aρp,q, for
p, q ∈ (1,∞), if there exist constants θ ≥ 0 and C > 0 such that the inequality(

1
|B|

∫
B

wq dy

)1/q ( 1
|B|

∫
B

w−p
′
dy

)1/p′

≤ C
(

1 + r

ρ(x)

)θ
(2.2)

holds for every ball B = B(x, r) ⊂ Rn. In the limiting case q = ∞, we will say
that w ∈ Aρp,∞, if there exist θ > 0 and C > 0 such that the inequality

‖wχB‖∞
(

1
|B|

∫
B

w−p
′
dy

)1/p′

≤ C
(

1 + r

ρ(x)

)θ
holds for every ball B = B(x, r) ⊂ Rn, where ‖wχB‖∞ = supx∈B w(x).

We will also consider two other classes of weights, namely Aρ,loc
p and Aρ,loc

p,q ,
which are formed by those weights w that satisfy (2.1) and (2.2), respectively,
only for the balls in Bρ. From their definitions it is clear that Aρp ⊂ Aρ,loc

p and
Aρp,q ⊂ Aρ,loc

p,q , for any 1 < p <∞ and 1 < q ≤ ∞.
Some properties of these classes of weights that can be derived from their defi-

nition and that will be useful to us are the following.

Proposition 2.1. Let 1 ≤ p ≤ q ≤ ∞. The following are satisfied:
(1) If w ∈ Aρp, then w ∈ Aρq .
(2) If w1, w2 ∈ Aρ1, then w1w

1−p
2 ∈ Aρp.

(3) If p > 1, w ∈ Aρp,q if and only if w−p′ ∈ Aρ
1+ p′

q

.

(4) If p > 1 and q <∞, w ∈ Aρp,q if and only if wq ∈ Aρ1+ q

p′
.

(5) If w ∈ Aρp,q and p > 1, then w ∈ Aρp,r, for q ≥ r ≥ p.
(6) If w ∈ Aρp,q and p > 1, then w ∈ Aρr,q, for r ≥ p.

Recall that given a weight w, Lp(w) denotes the space of functions f such that∫
Rn
|f(x)|pw(x) dx <∞.
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The classes Aρp are deeply connected to the family of maximal operators Mθ
ρ ,

defined for θ > 0 by means of

Mθ
ρf(x) = sup

r>0

(
1 + r

ρ(x)

)−θ 1
|B(x, r)|

∫
B(x,r)

|f(y)| dy.

Indeed, these are bounded in Lp(w), for 1 < p < ∞, provided that w ∈ Aρp, and
of weak type (1, 1) with respect to w, for w ∈ Aρ1 (see Proposition 3 in [1] and
Proposition 4.2 in [5]).

As stated above we are interested in introducing Lipschitz type integral spaces
in the Schrödinger context and establishing certain extrapolation results involving
them.

In the following, we denote by fB the average of f over the B ball, i.e., 1
|B|
∫
B
f .

Given a weight w, we define the space Lδ(w), for 0 ≤ δ < 1, as the set of all
functions f on L1

loc(Rn) such that

‖wχB‖∞
|B|1+ δ

n

∫
B

|f(y)− fB | dy ≤ C, ∀B ∈ Bρ. (2.3)

and
‖wχB(x,ρ(x))‖∞
|B(x, ρ(x))|1+ δ

n

∫
B(x,ρ(x))

|f(y)| dy ≤ C, ∀x ∈ Rn. (2.4)

We can consider a norm in Lδ(w) as the smallest constant that satisfies (2.3)
and (2.4) simultaneously, and denote it by |||f |||Lδ(w).

Remark 2.2. A function f that satisfies the inequality (2.4) for a ball B, also
satisfies (2.3) for the same ball. This essentially follows from the fact that

∫
B
|fB | ≤∫

B
|f(x)|.

Remark 2.3. When δ = 0, the space L0(w) coincides with the space BMOρ(w)
originally considered in [1].

Although our goal is to use extrapolation to prove the boundedness of some
specific operators, we will state our results in a more abstract way. Following the
approach established in [11] (see also [14] and [10]) we will present our extrapolation
theorems for pairs of measurable, nonnegative functions (f, g) belonging to some
family F . Henceforth, if we write

‖f‖X ≤ ‖g‖Y , (f, g) ∈ F ,

where X and Y are spaces of functions (i.e., weighted Lebesgue spaces, classical
or variable), then we mean that this inequality is true for any pair (f, g) ∈ F such
that the left-hand side of this inequality is finite.

We are now in a position to state our first extrapolation results taking as hy-
potheses inequalities of the type Ls(ws) − Lδ(w). The first one gives Lp(wp) −
Lq(wq) type estimates and the second result gives Lp(wp)−Lδ̃(w) estimates with
0 ≤ δ ≤ δ̃.
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40 ROCÍO AYALA AND ADRIAN CABRAL

Theorem 2.4. Let 0 ≤ δ < 1, 1 < β < n
δ and 1

s = 1
β−

δ
n be such that the inequality

|||f |||Lδ(w) ≤ C‖g w‖s, (f, g) ∈ F ,

is satisfied for all w ∈ Aρs,∞ and some constant C > 0. Then, there exists a
constant c > 0 such that the inequality

‖f w‖q ≤ C‖g w‖p, (f, g) ∈ F ,
is satisfied for any p and q such that 1 < p < β, 1

β = 1
p −

1
q and any weight

w ∈ Aρp,q.

Theorem 2.5. Let 0 ≤ δ < 1, 1 < β < n
δ and 1

s = 1
β−

δ
n be such that the inequality

|||f |||Lδ(w) ≤ C‖g w‖s, (f, g) ∈ F ,

is satisfied for all w ∈ Aρs,∞ and some constant C > 0. Then, there exists a
constant c > 0 such that the inequality

|||f |||Lδ̃(w) ≤ C‖g w‖p, (f, g) ∈ F ,

is true for any 0 ≤ δ̃ ≤ δ, 1
p = 1

β −
δ̃
n and every weight w ∈ Aρp,∞.

We are also interested in obtaining extrapolation results of the type described
above in the variable Lebesgue space context. We begin with some definitions and
notations related to these spaces.

Let p(·) : Rn → [1,∞] be a measurable function. Given a measurable set A ⊂ Rn
we define

p−(A) := ess inf
x∈A

p(x), p+(A) := ess sup
x∈A

p(x).

For simplicity we denote p− = p−(Rn) and p+ = p+(Rn).
Given p(·), the conjugate exponent p′(·) is defined pointwise

1
p(x) + 1

p′(x) = 1,

where we let p′(x) =∞ if p(x) = 1.
By P(Rn) we will designate the collection of all measurable functions p(·) :

Rn → [1,∞] and by P∗(Rn) the set of p ∈ P(Rn) such that p+ <∞.
Given p ∈ P∗(Rn), we say that a measurable function f belongs to Lp(·)(Rn) if

for some λ > 0, the modular of f/λ associated with p(·), that is,

%p(·)(f/λ) =
∫
Rn

(
|f(x)|
λ

)p(x)
dx,

is finite. A Luxemburg type norm can be defined in Lp(·)(Rn) by taking
‖f‖Lp(·)(Rn) = ‖f‖p(·) = inf{λ > 0 : %p(·)(f/λ) ≤ 1}.

These spaces are special cases of Musieliak-Orlicz spaces (see [24]), and generalize
the classical Lebesgue spaces. For more information see, for example [13, 16, 21].

We will denote with Lp(·)loc (Rn) the space of functions f such that fχB ∈ Lp(·)(Rn)
for every ball B ⊂ Rn.
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In the case of constant exponents, the Lp norm and the modular differ only by
one exponent. In variable Lebesgue spaces their relation is less direct, as shown by
the following result, whose proof can be found in [13, Corollary 2.23].
Proposition 2.6. Let p(·) ∈ P∗(Rn). Hence

(1) if %p(·)(f) ≤ C, then ‖f‖p(·) ≤ max{C1/p− , C1/p+};
(2) if ‖f‖p(·) ≤ C, then %p(·)(f) ≤ max{Cp+

, Cp
−}.

In the classical Lp spaces, 1 < p <∞, the norm can be characterized using the
identity

‖f‖p = sup
∫
Rn
f(x)g(x) dx,

where the supremum is considered over all functions g such that g ∈ Lp
′ and

‖g‖p′ ≤ 1. Analogously, we have the following result for variable Lebesgue spaces.
Proposition 2.7 ([13, Theorem 2.34]). Let p(·) ∈ P(Rn), f a measurable function
and

|||f |||p(·) = sup
{∫

Rn
f(x)g(x) dx : ‖g‖p′(·) ≤ 1

}
.

Then,
c |||f |||p(·) ≤ ‖f‖p(·) ≤ C|||f |||p(·),

where the constants c and C depend only on p(·).
On the other hand, analogously to the previous case, Hölder’s inequality is also

valid for variable exponents but with a constant on the right-hand side of it.
Proposition 2.8 ([16, Lema 3.2.20]). Given s(·), p(·), q(·) ∈ P(Rn), be such that
1/s(·) = 1/p(·) + 1/q(·). Then, for f ∈ Lp(·)(Rn) and g ∈ Lq(·)(Rn)

‖fg‖s(·) ≤ 2‖f‖p(·)‖g‖q(·).
Moreover, if s(·) ≡ 1, the inequality above gives∫

Rn
|f(x)g(x)| dx ≤ 2‖f‖p(·)‖g‖p′(·).

Another elementary but useful property of the classical Lebesgue norm is that
it is homogeneous in the exponent, more precisely ‖fs‖p = ‖f‖ssp for 1 < s < ∞
and non-negative f . This property also extends to variable Lebesgue spaces as
follows.
Proposition 2.9 ([13, Proposition 2.18]). Let p(·) ∈ P∗(Rn), so for all s, 1/p− ≤
s <∞,

‖|f |s‖p(·) = ‖f‖ssp(·).
The following conditions on the exponent arise in connection with the bounded-

ness of the Hardy–Littlewood maximal operator M in Lp(·)(Rn) (see, for example,
[15], [13] or [16]). We will say that p is log-Hölder continuous, and we will write
p ∈ P log(Rn), if p ∈ P∗(Rn) and if there are constants C > 0 and p∞ such that

|p(x)− p(y)| ≤ − C

log(|x− y|) , x, y ∈ Rn, |x− y| < 1/2,
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and

|p(x)− p∞| ≤
C

log(e+ |x|) , x ∈ Rn.

The statement below establishes a reverse Hölder property under certain condi-
tions on the exponents involved.

Proposition 2.10 ([23, Lemma 2.7]). Let p(·), r(·) ∈ P log(Rn) such that r(·) ≤
p(·). Suppose that 1/r(·) = 1/p(·) + 1/s(·). Then, for every ball B ⊂ Rn

‖χB‖r(·) ' ‖χB‖p(·)‖χB‖s(·). (2.5)

Remark 2.11. It is straightforward to see that inequality (2.5) can be also written
as

‖χB‖p′(·) ' ‖χB‖r′(·)‖χB‖s(·).

Given a weight w and p ∈ P(Rn), we define the weighted variable Lebesgue
space Lp(·)(w) to be the set of all measurable functions f such that fw ∈ Lp(·),
and we write

‖f‖Lp(·)(w) = ‖f‖p(·),w = ‖fw‖p(·).

Thus, we say that an operator T is bounded on Lp(·)(w) if

‖Tf w‖p(·) ≤ C‖fw‖p(·),

for all f ∈ Lp(·)(w).
Following [6] we define classes of variable weights associated with a function of

critical radius ρ. Given a critical radius function ρ and p ∈ P(Rn) we introduce
the Aρ,loc

p(·) the class of weights as those w for which there exists a constant C > 0
such that the inequality

‖wχB‖p(·)‖w−1χB‖p′(·) ≤ C|B|

holds for every ball B ∈ Bρ.
On the other hand, we will say that a weight w belongs to the class Aρp(·) if there

exist constants θ ≥ 0 and C > 0 such that the inequality

‖wχB‖p(·)‖w−1χB‖p′(·) ≤ C|B|
(

1 + r

ρ(x)

)θ
holds for all balls B = B(x, r) ⊂ Rn.

The following result shows the connection between the weights Aρp(·) and the
boundedness of the operators Mθ

ρ in Lp(·)(w).

Theorem 2.12 ([6, Theorem 5]). Let p ∈ P log(Rn) with p− > 1. Then, a weight
w ∈ Aρp(·) if and only if there exists θ > 0 such that Mθ

ρ is bounded on Lp(·)(w).

Remark 2.13. It follows from the above definition that if w ∈ Aρp(·), then w−1 ∈
Aρp′(·).
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Our second pair of results yields off-diagonal inequalities between two different
weighted variable Lebesgue spaces. In the case of the constant exponent, the first
of these was first demonstrated in [20], while for the variable case, the same was
done in [12] and [10] with and without weights, respectively.

To establish such a result we first define an appropriate class of weights that
generalizes to the weights Aρp,q.

Given a critical radius function ρ and p(·), q(·) ∈ P(Rn), we say that a weight
w belongs to class Aρp(·),q(·) if there exists a positive constant C such that

‖wχB‖q(·)‖w−1χB‖p′(·) ≤ C‖χB‖q(·)‖χB‖p′(·)
(

1 + r

ρ(x)

)θ
, (2.6)

for some θ > 0 and any ball B = B(x, r) in Rn. When p(·) ∈ P log(Rn) and
p(·) = q(·) this is the Aρp(·) class.

Remark 2.14. If for some constant 0 < γ < 1, 1
p(x) −

1
q(x) = γ, the condition (2.6)

is equivalent to the following

‖wχB‖q(·)‖w−1χB‖p′(·) ≤ C|B|1−γ
(

1 + r

ρ(x)

)θ
.

This definition of class Ap(·),q(·) was adopted in [12] in the classical case, i.e.,
V = 0.

We also say that w ∈ Aρp(·),∞ if there exists a positive constant C such that

‖wχB‖∞‖w−1χB‖p′(·) ≤ C‖χB‖p′(·)
(

1 + r

ρ(x)

)θ
,

for some θ > 0 and any ball B = B(x, r) in Rn.
We are now in a position to establish another main outcome of this section.

Theorem 2.15. Let p0 and q0 be such that 1 < p0 < q0 < ∞ and suppose that,
for all w0 ∈ Aρp0,q0

,
‖fw0‖q0 ≤ C‖gw0‖p0 , (f, g) ∈ F . (2.7)

Be also p(·), q(·) ∈ P(Rn) such that
1

p(x) −
1

q(x) = 1
p0
− 1
q0

= 1
σ′
.

Then, if w ∈ Aρp(·),q(·) and q(·) ∈ P log(Rn) with q− > σ, it follows that

‖fw‖q(·) ≤ C‖gw‖p(·), (f, g) ∈ F .

As a direct consequence of Theorems 2.4 and 2.15 we obtain the following ex-
trapolation result.

Theorem 2.16. Let 1 < β < n
δ , 0 ≤ δ < 1 and 1

s = 1
β −

δ
n be such that the

inequality
|||f |||Lδ(w) ≤ C‖g w‖s, (f, g) ∈ F ,
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is satisfied for all w ∈ Aρs,∞ and some constant C > 0. Be also p(·), q(·) ∈ P(Rn)
such that

1
p(x) −

1
q(x) = 1

β
.

Then, if w ∈ Aρp(·),q(·) and q(·) ∈ P log(Rn) with q− > β′, it follows that

‖fw‖q(·) ≤ C‖gw‖p(·), (f, g) ∈ F .

To establish our next result, we will consider a variable version of the space
Lδ(w).

Let w be a weight, γ > 1 and p(·) ∈ P(Rn) such that γ ≤ p− ≤ p(x) ≤ p+ <
nγ

(n−γ)+
and let δ(x)

n = 1
γ + 1

p(x) (by β+ we understand β if β > 0 and 0 is β ≤ 0).
The space Lδ(·)(w) is defined by the set of all functions f on L1

loc(Rn) such that
‖wχB‖∞

|B|
1
γ ‖χB‖p′(·)

∫
B

|f(y)− fB | dy ≤ C, ∀B ∈ Bρ. (2.8)

and
‖wχB(x,ρ(x))‖∞

|B(x, ρ(x))|
1
γ ‖χB(x,ρ(x))‖p′(·)

∫
B(x,ρ(x))

|f(y)| dy ≤ C, ∀x ∈ Rn. (2.9)

When p(·) is equal to a constant p, this space coincides with the space Ln/γ−n/p(w)
defined above.

We denote by |||f |||Lδ(·)(w) the smallest constant that satisfies (2.8) and (2.9)
simultaneously.

We are now in a position to state the last result of our interest.

Theorem 2.17. Let γ > 1, 0 ≤ δ < min{n/γ, 1} and s > 1 be such that 1
s = 1

γ−
δ
n .

Let p(·) ∈ P log(Rn) with p− > 1, and 0 ≤ δ̃(·) < δ such that 1
p(·) = 1

γ −
δ̃(·)
n . Let us

suppose that for every wη ∈ Aρs
η ,∞

, where 1 < η < p−,

|||f |||Lδ(w) ≤ C‖g w‖s, (f, g) ∈ F ,

Then, for every wη ∈ Aρp(·)
η ,∞

it holds that

|||f |||Lδ̃(·)(w) ≤ C‖g w‖p(·), (f, g) ∈ F .

3. Auxiliary results

Before proving the main results, we give several technical results necessary for
proof. The first is a version of Rubio de Francia algorithm.

Lemma 3.1. Let v ∈ Aρm with m ≥ 1. Then, for any h ≥ 0 belonging to Lm
′(v),

there exists H ∈ Lm′(v) such that
(1) h(x) ≤ H(x) a.e. x ∈ Rn.
(2) ‖H‖Lm′ (v) ≤ C‖h‖Lm′ (v).
(3) Hv ∈ Aρ1.
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Proof. Following the so-called Rubio de Francia algorithm, it is sufficient to con-
sider H = Rh defined by

Rh(x) =
∞∑
k=0

[(Mθ
ρ )′]kh(x)

2k‖(Mθ
ρ )′‖k

Lm′ (v)
,

where (Mθ
ρ )′f = Mθ

ρ (fv)/v and [(Mθ
ρ )′]k, for k ≥ 1 is k times the composition of

the operator (Mθ
ρ )′ and [(Mθ

ρ )′]0 denotes the identity operator.
Hence, the properties of H follow easily from its definition and from bounding

properties of Mθ
ρ . �

We now define a localized version of the maximal sharp function as follows.
Given f ∈ L1

loc(Rn) we define maximal sharp local function as

f ],ρδ (x) = sup
B∈Bρ

χB(x)
|B|1+ δ

n

∫
B

|f(y)− fB |dy + sup
B=B(z,ρ(z))

χB(x)
|B|1+ δ

n

∫
B

|f(y)|dy.

As expected, the space Lδ(w) can be described by the operator f ],ρδ defined
above.
Lemma 3.2. Let 0 ≤ δ < 1 and w be a weight. Then, there exist positive constants
C1 and C2 such that

C1
∥∥wf ],ρδ ∥∥

∞ ≤ |||f |||Lδ(w) ≤ C2
∥∥wf ],ρδ ∥∥

∞.

Proof. The proof of the lemma follows in a similar way to that given in Lemma 2
of [1] for the case δ = 0. �

The following result is used in the proof of Theorem 2.4. It was proved in
Corollary 5 of [1].
Lemma 3.3. Let 1 < p <∞ and w ∈ Aρ,loc

s for some s ≥ 1. If g ∈ L1
loc (Rn) then

there exists a constant C > 0 such that
‖g‖Lp(w) ≤ C‖g],ρ0 ‖Lp(w).

A key element in demonstrating our extrapolation results is the following gen-
eralization of a result given by Calderón and Scott in [9, Proposition 4.6].

Proposition 3.4. Let 0 ≤ δ̃ < δ < 1, 1 < p ≤ n
δ−δ̃ y 1

r = 1
p −

δ−δ̃
n . If w ∈ Aρ,loc

p,r

then there exists a positive constant C such that
‖f ],ρ
δ̃
w‖r ≤ C‖f ],ρδ w‖p.

The proof of Proposition 3.4 is a consequence of the following lemma which
involves a localized fractional maximal function.

Given a locally integrable function f and 0 ≤ δ < 1, Mρ,loc
δ is defined as follows,

Mρ,loc
δ f(x) = sup

B∈Bρ

χB(x)
|B|1− δ

n

∫
B

|f(y)|dy.

Lemma 3.5. Let 0 ≤ δ̃ ≤ δ < 1. Then,
f ],ρ
δ̃

(x) ≤ 2Mρ,loc
δ−δ̃

(
f ],ρδ

)
(x).
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Proof. Let x ∈ Rn and B′ ∈ Bρ such that x ∈ B′. Thus,

1
|B′|1+ δ̃

n

∫
B′
|f(y)− fB′ |dy = |B′| δ−δ̃n

|B′|1+ δ−δ̃
n

∫
B′
|f(y)− fB′ | dy

≤ |B′|
δ−δ̃
n f ],ρδ (z),

for any z ∈ B′. Integrating over B′ it follows that

|B′| 1
|B′|1+ δ̃

n

∫
B′
|f(y)− fB′ | dy =

∫
B′

(
1

|B′|1+ δ̃
n

∫
B′
|f(y)− fB′ | dy

)
dz

≤ |B′|
δ−δ̃
n

∫
B′
f ],ρδ (z) dz,

from which it follows that
1

|B′|1+ δ̃
n

∫
B′
|f(y)− fB′ | dy ≤

1
|B′|1− δ−δ̃n

∫
B′
f ],ρδ (z) dz.

≤Mρ,loc
δ−δ̃

(
f ],ρδ

)
(x).

Thus
sup
B∈Bρ

χB(x)
|B|1+ δ̃

n

∫
B

|f(y)− fB | dy ≤Mρ,loc
δ−δ̃

(
f ],ρδ

)
(x). (3.1)

In a completely analogous manner, taking B = B(z, ρ(z)) with z ∈ Rn in place
of B′ ∈ Bρ, it is concluded that

sup
B=B(z,ρ(z))

χB(x)
|B|1+ δ̃

n

∫
B

|f(y)| dy ≤Mρ,loc
δ−δ̃

(
f ],ρδ

)
(x). (3.2)

From (3.1) and (3.2) it follows that

f ],ρ
δ̃

(x) ≤ 2Mρ,loc
δ−δ̃

(
f ],ρδ

)
(x).

�

Proof of Proposition 3.4. Suppose that ‖f#,ρ
δ w‖p < ∞, that is, f#,ρ

δ ∈ Lp(wp),
otherwise, there is nothing to prove.

Let us first consider the case where p < n
δ−δ̃ and let r be as in the hypothesis.

By the previous lemma we have that

‖f#,ρ
δ̃

w‖r =
(∫

Rn
[f#,ρ
δ̃

w]r dx
)1/r

≤ 2
(∫

Rd

[
Mρ,loc
δ−δ̃

(
f#,ρ
δ

)]r
wr dx

)1/r

= 2
∥∥Mρ,loc

δ−δ̃

(
f#,ρ
δ

)
w
∥∥
r
.

(3.3)

Considering δ > δ̃ and α = δ − δ̃ > 0 we have that α < n and both p and r

fulfill the hypotheses of the Theorem 3.1.13 in [8], so that Mρ,loc
δ−δ̃ is bounded from

Lp(wp) in Lr(wr).
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Therefore, it follows from (3.3) that

‖f#,ρ
δ̃

w‖r ≤ C‖f#,ρ
δ w‖p.

On the other hand, if δ = δ̃, it follows from the hypothesis that r = p. Also,
w ∈ Aρp,p if and only if wp ∈ Aρp. Then, wp ∈ Aρ,loc

p and from Theorem 1 in [3]
it follows that Mρ,loc

δ−δ̃ is bounded on Lp(wp), from which we obtain the result we
wanted.

Let us now look at the case where p = n
δ−δ̃ , so that r =∞. We want to see that

if w ∈ Aρ,loc
n
δ−δ̃ ,∞

, then there exists C > 0 such that

‖f#,ρ
δ̃

w‖∞ ≤ C‖f#,ρ
δ w‖ n

δ−δ̃
.

From Lemma 3.5 it follows that

‖f#,ρ
δ̃

w‖∞ ≤ 2‖Mρ,loc
δ−δ̃ (f#,ρ

δ )w‖∞. (3.4)

On the other hand, by Proposition 3.1.12 in [8] it follows that if w
n

δ−δ̃−n ∈ Aρ,loc
1 ,

then Mρ,loc
δ−δ̃ is bounded from L

n
δ−δ̃ (w

n
δ−δ̃ ) on L∞(w). It is enough to see that

w
n

δ−δ̃−n ∈ Aρ,loc
1 . Being p = n

δ−δ̃ ,

n

δ − δ̃ − n
= 1

δ−δ̃
n − 1

= 1
1
p − 1

= 1
− 1
p′

= −p′,

and since w ∈ Aρ,loc
p,∞ it follows that w−p′ ∈ Aρ,loc

1 , which is what we wanted to
prove.

Therefore, by Proposition 3.1.12 in [8], we obtain

‖Mρ,loc
δ−δ̃ (f#,ρ

δ )w‖∞ ≤ C‖f#,ρ
δ w‖ n

δ−δ̃
. (3.5)

Finally, from (3.4) and (3.5) we get that

‖f#,ρ
δ̃

w‖∞ ≤ C‖f#,ρ
δ w‖ n

δ−δ̃
.

�

We will also need some auxiliary results in the variable context.
The following results refer to properties of the weights Aρp(·),q(·). The proof of

the first proposition is straightforward and we omit it.

Proposition 3.6. Let p(·), q(·) ∈ P(Rn). If w ∈ Aρp(·),∞ then w ∈ Aρp(·),q(·).

Proposition 3.7. Let p(·), q(·) ∈ P log(Rn) such that q(·) ≤ p(·). If w ∈ Aρq(·),∞
then w ∈ Aρp(·),∞.
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Proof. Let s(·) such that 1
q(·) = 1

p(·) + 1
s(·) . Since 1/p′(·) = 1/q′(·) + 1/s(·), from

Hölder’s inequality, the hypothesis on w and Remark 2.11, we obtain

‖wχB‖∞‖w−1χB‖p′(·) ≤ C‖wχB‖∞‖w−1χB‖q′(·)‖χB‖s(·)

≤ C‖χB‖q′(·)‖χB‖s(·)
(

1 + r

ρ(x)

)θ
≤ C‖χB‖p′(·)

(
1 + r

ρ(x)

)θ
. �

Proposition 3.8. Let p(·), r(·) ∈ P log(Rn) such that p(·) ≤ r(·), and η satisfying
1 < η < p−. If wη ∈ Aρp(·)

η ,∞
then w ∈ Aρr(·),∞.

Proof. Since p(·) ≤ r(·) it follows from Proposition 3.7 that wη ∈ Aρr(·)
η ,∞

. Taking

β = 1/(η − 1) it follows that η
r′(·) = 1

(r(·)/η)′ + 1
β .

Then, by Proposition 2.9, the generalized Hölder inequality and Proposition 2.10
we get (‖wχB‖∞‖w−1χB‖r′(·)

‖χB‖r′(·)

)η
=
‖wηχB‖∞‖w−ηχB‖r′(·)/η

‖χB‖r′(·)/η

≤ C
‖wηχB‖∞‖w−ηχB‖(r(·)/η)′‖χB‖β

‖χB‖r′(·)/η

≤ C
‖wηχB‖∞‖w−ηχB‖(r(·)/η)′

‖χB‖(r(·)/η)′

≤ C
(

1 + r

ρ(x)

)θ
,

where we have used wη ∈ Aρr(·)
η ,∞

. We conclude that w ∈ Aρr(·),∞. �

Proposition 3.9. Let p(·), q(·) ∈ P log(Rn) and s > 1 such that 1 < p− ≤ p(x) <
q(x) ≤ q+ < ∞ and 1

p(·) −
1
q(·) = 1

s′ . Then, if w ∈ Aρp(·),q(·) it holds that w−s ∈
Aρp′(·)/s.

Proof. Given a ball B = B(x, r) ⊂ Rn, by Proposition 2.9, the inequality

‖w−sχB‖p′(·)/s‖wsχB‖(p′(·)/s)′ ≤ C|B|
(

1 + r

ρ(x)

)θ
is equivalent to

‖w−1χB‖p′(·)‖wχB‖s(p′(·)/s)′ ≤ C|B|1/s
(

1 + r

ρ(x)

)θ/s
.

We prove the last one. From Proposition 2.10, since 1
s = 1

q(·) + 1
p′(·) , we get that

|B|1/s = ‖χB‖s ' ‖χB‖q(·)‖χB‖p′(·).
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Then, by the hypothesis on the weight w and being q(·) = s(p′(·)/s)′ we obtain
‖w−1χB‖p′(·)‖wχB‖s(p′(·)/s)′

|B|1/s
≤ C
‖wχB‖q(·)‖w−1χB‖p′(·)
‖χB‖q(·)‖χB‖p′(·)

≤ C
(

1 + r

ρ(x)

)ϑ
.

Then, taking θ = sϑ, the proof is completed. �

Proposition 3.10. Let p(·), q(·) ∈ P(Rn) such that 1 < p− ≤ p(x) < q(x) ≤
q+ < ∞ and we assume that it exists σ > 1 such that 1

p(·) −
1
q(·) = 1

σ′ . Then,
w ∈ Aρp(·),q(·) if and only if wσ ∈ Aρq(·)/σ.

Remark 3.11. Let us note that being 1
p(·) −

1
q(·) = 1

σ′ we have 1
p− −

1
q− = 1

σ′ , that
is,

1
p−
− 1 = 1

q−
− 1
σ
,

so the condition p− > 1 is equivalent to having q− > σ.

Proof. That weight wσ belongs to Aρq(·)/σis equivalent to the existence of constants
θ > 0 and C > 0 such that

‖wσχB‖1/σr(·)‖w
−σχB‖1/σr′(·) ≤ C|B|

1/σ
(

1 + r

ρ(x)

)θ
,

for any ball B = B(x, r) in Rn and where r(x) = q(x)/σ.
Moreover, as 1

p(x) −
1

q(x) = 1
σ′ , by virtue of Proposition 2.10 w belongs to

Aρp(·),q(·)if there are constants C > 0 y θ′ > 0 such that

‖wχB‖q(·)‖w−1χB‖p′(·) ≤ C|B|1−
1
σ′

(
1 + r

ρ(x)

)θ′
= C|B|1/σ

(
1 + r

ρ(x)

)θ′
,

for any ball B = B(x, r) in Rn.
Since 1 < q− < q+ < ∞, we can apply the Proposition 2.9 and obtain that for

every ball B,
‖wσχB‖1/σq(·)/σ = ‖wχB‖q(·). (3.6)

Now let us look at the relationship that exists between r′(·) and p′(·). On the
one hand, we have that

r′(x) =
q(x)
σ

q(x)
σ − 1

= q(x)
q(x)− σ . (3.7)

On the other hand,
1

p′(x) = 1− 1
p(x) = 1− 1

σ′
− 1
q(x) = 1

σ
− 1
q(x) ,
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from which it follows that
p′(x) = σ

q(x)
q(x)− σ (3.8)

Then, from (3.7) and (3.8), it follows that r′(x) = 1
σp
′(x). Then, again, by

Proposition 2.9 and given that (p′)− ≥ 1 and p− > 1 we get that

‖w−σχB‖1/σr′(·) = ‖w−1χB‖p′(·). (3.9)

Therefore, from (3.6) and (3.9) it follows that w ∈ Aρp(·),q(·) if, and only if,
wσ ∈ Aρq(·)/σ. �

On the other hand, to construct the weight w0 necessary to be able to apply the
hypothesis of Theorem 2.15, we will use item (2) of Proposition 2.1 and therefore,
to find the weights in Aρ1, we will consider the following variable version of Rubio
de Francia’s extrapolation algorithm.
Proposition 3.12. Let r(·) ∈ P(Rn) and suppose that v is a weight such that Mθ

ρ

is bounded on Lr(·)(v), for some θ > 0. For a non-negative function h such that
h ∈ Lr(·)(v) we define

Rh(x) =
∞∑
k=0

(Mθ
ρ )kh(x)

2k‖Mθ
ρ‖kLr(·)(v)

.

Then,
(1) h(x) ≤ Rh(x) a.e. x ∈ Rn.
(2) ‖Rh‖Lr(·)(v) ≤ 2‖h‖Lr(·)(v).
(3) Rh ∈ Aρ1.

Proof. The proof is essentially the same as in the constant exponent case. Prop-
erty (1) for Rh is immediate, property (2) is deduced from the assumption that
Mθ
ρ is bounded in Lr(·)(v), and finally, property (3) follows from the fact that Mθ

ρ

is sublinear and h is non-negative. �

As a consequence of the previous result we will prove the following corollary
which will be used in the proof of Theorem 2.15.
Corollary 3.13. Let p(·) ∈ P(Rn), q(·) ∈ P log(Rn) and σ such that 1 < σ < q−,
1 < p− ≤ p(x) < q(x) ≤ q+ < ∞ and 1

p(·) −
1
q(·) = 1

σ′ . Also let h1 and h2 be
non-negative functions such that h1 ∈ Lq(·)(w) and h2 ∈ L(q(·)/σ)′(Rn).

Then, if w ∈ Aρp(·),q(·) there exist H1 ∈ Lq(·)(w) and H2 ∈ L(q(·)/σ)′(Rn) satisfy-
ing

(1) h1(x) ≤ H1(x) a.e. x ∈ Rn.
(2) ‖H1‖Lq(·)(w) ≤ 2‖h1‖Lq(·)(w).
(3) H σ

1 ∈ A
ρ
1.

(1’) h2(x) ≤ H2(x) a.e. x ∈ Rn.
(2’) ‖H2‖(q(·)/σ)′ ≤ 2‖h2‖(q(·)/σ)′ .
(3’) H2 w

σ ∈ Aρ1.

Proof. Let us begin by proving the existence and properties of H1. To do so, let
us consider

H1 = (Rhσ1 )1/σ.
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Since w ∈ Aρp(·),q(·), in view of the Proposition 3.10, we have that wσ ∈ Aρq(·)/σ.
Hence, by virtue of Theorem 2.12 and given that q ∈ P log(Rn) with q− > σ, one
has that there exists θ > 0 such that Mθ

ρ is bounded in Lq(·)/σ(wσ).
Let us also note that since h1 ∈ Lq(·)(w) it follows by Proposition 2.9 that

hσ1 ∈ Lq(·)/σ(wσ).
Therefore, applying Proposition 3.12, with h = hσ1 , r(·) = q(·)/σ and v = wσ,

we have that
i) hσ1 ≤ Rhσ1 a.e.

ii) ‖Rhσ1‖Lq(·)/σ(wσ) ≤ 2‖hσ1‖Lq(·)/σ(wσ).
iii) Rhσ1 ∈ A

ρ
1.

It is clear that 1. and 3. follow directly from i) and iii) respectively. On the
other hand, 2. is a consequence of ii) and Proposition 2.9, as

‖H1w‖q(·) = ‖(Rhσ1 )1/σ(wσ)1/σ‖q(·) = ‖Rhσ1 wσ‖
1/σ
q(·)/σ

≤ 21/σ‖hσ1 wσ‖
1/σ
q(·)/σ = 21/σ‖h1 w‖q(·) ≤ 2‖h1 w‖q(·).

Let us now look at the existence and properties of H2. We will take
H2 = R(h2 w

σ)w−σ.
Since w ∈ Aρp(·),q(·), from Proposition 3.10 and the Observation 2.13, we have

that w−σ ∈ Aρ(q(·)/σ)′ . Thus, by Theorem 2.12 and given that q ∈ P log(Rn) and
(q+/σ)′ = [(q(·)/σ)′]− > 1 , one has that there exists θ′ > 0 such that Mθ′

ρ is
bounded in L(q(·)/σ)′(w−σ).

Let us also note that since h2 ∈ L(q(·)/σ)′(Rn) it follows immediately that h2w
σ ∈

L(q(·)/σ)′(w−σ).
Therefore, by applying Proposition 3.12, with h = h2w

σ, r(·) = (q(·)/σ)′ and
v = w−σ, we get
a) h2w

σ ≤ R(h2w
σ) a.e.

b) ‖R(h2w
σ)‖L(q(·)/σ)′ (w−σ) ≤ 2‖h2w

σ‖L(q(·)/σ)′ (w−σ).
c) R(h2w

σ) ∈ Aρ1.
Clearly, 1’. and 3’. are a consequence of a) and c), respectively. Finally, 2. is

obtained from b) since

‖H2‖(q(·)/σ)′ = ‖(Rh2 w
σ)w−σ‖(q(·)/σ)′ ≤ 2‖(h2w

σ)w−σ‖(q(·)/σ)′ = 2‖h2‖(q(·)/σ)′ .

�

In the following corollary, given an exponent function r(·) and η > 1, we denote
by r = r(·) = r(·)

η .

Corollary 3.14. Let p(·), q(·) ∈ P log(Rn) and s > 1 such that 1 < p− ≤ p(x) <
q(x) ≤ q+ < ∞ and 1

p(·) −
1
q(·) = 1

s . Let 1 < η < p− and non-negative function
h̃ ∈ Lq/s′(w−ηp′s′/q).

Then, if wη ∈ Aρp(·)/η,∞, there exists H̃ ∈ Lq/s′(w−ηp′s′/q) such that
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(1) h̃(x) ≤ H̃(x) a.e. x ∈ Rn.
(2) ‖H̃w−ηp′s′/q‖q/s′ ≤ 2‖h̃w−ηp′s′/q‖q/s′ .
(3) H̃w−ηp

′ ∈ Aρ1.

Proof. Since wη ∈ Aρp,∞, it follows from Proposition 3.6 that wη ∈ Aρp,q. Moreover,
given that 1

p(·) −
1
q(·) = 1

s , it holds by Proposition 3.9 that w−ηs′ ∈ Aρp′/s′ .
Thus, the weight wηs′ ∈ Aρ(p′/s′)′ = Aρq/s′ and since that p ∈ P log(Rn) with

p− > 1, it follows that (q/s′)− > 1, and by Theorem 2.12 one has that there exists
θ > 0 such that Mθ

ρ is bounded on Lq/s
′(wηs′).

In addition, considering that h̃w−ηp′ ∈ Lq/s′(wηs′), we can apply the Proposi-
tion 3.12 con h = h̃w−ηp

′ , r(·) = q/s′ and v = wηs
′ . We then have

i) h̃w−ηp
′ ≤ R(h̃w−ηp′), a.e.

ii) ‖R(h̃w−ηp′)wηs′‖q/s′ ≤ 2‖h̃w−ηp′wηs′‖q/s′ .
iii) R(h̃w−ηp′) ∈ Aρ1.

Thus, if we consider H̃ = R(h̃w−ηp′)wηp′ it is clear that 1. and 3. follow directly
from i) and iii) respectively. Finally, 2. is a consequence of ii) since

‖H̃w−ηp
′s′/q‖q/s′ = ‖R(h̃w−ηp

′
)wηp

′
w−ηp

′s′/q‖q/s′

= ‖R(h̃w−ηp
′
)wηs

′
‖q/s′

≤ 2‖h̃w−ηp
′
wηs

′
‖q/s′

= 2‖h̃w−ηp
′s′/q‖q/s′ .

�

Similarly to the constant case, the space Lδ(·)(w) can be described by the opera-
tor f ],ρδ(·),s(·),γ defined for 1 < γ < ∞ and s(·) ∈ P(Rn) such that δ(x)/n = 1/γ −
1/s(x) by

f ],ρδ(·),s(·),γ(x) = sup
B∈Bρ

χB(x)
|B|1/γ‖χB‖s′(·)

∫
B

|f(y)− fB |dy

+ sup
B=B(z,ρ(z))

χB(x)
|B|1/γ‖χB‖s′(·)

∫
B

|f(y)|dy.

For convenience, in the rest of this paper, we always assume that f ],ρδ(·),s(·) denotes
f ],ρδ(·),s(·),γ . The proof of the following lemma is analogous to the constant case.

Lemma 3.15. Let 0 ≤ δ(·) < 1 and w be a weight. Then, there exist positive
constants C1 and C2 such that

C1
∥∥wf ],ρδ(·),s(·)∥∥∞ ≤ |||f |||Lδ(·)(w) ≤ C2

∥∥wf ],ρδ(·),s(·)∥∥∞.
The following proposition is a key estimate in order to prove the Theorem 2.17.

A version in the classical case (V = 0) can be found in [25].
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Proposition 3.16. Let p(·), s(·) ∈ P log(Rn) and γ > 1 such that δ(·)
n = 1

γ −
1
s(·)

and δ̃(·)
n = 1

γ −
1
p(·) with 0 ≤ δ̃(·) < δ(·) < 1. Then∥∥wf ],ρ

δ̃(·), p(·)

∥∥
∞ ≤ C

∥∥wf ],ρδ(·), s(·)∥∥ n
δ(·)−δ̃(·)

,

for every w ∈ Aρ
n/(δ(·)−δ̃(·)),∞.

Proof. Given B = B(xB , rB) ∈ Bρ, from definition of f ],ρδ(·),s(·), for almost every-
where z ∈ B, we have that

1
|B|1/γ‖χB‖s′(·)

∫
B

|f(y)− fB |dy ≤ f ],ρδ(·),s(·)(z).

By integrating over B and applying Hölder’s inequality we obtain

|B|
|B|1/γ‖χB‖s′(·)

∫
B

|f(y)− fB |dy

≤
∫
B

f ],ρδ(·),s(·)(z) dz

≤ C
∥∥f ],ρδ(·),s(·) w∥∥ n

δ(·)−δ̃(·)

∥∥w−1χB
∥∥

n
n−(δ(·)−δ̃(·))

,

from which it follows that
‖wχB‖∞

|B|1/γ‖χB‖p′(·)

∫
B

|f(y)− fB |dy

≤ C
∥∥f ],ρδ(·),s(·) w∥∥ n

δ(·)−δ̃(·)

∥∥w−1χB
∥∥

n
n−(δ(·)−δ̃(·))

‖χB‖s′(·)‖wχB‖∞
|B|‖χB‖p′(·)

.

Considering the hypothesis on weight w and since rB ≤ ρ(xB), we get that∥∥w−1χB
∥∥

n
n−(δ(·)−δ̃(·))

‖χB‖s′(·)‖wχB‖∞
|B|‖χB‖p′(·)

≤ C
∥∥χB∥∥ n

n−(δ(·)−δ̃(·))

‖χB‖s′(·)
|B|‖χB‖p′(·)

(
1 + rB

ρ(xB)

)θ
≤ C

∥∥χB∥∥ n
n−(δ(·)−δ̃(·))

‖χB‖s′(·)
|B|‖χB‖p′(·)

.

Later, since n−(δ(·)−δ̃(·))
n = 1

s(·) + 1
p′(·) , from Proposition 2.10 we have that

∥∥w−1χB
∥∥

n
n−(δ(·)−δ̃(·))

‖χB‖s′(·)‖wχB‖∞
|B|‖χB‖p′(·)

≤ C‖χB‖s(·)‖χB‖p′(·)
‖χB‖s′(·)
|B|‖χB‖p′(·)

≤ C
‖χB‖s(·)‖χB‖s′(·)

|B|
≤ C.
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Thus,

‖wχB‖∞
|B|1/γ‖χB‖p′(·)

∫
B

|f(y)− fB |dy ≤ C
∥∥f ],ρδ(·),s(·) w∥∥ n

δ(·)−δ̃(·)
. (3.10)

On the other hand, considering B′ = B(t, ρ(t)), we get

1
|B′|1/γ‖χB′‖s′(·)

∫
B′
|f(y)|dy ≤ f ],ρδ(·),s(·)(z),

for a.e. z ∈ B′. From here, proceeding analogously to the above, we get that

‖wχB′‖∞
|B′|1/γ‖χB′‖p′(·)

∫
B′
|f(y)|dy ≤ C

∥∥f ],ρδ(·),s(·) w∥∥ n
δ(·)−δ̃(·)

. (3.11)

Finally, from (3.10) and (3.11), the definition of |||f |||Lδ̃(·)(w) and Lemma 3.15, the
thesis follows. �

4. Proof of the main results

In this section we give the proofs of our main theorems. We begin with the proof
of Theorem 2.4.

Proof of Theorem 2.4. Let w ∈ Aρp,q and f ∈ Lq(wq). Without loss of generality,
we can assume that ‖gw‖p <∞, since otherwise there is nothing to prove, and we
can also assume that ‖gw‖p > 0, since otherwise g(x) = 0 at almost every point
and then, from the hypothesis, we would also have f(x) = 0 at almost every point.

Let us consider h(x) =
(
|g(x)|w(x)p

′

‖gw‖p

)p−s
, h̃ = h−s

′/s and 1
r = 1

p −
1
s . Hence,

h̃ ∈ Lr/s′(w−p′) and ∫
Rn
h̃r/s

′
w−p

′
dx = 1.

Since w ∈ Aρp,q and 1
r = 1

β + 1
q −

1
s = δ

n + 1
q , it follows that q ≥ r and so

w ∈ Aρp,r. Therefore, by Proposition 2.1, w−p′ ∈ Aρ
1+ p′

r

and applying Lemma 3.1,

with m = 1+ p′

r and v = w−p
′ , we know it exists H̃ ∈ Lr/s′(w−p′) such that H̃ ≥ h̃

and ∥∥H̃1/s′w−p
′/r
∥∥r
r

=
∫
Rn
H̃r/s′w−p

′
dx

≤ C
∫
Rn
h̃r/s

′
w−p

′
dx

= C.

(4.1)
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Hence, (∫
Rn
|g|pwpdx

)1/p
=
(∫

Rn
|gwp

′
|shw−p

′
dx

)1/s

=
(∫

Rn
|gwp

′
|s(h̃−1/s′)sw−p

′
dx

)1/s

≥
(∫

Rn
|gwp

′
|s(H̃−1/s′)sw−p

′
dx

)1/s

=
(∫

Rn
|g|s(H̃−1/s′wp

′/s′)sdx
)1/s

.

From item 3 of the Lemma 3.1, H̃w−p′ ∈ Aρ1 and so, H̃−1/s′wp
′/s′ ∈ Aρs,∞.

Thus, based on the hypothesis, the Lemma 3.2 and (4.1) we obtain(∫
Rn
|g|pwp dx

)1/p
≥
(∫

Rn
|g|s

(
H̃−1/s′wp

′/s′
)s

dx

)1/s

≥ C|||f |||Lδ(H̃−1/s′wp′/s′ )

≥ C‖f ],ρδ H̃−1/s′wp
′/s′‖∞

≥ C‖f ],ρδ H̃−1/s′wp
′/s′‖∞‖H̃1/s′w−p

′/r‖r
≥ C‖f ],ρδ w‖r.

Moreover, considering that w ∈ Aρp,q and r > p, we obtain w ∈ Aρr,q. Then, by
Proposition 3.4 and the fact that Aρr,q ⊂ Aρ,loc

r,q , we have(∫
Rn
|g|pwp dx

)1/p
≥ C‖f ],ρδ w‖r ≥ C‖f ],ρ0 w‖q

because 1
q = 1

r −
δ
n .

Finally, since w ∈ Aρp,q, it follows that wq ∈ Aρ1+ q

p′
⊂ Aρ,loc

1+ q

p′
and thus, by the

Lemma 3.3, we get that
‖f ],ρ0 w‖q ≥ C‖fw‖q,

which concludes the proof. �

Proof of Theorem 2.5. Let w ∈ Aρp,∞ and suppose as before that ‖gw‖p <∞. Let
us take r such that 1

r = 1
p −

1
s = δ−δ̃

n .
By items 3. and 1. of Proposition 2.1, since w ∈ Aρp,∞, w−p′ ∈ Aρ1 and thus

w−p
′ ∈ Aρ1+p′/r.

In the same way as for the previous theorem, given g we obtain a function
H̃ ∈ Lr/s′(w−p′) such that

‖H̃1/s′w−p
′/r‖r ≤ C,
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with H̃−1/s′wp
′/s′ ∈ Aρs,∞ and thereafter, from the hypothesis(∫

Rn
|g|pwp dx

)1/p
≥ C‖f ],ρδ w‖r.

Now, since w ∈ Aρp,∞ and r ≥ p, by item 6. of Proposition 2.1 we have w ∈ Aρr,∞.
Then, since Aρr,∞ ⊂ Aρ,loc

r,∞ , applying Proposition 3.4 and Lemma 3.2 we get that(∫
Rn
|g|pwp dx

)1/p
≥ C‖f ],ρδ w‖r ≥ C‖f ],ρδ̃ w‖∞ ≥ |||f |||Lδ̃(w).

�

Proof of Theorem 2.15. Let f such that ‖f‖Lq(·)(w) < ∞ and suppose as before
that 0 < ‖g‖Lp(·)(w) <∞.

Let us take

h1 = f

‖fw‖q(·)
+ w−1

(
g w

‖gw‖p(·)

) p(·)
q(·)

.

Let us first see that ‖h1w‖q(·) ≤ C. Indeed, from the definition of the norm, it
follows that

%q(·)(h1w) =
∫
Rn
|h1(x)w(x)|q(x)dx =

∫
Rn

∣∣∣∣∣∣f(x)w(x)
‖fw‖q(·)

+
(
g(x)w(x)
‖gw‖p(·)

) p(x)
q(x)

∣∣∣∣∣∣
q(x)

dx

≤ 2q
+
∫
Rn

(
|f(x)w(x)|
‖fw‖q(·)

)q(x)
dx+ 2q

+
∫
Rn

(
|g(x)w(x)|
‖gw‖p(·)

)p(x)
dx

≤ 2q
++1.

So, considering Proposition 2.6 it follows what has been stated.
We will now use the Corollary 3.13 and the operators H1 and H2 defined there

for h1 and the following h2. Let r0 = q0/σ. By Proposition 2.7, there exists
h2 ∈ L(q(·)/σ)′(Rn), h2 ≥ 0, ‖h2‖(q(·)/σ)′ ≤ 1, such that for any γ > 0,

‖fw‖σq(·) = ‖fσwσ‖q(·)/σ ≤ C
∫
Rn
fσwσh2 dx ≤ C

∫
Rn
fσH−γ1 Hγ

1w
σH2 dx

≤ C
(∫

Rn
fq0H−γr0

1 H2w
σ dx

)1/r0 (∫
Rn
H
γr′0
1 H2w

σ dx

)1/r′0

= CA1/r0B1/r′0 ,

where we have consecutively considered Proposition 2.9, the pointwise inequal-
ity between h2 and H2 and the Hölder inequality with exponent r0 and measure
wσH2 dx.

Let us now verify that the factor B is uniformly bounded. On the one hand,
considering the variable Hölder inequality (Proposition 2.8) with exponent q(·)/σ,
we have that

B ≤ C‖Hγr′0
1 wσ‖q(·)/σ‖H2‖(q(·)/σ)′ .
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Thus, since h1 ∈ Lq(·)(w) and h2 ∈ L(q(·)/σ)′(Rn), taking γ = σ
r′0

and considering
again the Corollary 3.13 and Proposition 2.9 we can see that

‖Hγr′0
1 wσ‖q(·)/σ = ‖Hσ

1 w
σ‖q(·)/σ = ‖H1w‖σq(·) ≤ 2σ‖h1w‖σq(·) ≤ C,

and
‖H2‖(q(·)/σ)′ ≤ 2‖h2‖(q(·)/σ)′ ≤ C.

Let us now observe that from the choice of γ, we have that

A =
∫
Rn
fq0H

−q0/r
′
0

1 H2w
σ dx.

In order to use the hypothesis (2.7), we must jointly prove that A is finite and
that the weight w0 =

(
H
−q0/r

′
0

1 H2w
σ
)1/q0 belongs to Aρp0,q0

.
Let’s start by seeing that A is finite. Considering the definition of h1, the

properties of H1 and H2 and the variable Hölder inequality it follows that

A =
∫
Rn
fq0H−q0

1 Hq0
1 H

−q0/r
′
0

1 H2w
σ dx

≤
∫
Rn
fq0h−q0

1 Hq0
1 H

−q0/r
′
0

1 H2w
σ dx

≤
∫
Rn
fq0

(
f

‖fw‖q(·)

)−q0

Hq0
1 H

−q0/r
′
0

1 H2w
σ dx

= ‖fw‖q0
q(·)

∫
Rn
Hq0

1 H
−q0/r

′
0

1 H2w
σ dx

= ‖fw‖q0
q(·)

∫
Rn
Hσ

1 H2w
σ dx

≤ C‖fw‖q0
q(·)‖H

σ
1 w

σ‖q(·)/σ‖H2‖(q(·)/σ)′ <∞.

Let us now see that w0 =
(
H
−q0/r

′
0

1 H2w
σ
)1/q0 ∈ Aρp0,q0

. For this purpose,
considering the ı́tem 4. of Proposition 2.1, it is sufficient to prove that wq0

0 =
H
−(q0−σ)
1 H2w

σ ∈ Aρs0
, where

s0 = 1 + q0

p′0
= q0

σ
.

In view again of Proposition 2.1, but in this case ı́tem 2., given that both H2w
σ

and H
q0−σ
s0−1

1 = Hσ
1 belong to Aρ1, it follows immediately that

wq0
0 =

(
H

q0−σ
s0−1

1

)1−s0
H2w

σ ∈ Aρs0
.

We are now in a position to apply (2.7). Considering then the hypothesis, the
definition of h1 and Hölder’s inequality with respect to a certain exponent r(·), we
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have that

A1/r0 = Aσ/q0 =
(∫

Rn
fq0H

−q0/r
′
0

1 H2w
σ dx

)σ/q0

≤ C
(∫

Rn
gp0
(
H
−q0/r

′
0

1 H2w
σ
)p0/q0

dx

)σ/p0

≤ C‖gw‖σp(·)
(∫

Rn

(
h
q(·)
p(·)
1 w

q(·)
p(·)−1

)p0

H
−p0/r

′
0

1 H
p0/q0
2 wσp0/q0dx

)σ/p0

≤ C‖gw‖σp(·)

(∫
Rn
H
p0

(
q(·)
p(·)−

1
r′0

)
1 wp0

(
σ
q0

+ q(·)
p(·)−1

)
H
p0/q0
2 dx

)σ/p0

≤ C‖gw‖σp(·)

∥∥∥∥(H1 w)
p0

(
q(·)
p(·)−

1
r′0

)∥∥∥∥σ/p0

r′(·)

∥∥∥∥Hp0/q0
2

∥∥∥∥σ/p0

r(·)

= C‖gw‖σp(·)E
σ/p0Fσ/p0 ,

where we have used the fact that σ
q0
− 1 = − 1

r′0
.

Let us take r(·) = q0
p0

( q(·)σ )′ and see that both E and F are bounded. On the
one hand, considering the Proposition 2.9, we get that

F =
∥∥∥Hp0/q0

2

∥∥∥
r(·)

=
∥∥∥Hp0/q0

2

∥∥∥
q0
p0

( q(·)
σ )′

=
∥∥H2

∥∥p0/q0

(q(·)/σ)′ ≤ 2p0/q0
∥∥h2
∥∥p0/q0

(q(·)/σ)′ ≤ 2p0/q0 .

On the other hand, since

p0

(
q(·)
p(·) −

1
r′0

)
r′(·) = q(·),

we have that

%r′(·)

(
(H1 w)

p0

(
q(·)
p(·)−

1
r′0

))
=
∫
Rn

(H1w)
p0

(
q(·)
p(·)−

1
r′0

)
r′(·)

dx

=
∫
Rn

(H1w)q(·)dx = %q(·)(H1w).

Given that ‖H1w‖q(·) ≤ 2‖h1w‖q(·), applying Proposition 2.6 it follows that
%q(·)(H1w) is uniformly bounded, and therefore, applying Proposition 2.6 again,
the uniform bounding of E follows, which concludes the proof of the theorem. �

Proof of Theorem 2.17. Suppose as before that 0 < ‖g‖Lp(·)(w) <∞.
Let 1

q(·) = 1
p(·) −

1
s = δ−δ̃(·)

n , q = q(·) = q(·)
η , p = p(·) = p(·)

η and s = s
η .

Let us consider the functions h and h̃ defined by

h =
(
|g|ηwηp′

‖gw‖ηp(·)

)p−s
=
(
|g|wp′

‖gw‖p(·)

)p(·)−s
and h̃ = h−s

′/s.
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From its definition, it follows that, h ∈ L(p(·)/s)′(w−ηp′/(p(·)/s)′) and

‖hw−ηp
′/(p(·)/s)′‖(p(·)/s)′ ≤ 1.

Indeed, since p(·) =
(
p(·)
s

)′
(p(·)− s) = p′(p(·)− η) we have that

∫
Rn
h(x)(p(x)/s)′w(x)−ηp

′
dx =

∫
Rn

(
|g(x)|w(x)p′

‖gw‖p(·)

)p(x)

w(x)−ηp
′
dx

=
∫
Rn

|g(x)w(x)|p(x)

‖gw‖p(x)
p(·)

dx ≤ 1.

Thus, ∫
Rn
h̃(x)q/s

′
w(x)−ηp

′
dx =

∫
Rn
h(x)−q(x)/sw(x)−ηp

′
dx

=
∫
Rn
h(x)(p(x)/s)′w(x)−ηp

′
dx ≤ 1,

that is h̃ ∈ Lq/s′(w−ηp′s′/q) and ‖h̃w−ηp′s′/q‖q/s′ ≤ 1.

Moreover,∫
Rn
|g(x)ηw(x)ηp

′
|sh̃(x)−s/s

′
w(x)−ηp

′
dx =

∫
Rn
|g(x)ηw(x)ηp

′
|sh(x)w(x)−ηp

′
dx

=
∫
Rn

(|g(x)|w(x)p′)p(x)

‖gw‖p(x)−s
p(·)

w(x)−ηp
′
dx

=
∫
Rn

(|g(x)|w(x))p(x)

‖gw‖p(x)−s
p(·)

dx

≤ ‖gw‖sp(·).
(4.2)

Note that, since 1
q(·) = 1

p(·) −
1
s , wη ∈ Aρp(·)/η,∞ and h̃ ∈ Lq/s

′(w−ηp′s′/q), by
Corollary 3.14 there exists H̃ ∈ Lq/s′(w−ηp′s′/q) such that

(1) h̃(x) ≤ H̃(x) a.e. x ∈ Rn.
(2) ‖H̃w−ηp′s′/q‖q/s′ ≤ 2‖h̃w−ηp′s′/q‖q/s′ .
(3) H̃w−ηp

′ ∈ Aρ1.

Note that from item 2 and the fact that ‖h̃w−ηp′s′/q‖q/s′ ≤ 1, it follows that
‖H̃w−ηp′s′/q‖q/s′ . C, which by Proposition 2.9, is equivalent to

‖H̃1/(ηs′)w−p
′/q‖q(·) . C. (4.3)
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From (4.2) and item 1 we obtain

‖gw‖p(·) ≥
(∫

Rn
|g(x)ηw(x)ηp

′
|sH̃(x)−s/s

′
w(x)−ηp

′
dx

)1/s

≥
(∫

Rn
|g(x)|s

(
H̃(x)−1/(ηs′)w(x)p

′/s′
)s
dx

)1/s

On the other hand, from item 3 we get that the weight (H̃−1/s′wηp
′/s′)−s′ =

H̃w−ηp
′ ∈ Aρ1, which is equivalent, by Proposition 2.1 (3), to H̃−1/s′wηp

′/s′ ∈ Aρs,∞,
that is, (H̃−1/(ηs′)wp

′/s′)η ∈ Aρs/η,∞. Thus, by the hypothesis, Lemma 3.2 and (4.3)
we obtain

‖gw‖p(·) ≥ C|||f |||Lδ(H̃−1/(ηs′)wp
′/s′ )

≥ C‖f ],ρδ H̃−1/(ηs′)wp
′/s′‖∞

≥ C‖f ],ρδ H̃−1/(ηs′)wp
′/s′‖∞‖H̃1/(ηs′)w−p

′/q‖q(·)
≥ C‖f ],ρδ wp

′(1/s′−1/q)‖q(·)
= C‖f ],ρδ w‖q(·)

From the hypothesis on w and Proposition 3.8 we conclude that w ∈ Aρq(·),∞
with q(·) = n

δ−δ̃(·) . Thus, from Proposition 3.16 and Lemma 3.15 we get that

‖gw‖p(·) ≥ C‖f ],ρδ w‖q(·)
= C‖f ],ρδ w‖ n

δ−δ̃(·)

≥ C‖f ],ρ
δ̃(·), p(·)w‖∞

≥ C|||f |||Lδ̃(·)(w).

�

5. Applications

We will conclude this paper with some results where we essentially prove norm
inequalities on the weighted variable Lebesgue spaces for some fractional type op-
erators in the Schrödinger context.

First we will see how to prove that an operator T is bounded in Lp(·)(w) using
Theorem 2.15. These same ideas can be used to apply the other theorems.

The key point in applying Theorem 4 is to consider an appropriate F family.
This usually requires a density argument, since we need pairs of functions (f, g)
such that f lies both the appropriate weighted space to apply the hypothesis and
in the weighted variable Lebesgue space in which we want to obtain the thesis.

The dense subsets of Lp(w) are well known, for example, smooth functions and
bounded functions of compact support.

These sets are also dense in Lp(·)(Rn) (see for example [13]) and in Lp(·)(w)
(see [12]).

Rev. Un. Mat. Argentina, Vol. 66, No. 1 (2023)



BOUNDEDNESS OF FRACTIONAL OPERATORS 61

More specifically, in [12] it is proved that if p(·) ∈ P(Rn) with p+ < ∞ and
w ∈ L

p(·)
loc (Rn), then L∞c (Rn), the set of bounded functions of compact support,

and C∞c , the smooth functions of compact support, are dense in Lp(·)(w).
Suppose now that for all w0 ∈ Aρp0,q0

it holds that
‖Tf w0‖q0 ≤ C‖f w0‖p0 . (5.1)

We want to show that given a w ∈ Aρp(·),q(·), T maps Lp(·)(w) into Lq(·)(w).
Since w ∈ Lp(·)loc (Rn) and w ∈ Lq(·)loc (Rn), by a standard density argument (see [13,
Theorem 5.39]) it is sufficient to show that

‖Tf w‖q(·) ≤ C‖f w‖p(·),
for all f ∈ L∞c . Although intuitively, it can be thought to define F as

F = {(|Tf |, |f |) : f ∈ L∞c },
it is not known a priori that Tf is in Lq(·)(w). To overcome this, we again
proceed by approximation and define (Tf)n = min{|Tf |, n}χB(0,n). Given that
w ∈ L

q(·)
loc (Rn), it follows that (Tf)n ∈ Lq(·)(w). On the other hand, it is clear

that (5.1) is satisfied with |Tf | replaced by (Tf)n. Therefore, if we define
F = {((Tf)n, |f |) : f ∈ L∞c , n ≥ 1},

we can apply Theorem 2.15 and Fatou’s Lemma in this context (see [13], Theorem
2.61) and conclude that for any f ∈ L∞c

‖Tf w‖q(·) ≤ lim inf
n→∞

‖(Tf)n w‖q(·) ≤ C‖f w‖p(·).

5.1. Fractional integral. Given 0 < α < n, the fractional integral of order α
associated with L is defined as

Iαf(x) = L−α/2f(x) =
∫
Rn
Kα(x, y)f(y) dy,

where
Kα(x, y) =

∫ ∞
0

kt(x, y) tα/2 dt
t
.

Here kt denotes the kernel of {e−tL}t>0, the heat semigroup associated to L. It is
known (see [22] and [18]) that if V ∈ RHν with ν > n/2 and λ0 = min

{
1, 2− n

ν

}
,

given N > 0 and 0 < λ < λ0, there exists a constant C such that

kt(x, y) ≤ C t−n/2 e−
|x−y|2
C t

(
1 +

√
t

ρ(x) +
√
t

ρ(y)

)−N
for any x and y in Rn. Also

|kt(x, y)− kt(x0, y)| ≤ C
(
|x− x0|√

t

)λ
t−n/2 e−

|x−y|2
C t

(
1 +

√
t

ρ(x) +
√
t

ρ(y)

)−N
,

provided that |x− x0| <
√
t.

Taking into account the above estimations, the following bounding result was
proved in [2, Proposition 8].
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Proposition 5.1. If V ∈ RHν with ν > n/2, then given N > 0 and 0 < λ < λ0,
there exists a constant C such that,

|Kα(x, y)| ≤ C

|x− y|n−α

(
1 + |x− y|

ρ(x)

)−N
, x, y ∈ Rn, (5.2)

and

|Kα(x, y)−Kα(x0, y)| ≤ C |x− x0|λ

|x− y|n−α+λ

(
1 + |x− y|

ρ(x0)

)−N
, (5.3)

whenever |x− x0| < 1
2 |x0 − y|.

Theorem 5.2. Let V ∈ RHν with ν > n
2 , 0 < α < n, 0 ≤ δ < min{λ0, α} and s

such that 1
s = α

n −
δ
n . Then, there exists a constant C such that the inequality

|||Iα f |||Lδ(w) ≤ C‖f‖Ls(ws)

is satisfied for all w ∈ Aρs,∞.

Proof. Let x0 ∈ Rn, and consider B̃ = B(x0, R) with R ≤ ρ(x0). From (5.2), the
Hölder inequality and since w−s′ ∈ Aρ1, it follows that

1
|B̃|

∫
B̃

|Iα(fχ2B̃)(x)|dx . 1
|B̃|

∫
B̃

∫
2B̃
|Kα(x, y)||f(y)| dy dx

.
1
|B̃|

∫
B̃

∫
2B̃

|f(y)|
|x− y|n−α

(
1 + |x− y|

ρ(x)

)−N
dy dx

.
1
|B̃|

∫
2B̃
|f(y)|

(∫
B(y,3R)

1
|x− y|n−α

dx

)
dy

. |B̃|α/n−1
∫

2B̃
|f(y)|dy

. |B̃|α/n−1‖fw‖s
(∫

2B̃
w(y)−s

′
dy

)1/s′

. |B̃|α/n−1|B̃|1/s
′ ‖fw‖s
‖wχ2B̃‖∞

(
1 + 2R

ρ(x0)

)θ/s′
≤ C|B̃|δ/n ‖fw‖s

‖wχB̃‖∞
.

(5.4)

We will check first condition (2.4). We write f = f̃1 + f̃2, with f̃1 = fχ2B(x0,ρ(x0)).
The observation above with R = ρ(x0) gives us the estimate we need for f̃1. For x ∈
B(x0, ρ(x0)) and y ∈ (2B(x0, ρ(x)))c, we have ρ(x) ' ρ(x0) and |x0−y| ≤ 2|x−y|.
Then, calling B′k = B(x0, 2kρ(x0)), by using estimate (5.2) with N > δ + θ

s′ and
Hölder’s inequality, we get, for x ∈ B(x0, ρ(x0)),
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|Iα(f̃2)(x)| .
∫

(2B(x0,ρ(x0)))c

|f(y)|
|x− y|n−α

(
1 + |x− y|

ρ(x)

)−N
dy

.
∑
k≥1

∫
B′
k+1\B

′
k

|f(y)|
|x0 − y|n−α

(
1 + c

|x0 − y|
ρ(x0)

)−N
dy

.
1

ρ(x0)n−α
∑
k≥1

1
2k(n−α)

(
1 + 2kρ(x0)

ρ(x0)

)−N ∫
B′
k+1

|f(y)| dy

.
‖fw‖s
ρ(x0)n−α

∑
k≥1

2−kN

2k(n−α)

(∫
B′
k+1

w(y)−s
′
dy

)1/s′

.
‖fw‖s
ρ(x0)n−α

∑
k≥1

2−k(N− θ
s′ )

2k(n−α) |B
′
k+1|1/s

′

(
inf
B′
k+1

w−s
′

)1/s′

.
‖fw‖s

ρ(x0)n−α− n
s′

∑
k≥1

2−k(N− θ+n
s′ )

2k(n−α)
1

‖wχB′
k+1
‖∞

.
‖fw‖s

‖wχB(x0,ρ(x0))‖∞
ρ(x0)α−ns

(∑
k≥1

2−k[N−(α−ns )− θ
s′ ]
)

.
‖fw‖s

‖wχB(x0,ρ(x0))‖∞
|B(x0, ρ(x0))|δ/n.

Now, we must check condition (2.3). It will be enough to show that this inequal-
ity is satisfied for every ball B ∈ Bρ for some constant cB . Let B = B(x0, r) with
r ≤ ρ(x0) and we write f = f1 + f2, with f1 = fχ2B . As before, the estimate for
f1 follows from (5.4) for R = r.

Finally we will estimate |Iα(f2)(x) − cB |, uniformly for x ∈ B, with cB =
Iα(f2)(x0). For x ∈ B and y ∈ (2B)c, we have ρ(x) ' ρ(x0) and |x0−y| ≤ 2|x−y|.
Then, callingBk = B(x0, 2kr), by using estimate (5.3) withN = θ

s′ and δ < λ < λ0,
we have

|Iα(f2)(x)− Iα(f2)(x0)|

.
∫

(2B)c
|f(y)| |x− x0|λ

|x− y|n−α+λ

(
1 + |x− y|

ρ(x)

)−N
dy

. rλ
∑
k≥1

∫
Bk+1\Bk

|f(y)|
|x0 − y|n−α+λ

(
1 + c

|x0 − y|
ρ(x0)

)−N
dy

.
1

rn−α

∑
k≥1

1
2k(n−α+λ)

(
1 + 2kr

ρ(x0)

)−N ∫
Bk+1

|f(y)| dy

.
‖fw‖s
rn−α

∑
k≥1

1
2k(n−α+λ)

(
1 + 2kr

ρ(x0)

)−N(∫
Bk+1

w(y)−s
′
dy

)1/s′
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.
‖fw‖s
rn−α

∑
k≥1

|Bk+1|1/s
′

2k(n−α+λ)

(
1 + 2kr

ρ(x0)

)−N+ θ
s′
(

inf
Bk+1

w−s
′
)1/s′

.
‖fw‖s
rn−α−

n
s′

∑
k≥1

2k ns′
2k(n−α+λ)

1
‖wχBk+1‖∞

.
‖fw‖s
‖wχB‖∞

rδ
(∑
k≥1

2−k(λ−δ)
)

.
‖fw‖s
‖wχB‖∞

|B|δ/n. �

Remark 5.3. The above result was proved for the case δ = 0 in [1].

Thus, we can apply the Theorem 2.16 to get the following.

Theorem 5.4. Let V ∈ RHν con ν > n
2 , 0 < α < n and p(·), q(·) ∈ P(Rn) such

that
1
p(·) −

1
q(·) = α

n
.

Then, if w ∈ Aρp(·),q(·) and q(·) ∈ P log(Rn) with q− > n
n−α , it follows that

‖Iα f‖Lq(·)(w) ≤ C‖f‖Lp(·)(w).

Remark 5.5. Since 1
p(·) −

1
q(·) = α

n we have that 1
p+ − 1

q+ = α
n from which it

follows that p+ < n
α . The restriction p+ < n

α is natural for the fractional integral
operator, since in the constant exponent case Iα does not map Ln/α to L∞.

On the other hand, also as a consequence of Theorem 5.2, now in combination
with Theorem 2.17, the following result follows.

Theorem 5.6. Let V ∈ RHν with ν > n
2 , 0 ≤ δ < min{α, λ0}. Let p(·) ∈

P log(Rn), p− > 1, and 0 ≤ δ̃(·) < δ such that 1
p(·) = α

n −
δ̃(·)
n . Then, for every

w ∈ Aρp(·),∞ it follows that

|||Iα f |||Lδ̃(·)(w) ≤ C‖f‖Lp(·)(w).

5.2. Commutators of fractional integrals. We now approach the case of the
commutator of the operator Iα. For a function b we will consider the commutator
of Iα defined as,

[Iα, b]f(x) = Iα(bf)(x)− b(x)Iαf(x), x ∈ Rn.

It is known that for the classical case (i.e., V ≡ 0), the commutator of the Iα
operator is of strong type (p, q) for 1 < p < n

α and 1
p −

1
q = α

n provided that b
belongs to BMO, the bounded mean oscillation space.

For the case we are dealing with here, the operator [Iα, b], it satisfies analogous
bounding properties, but the class where b belongs is larger than the usual BMO.
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Let us consider the space BMOρ, defined in [4], as the set of locally integrable
functions b such that for some θ > 0,

1
|B(x, r)|

∫
B(x,r)

|b(y)− bB(x,r)| dy ≤ C
(

1 + r

ρ(x)

)θ
,

for all x ∈ Rn and r > 0. The following result was proved in [27, Theorem 4.4].

Theorem 5.7. Let V ∈ RHν with ν > n
2 and b ∈ BMOρ. Then, if 0 < α < n,

1 < p < n
α and 1

q = 1
p −

α
n , there exists a constant C such that the inequality

‖[Iα, b]f‖Lq(wq) ≤ C‖f‖Lp(wp)

is satisfied for all w ∈ Aρp,q.

Hence, in view of Theorem 2.15, we obtain the following bounding result.

Theorem 5.8. Let V ∈ RHν with ν > n
2 , b ∈ BMOρ, 0 < α < n and p(·), q(·) ∈

P(Rn) such that
1
p(·) −

1
q(·) = α

n
.

Then, if w ∈ Aρp(·),q(·) and q(·) ∈ P log(Rn) with q− > n
n−α , it follows that

‖[Iα, b]f‖Lq(·)(w) ≤ C‖f‖Lp(·)(w).
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DOI MR Zbl

[14] D. V. Cruz-Uribe, J. M. Martell, and C. Pérez, Weights, Extrapolation and the Theory
of Rubio de Francia, Operator Theory: Advances and Applications 215, Birkhäuser/Springer
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[20] E. Harboure, R. A. Maćıas, and C. Segovia, Extrapolation results for classes of weights,
Amer. J. Math. 110 no. 3 (1988), 383–397. DOI MR Zbl
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